forked from wesabe/fixofx
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfakeofx.py
executable file
·190 lines (144 loc) · 6.18 KB
/
fakeofx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
# Copyright 2005-2010 Wesabe, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# fakeofx.py - a quick and ugly hack to generate fake OFX for testing
#
import os
import os.path
import sys
def fixpath(filename):
mypath = os.path.dirname(sys._getframe(1).f_code.co_filename)
return os.path.normpath(os.path.join(mypath, filename))
sys.path.insert(0, '3rdparty')
sys.path.insert(0, 'lib')
from datetime import date
from datetime import timedelta
import ofx
from optparse import OptionParser
import random
def generate_amt(base_amt):
return random.uniform((base_amt * 0.6), (base_amt * 1.4))
# How long should this statement be?
days = 90
end_date = date.today()
# How much spending should the statement represent?
income = 85000
take_home_pay = income * .6
paycheck_amt = "%.02f" % (take_home_pay / 26)
daily_income = take_home_pay / 365
# Assume that people spend their whole income. At least.
total_spending = daily_income * days
# How do people usually spend their money? Taken from
# http://www.billshrink.com/blog/consumer-income-spending/
# The fees number is made up, but seemed appropriate.
spending_pcts = \
{ "food": 0.101,
"housing": 0.278,
"utility": 0.056,
"clothing": 0.031,
"auto": 0.144,
"health": 0.047,
"entertainment": 0.044,
"gift": 0.020,
"education": 0.016,
"fee": 0.026 }
# How much do people spend per transaction? This is taken from
# the tag_summaries table in the live database.
avg_txn_amts = \
{ "auto": -70.77,
"clothing": -58.31,
"education": -62.64,
"entertainment": -30.10,
"fee": -20.95,
"food": -25.52,
"gift": -18.84,
"health": -73.05,
"mortgage": -1168.49,
"rent": -643.30,
"utility": -90.81 }
# For now, just throw in some merchant names for each tag. Later
# this should come from the merchant_summaries table.
top_merchants = \
{ "auto": ["Chevron", "Jiffy Lube", "Union 76", "Arco", "Shell", "Pep Boys"],
"clothing": ["Nordstrom", "Banana Republic", "Macy's", "The Gap", "Kenneth Cole", "J. Crew"],
"education": ["Tuition", "Amazon.com", "Registration", "The Crucible", "Campus Books"],
"entertainment": ["AMC Theaters", "Amazon.com", "Netflix", "iTunes Music Store", "Rhapsody", "Metreon Theaters"],
"fee": ["Bank Fee", "Overlimit Fee", "Late Fee", "Interest Fee", "Monthly Fee", "Annual Fee"],
"food": ["Safeway", "Starbucks", "In-N-Out Burger", "Trader Joe's", "Whole Foods", "Olive Garden"],
"gift": ["Amazon.com", "Nordstrom", "Neiman-Marcus", "Apple Store", "K&L Wines"],
"health": ["Dr. Phillips", "Dr. Jackson", "Walgreen's", "Wal-Mart", "Dr. Roberts", "Dr. Martins"],
"mortgage": ["Mortgage Payment"],
"rent": ["Rent Payment"],
"utility": ["AT&T", "Verizon", "PG&E", "Comcast", "Brinks", ""] }
# Choose a random account type.
accttype = random.choice(['CHECKING', 'CREDITCARD'])
if accttype == "CREDITCARD":
# Make up a random 16-digit credit card number with a standard prefix.
acctid = "9789" + str(random.randint(000000000000, 999999999999))
# Credit card statements don't use bankid.
bankid = None
# Make up a negative balance.
balance = "%.02f" % generate_amt(-5000)
else:
# Make up a random 8-digit account number.
acctid = random.randint(10000000, 99999999)
# Use a fake bankid so it's easy to find fake OFX uploads.
bankid = "987987987"
# Make up a positive balance.
balance = "%.02f" % generate_amt(1000)
def generate_transaction(stmt, tag, type, date=None):
if date is None:
days_ago = timedelta(days=random.randint(0, days))
date = (end_date - days_ago).strftime("%Y%m%d")
amount = generate_amt(avg_txn_amts[tag])
txn_amt = "%.02f" % amount
merchant = random.choice(top_merchants[tag])
stmt.add_transaction(date=date, amount=txn_amt, payee=merchant, type=type)
return amount
stmt = ofx.Generator(fid="9789789", org="FAKEOFX", acctid=acctid, accttype=accttype,
bankid=bankid, availbal=balance, ledgerbal=balance)
tags = spending_pcts.keys()
tags.remove("housing")
if accttype == "CREDITCARD":
# Add credit card payments
payment_days_ago = 0
while payment_days_ago < days:
payment_days_ago += 30
payment_amt = "%.02f" % generate_amt(1000)
paymentday = (end_date - timedelta(days=payment_days_ago)).strftime("%Y%m%d")
stmt.add_transaction(date=paymentday, amount=payment_amt, payee="Credit Card Payment", type="PAYMENT")
elif accttype == "CHECKING":
# First deal with income
pay_days_ago = 0
while pay_days_ago < days:
pay_days_ago += 15
payday = (end_date - timedelta(days=pay_days_ago)).strftime("%Y%m%d")
stmt.add_transaction(date=payday, amount=paycheck_amt, payee="Payroll", type="DEP")
# Then deal with housing
housing_tag = random.choice(["rent", "mortgage"])
housing_days_ago = 0
while housing_days_ago < days:
housing_days_ago += 30
last_housing = (end_date - timedelta(days=housing_days_ago)).strftime("%Y%m%d")
amount = generate_transaction(stmt, housing_tag, "DEBIT")
total_spending -= abs(amount)
# Now deal with the rest of the tags
for tag in tags:
tag_spending = total_spending * spending_pcts[tag]
while tag_spending > 0 and total_spending > 0:
amount = generate_transaction(stmt, tag, "DEBIT")
tag_spending -= abs(amount)
total_spending -= abs(amount)
print stmt