-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUseGensimMethod.py
98 lines (66 loc) · 3.12 KB
/
UseGensimMethod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import jieba
from gensim.models.doc2vec import TaggedDocument
from gensim.models import Doc2Vec
class ProblemEntry:
def __init__(self, pT, pTS, check):
self.problemText = pT
self.tagSequence = pTS
self.status = check
class UseGensimMethod:
def __init__(self, trainingFilePath: str, model_path: str, original_text_mode=True):
self.trainingFilePath = trainingFilePath
self.model_path = model_path
self.original_text_mode = original_text_mode
self.is_model_load = False
self.data_entries = self.read_dataset()
def load_model(self):
self.d2v_model = Doc2Vec.load(self.model_path)
self.is_model_load = True
print('Model file is loaded')
def read_dataset(self):
entryList = []
with open(self.trainingFilePath, 'r', encoding='utf8') as sr:
sr.readline()
for line in sr:
columns = line.strip('\n').split('\t')
entry = ProblemEntry(columns[1], columns[2], '可解' if columns[5] == 'True' else '未解')
entryList.append(entry)
return entryList
def train(self, savedModelPath):
document_train = []
for index, entry in enumerate(self.data_entries):
text = entry.problemText
tagSeq = entry.tagSequence
if self.original_text_mode:
q_segments = list(jieba.cut(text.strip(), cut_all=False))
q_document = TaggedDocument(q_segments, tags=[index])
EMBEDDING_SIZE = 96
else:
q_document = TaggedDocument(tagSeq.split(','), tags=[index])
EMBEDDING_SIZE = 32
EPOCH_NUM = 100
document_train.append(q_document)
d2v_model = Doc2Vec(document_train, dm=1, min_count=1, window=5, vector_size=EMBEDDING_SIZE, sample=1e-3, negative=5, workers=4)
print('start training with {0} samples'.format(d2v_model.corpus_count))
d2v_model.train(document_train, total_examples=d2v_model.corpus_count, epochs=EPOCH_NUM)
d2v_model.save(savedModelPath)
print('Model file is saved')
def do_inference(self, user_query: str, bestN=5):
ret = []
if not self.is_model_load:
self.load_model()
if self.original_text_mode:
query_segments = list(jieba.cut(user_query, cut_all=False))
else:
query_segments = user_query.split(',')
inferred_vector = self.d2v_model.infer_vector(query_segments)
# Find the top-N most similar document by (default) "cosine similarity" measure
bestN_results = self.d2v_model.dv.most_similar([inferred_vector], topn=bestN)
for rank, result in enumerate(bestN_results, 1):
docIndex, similarity = result
if similarity <= 0.75:
break
matched_entry = self.data_entries[docIndex]
ret.append(('{0:.3f}'.format(similarity), matched_entry.problemText.strip(), matched_entry.status))
#print("Top {0}: (similarity= {1:.3f}) {2}".format(rank, similarity, matched_p))
return ret