-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
235 lines (188 loc) · 8.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import torch
torch.multiprocessing.set_start_method("spawn", force=True)
from torch.utils import data
import numpy as np
import torch.optim as optim
import torchvision.utils as vutils
import time
import torch.backends.cudnn as cudnn
import os
import os.path as osp
import sys
# sys.path.append('./netwroks')
from dataset.datasets_rgb import LIPDataSet
import torchvision.transforms as transforms
import timeit
from tensorboardX import SummaryWriter
from utils.utils import decode_parsing, inv_preprocess
from utils.lovasz_losses import LovaszSoftmaxDSN
from utils.criterion2 import CriterionDSN
from utils.loss import OhemCrossEntropy2d
from utils.encoding import DataParallelModel, DataParallelCriterion
from utils.miou import compute_mean_ioU
from config import get_arguments
from ModelDefinition import create_model
from loss.criterion import Seg_Loss
start = timeit.default_timer()
args = get_arguments()
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, i_iter, total_iters):
"""Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
lr = lr_poly(args.learning_rate, i_iter, total_iters, args.power)
optimizer.param_groups[0]['lr'] = lr
# for i in range(1,len( optimizer.param_groups)):
# optimizer.param_groups[i]['lr'] = lr
return lr
def model_init(model,optimizer, args):
saved_state_dict = torch.load(args.restore_from)
if args.start_epoch >0:
model = DataParallelModel(model)
model.load_state_dict(saved_state_dict['state_dict'])
if 'optimizer' in saved_state_dict:
optimizer.load_state_dict(saved_state_dict['optimizer'])
print ('========Load Optimizer',args.restore_from)
else:
new_params = model.state_dict().copy()
#state_dict_pretrain = saved_state_dict #['state_dict']
for state_name in saved_state_dict:
if state_name in new_params:
new_params[state_name] = saved_state_dict[state_name]
else:
print ('Model Missed',state_name)
for state_name in new_params:
if state_name not in saved_state_dict:
print ('Model Increased',state_name)
model.load_state_dict(new_params)
model = DataParallelModel(model)
print ('-------Load Weight',args.restore_from)
def main():
"""Create the model and start the training."""
print (args)
h, w = map(int, args.input_size.split(','))
input_size = [h, w]
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
writer = SummaryWriter(args.snapshot_dir)
gpus = [int(i) for i in args.gpu.split(',')]
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.enabled = True
# cudnn related setting
cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.enabled = True
print('Create Dataset')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
trainloader = data.DataLoader(LIPDataSet(args,crop_size=input_size, transform=transform,list_path=args.list_path),
batch_size=args.batch_size * len(gpus), shuffle=True, num_workers=8,
pin_memory=True)
num_samples = 5000
model = create_model(args)
criterion = Seg_Loss(args, input_size)
optimizer = optim.SGD(
model.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay
)
if args.restore_from!='':
model_init(model,optimizer, args)
else:
model = DataParallelModel(model)
model.cuda()
criterion.cuda()
# dump_input = torch.rand((args.batch_size, 3, input_size[0], input_size[1]))
# writer.add_graph(model.cuda(), dump_input.cuda(), verbose=False)
'''
list_map = []
for part in model.path_list:
list_map = list_map + list(map(id, part.parameters()))
base_params = filter(lambda p: id(p) not in list_map,
model.parameters())
params_list = []
params_list.append({'params': base_params, 'lr':args.learning_rate*0.1})
for part in model.path_list:
params_list.append({'params': part.parameters()})
print ('len(params_list)',len(params_list))
'''
total_iters = args.epochs * len(trainloader)
for epoch in range(args.start_epoch, args.epochs):
model.train()
for i_iter, batch in enumerate(trainloader):
i_iter += len(trainloader) * epoch
lr = adjust_learning_rate(optimizer, i_iter, total_iters)
images, labels, _ = batch
labels = labels.long().cuda(non_blocking=True)
preds = model(images)
losses = criterion(preds,labels)
loss_total = sum(losses)
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
if i_iter % 100 == 0:
writer.add_scalar('learning_rate', lr, i_iter)
writer.add_scalar('total_loss', loss_total.data.cpu().numpy(), i_iter)
for i_loss in range(len(losses)):
name_loss = 'loss' + '_' + str(i_loss)
writer.add_scalar(name_loss, losses[i_loss].data.cpu().numpy(), i_iter)
print('epoch = {}, iter = {} of {} completed,lr={:.4f}, loss = {:.4f}, BCE_loss = {:.4f}, IoU_loss = {:.4f}'
.format(epoch, i_iter, total_iters,lr, loss_total.data.cpu().numpy(),losses[0].data.cpu().numpy(),losses[-1].data.cpu().numpy()))
if epoch%args.save_step == 0 or epoch==args.epochs:
time.sleep(10)
save_checkpoint(model,epoch,optimizer)
time.sleep(10)
save_checkpoint(model,epoch,optimizer)
end = timeit.default_timer()
print(end - start, 'seconds')
def save_checkpoint(model,epoch,optimizer):
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
filepath = osp.join(args.snapshot_dir, 'LIP_epoch_' + str(epoch) + '.pth')
torch.save(state, filepath)
def valid(model, valloader, input_size, num_samples, gpus):
model.eval()
parsing_preds = np.zeros((num_samples, input_size[0], input_size[1]),
dtype=np.uint8)
scales = np.zeros((num_samples, 2), dtype=np.float32)
centers = np.zeros((num_samples, 2), dtype=np.int32)
idx = 0
interp = torch.nn.Upsample(size=(input_size[0], input_size[1]), mode='bilinear', align_corners=True)
with torch.no_grad():
for index, batch in enumerate(valloader):
image, meta = batch
num_images = image.size(0)
if index % 10 == 0:
print('%d processd' % (index * num_images))
c = meta['center'].numpy()
s = meta['scale'].numpy()
scales[idx:idx + num_images, :] = s[:, :]
centers[idx:idx + num_images, :] = c[:, :]
outputs = model(image.cuda())
if gpus > 1:
for output in outputs:
parsing = output[0][-1]
nums = len(parsing)
parsing = interp(parsing).data.cpu().numpy()
parsing = parsing.transpose(0, 2, 3, 1) # NCHW NHWC
parsing_preds[idx:idx + nums, :, :] = np.asarray(np.argmax(parsing, axis=3), dtype=np.uint8)
idx += nums
else:
parsing = outputs[0][-1]
parsing = interp(parsing).data.cpu().numpy()
parsing = parsing.transpose(0, 2, 3, 1) # NCHW NHWC
parsing_preds[idx:idx + num_images, :, :] = np.asarray(np.argmax(parsing, axis=3), dtype=np.uint8)
idx += num_images
parsing_preds = parsing_preds[:num_samples, :, :]
return parsing_preds, scales, centers
if __name__ == '__main__':
main()