forked from JohannesBuchner/PyMultiNest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpymultinest_demo_old.py
105 lines (85 loc) · 3.79 KB
/
pymultinest_demo_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import absolute_import, unicode_literals, print_function
import pymultinest
import math
import os
import threading, subprocess
from sys import platform
if not os.path.exists("chains"): os.mkdir("chains")
def show(filepath):
""" open the output (pdf) file for the user """
if os.name == 'mac' or platform == 'darwin': subprocess.call(('open', filepath))
elif os.name == 'nt' or platform == 'win32': os.startfile(filepath)
elif platform.startswith('linux') : subprocess.call(('xdg-open', filepath))
# our probability functions
# Taken from the eggbox problem.
def myprior(cube, ndim, nparams):
#print "cube before", [cube[i] for i in range(ndim)]
for i in range(ndim):
cube[i] = cube[i] * 10 * math.pi
#print "python cube after", [cube[i] for i in range(ndim)]
def myloglike(cube, ndim, nparams):
chi = 1.
#print "cube", [cube[i] for i in range(ndim)], cube
for i in range(ndim):
chi *= math.cos(cube[i] / 2.)
#print "returning", math.pow(2. + chi, 5)
return math.pow(2. + chi, 5)
# number of dimensions our problem has
parameters = ["x", "y"]
n_params = len(parameters)
# we want to see some output while it is running
progress = pymultinest.ProgressPlotter(n_params = n_params, outputfiles_basename='chains/2-'); progress.start()
threading.Timer(2, show, ["chains/2-phys_live.points.pdf"]).start() # delayed opening
# run MultiNest
pymultinest.run(myloglike, myprior, n_params, importance_nested_sampling = False, resume = True, verbose = True, sampling_efficiency = 'model', n_live_points = 1000, outputfiles_basename='chains/2-')
# ok, done. Stop our progress watcher
progress.stop()
# lets analyse the results
a = pymultinest.Analyzer(n_params = n_params, outputfiles_basename='chains/2-')
s = a.get_stats()
import json
# store name of parameters, always useful
with open('%sparams.json' % a.outputfiles_basename, 'w') as f:
json.dump(parameters, f, indent=2)
# store derived stats
with open('%sstats.json' % a.outputfiles_basename, mode='w') as f:
json.dump(s, f, indent=2)
print()
print("-" * 30, 'ANALYSIS', "-" * 30)
print("Global Evidence:\n\t%.15e +- %.15e" % ( s['nested sampling global log-evidence'], s['nested sampling global log-evidence error'] ))
import matplotlib.pyplot as plt
plt.clf()
# Here we will plot all the marginals and whatnot, just to show off
# You may configure the format of the output here, or in matplotlibrc
# All pymultinest does is filling in the data of the plot.
# Copy and edit this file, and play with it.
p = pymultinest.PlotMarginalModes(a)
plt.figure(figsize=(5*n_params, 5*n_params))
#plt.subplots_adjust(wspace=0, hspace=0)
for i in range(n_params):
plt.subplot(n_params, n_params, n_params * i + i + 1)
p.plot_marginal(i, with_ellipses = True, with_points = False, grid_points=50)
plt.ylabel("Probability")
plt.xlabel(parameters[i])
for j in range(i):
plt.subplot(n_params, n_params, n_params * j + i + 1)
#plt.subplots_adjust(left=0, bottom=0, right=0, top=0, wspace=0, hspace=0)
p.plot_conditional(i, j, with_ellipses = False, with_points = True, grid_points=30)
plt.xlabel(parameters[i])
plt.ylabel(parameters[j])
plt.savefig("chains/marginals_multinest.pdf") #, bbox_inches='tight')
show("chains/marginals_multinest.pdf")
for i in range(n_params):
outfile = '%s-mode-marginal-%d.pdf' % (a.outputfiles_basename,i)
p.plot_modes_marginal(i, with_ellipses = True, with_points = False)
plt.ylabel("Probability")
plt.xlabel(parameters[i])
plt.savefig(outfile, format='pdf', bbox_inches='tight')
plt.close()
outfile = '%s-mode-marginal-cumulative-%d.pdf' % (a.outputfiles_basename,i)
p.plot_modes_marginal(i, cumulative = True, with_ellipses = True, with_points = False)
plt.ylabel("Cumulative probability")
plt.xlabel(parameters[i])
plt.savefig(outfile, format='pdf', bbox_inches='tight')
plt.close()
print("Take a look at the pdf files in chains/")