-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathheartbeat.py
executable file
·55 lines (42 loc) · 1.58 KB
/
heartbeat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.externals import joblib
#import the dataset
df = pd.read_csv('imdb_labelled.txt', delimiter = '\t', engine='python', quoting = 3)
#cleaning the dataset
import re
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
corpus = []
for i in range(0, 1000):
review = re.sub('[^a-zA-Z]', ' ', df['Review'][i])
review = review.lower()
review = review.split()
lemmatizer = WordNetLemmatizer()
review = [lemmatizer.lemmatize(word) for word in review if not word in set(stopwords.words('english'))]
review = ' '.join(review)
corpus.append(review)
#Create BOW model
from sklearn.feature_extraction.text import TfidfVectorizer
tfidfVectorizer = TfidfVectorizer(max_features =2000)
X = tfidfVectorizer.fit_transform(corpus).toarray()
y = df.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test , y_train, y_test = train_test_split(X, y , test_size = 0.20)
#Fit Naive Bayes to the training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
#Predicting the test set results
predictions = classifier.predict(X_test)
#Making the confusion matrix
from sklearn.metrics import confusion_matrix,classification_report
cm = confusion_matrix(y_test, predictions)
cr = classification_report(y_test,predictions)
joblib.dump(classifier, 'classifier.pkl')
joblib.dump(tfidfVectorizer, 'tfidfVectorizer.pkl')