-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathdqn.hpp
123 lines (104 loc) · 3.48 KB
/
dqn.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#ifndef DQN_HPP_
#define DQN_HPP_
#include <memory>
#include <random>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <ale_interface.hpp>
#include <caffe/caffe.hpp>
#include <boost/functional/hash.hpp>
#include <boost/optional.hpp>
namespace dqn {
constexpr auto kRawFrameHeight = 210;
constexpr auto kRawFrameWidth = 160;
constexpr auto kCroppedFrameSize = 84;
constexpr auto kCroppedFrameDataSize = kCroppedFrameSize * kCroppedFrameSize;
constexpr auto kInputFrameCount = 4;
constexpr auto kInputDataSize = kCroppedFrameDataSize * kInputFrameCount;
constexpr auto kMinibatchSize = 32;
constexpr auto kMinibatchDataSize = kInputDataSize * kMinibatchSize;
constexpr auto kGamma = 0.95f;
constexpr auto kOutputCount = 18;
using FrameData = std::array<uint8_t, kCroppedFrameDataSize>;
using FrameDataSp = std::shared_ptr<FrameData>;
using InputFrames = std::array<FrameDataSp, 4>;
using Transition = std::tuple<InputFrames, Action, float, boost::optional<FrameDataSp>>;
using FramesLayerInputData = std::array<float, kMinibatchDataSize>;
using TargetLayerInputData = std::array<float, kMinibatchSize * kOutputCount>;
using FilterLayerInputData = std::array<float, kMinibatchSize * kOutputCount>;
/**
* Deep Q-Network
*/
class DQN {
public:
DQN(
const ActionVect& legal_actions,
const std::string& solver_param,
const int replay_memory_capacity,
const double gamma) :
legal_actions_(legal_actions),
solver_param_(solver_param),
replay_memory_capacity_(replay_memory_capacity),
gamma_(gamma),
current_iter_(0),
random_engine(0) {}
/**
* Initialize DQN. Must be called before calling any other method.
*/
void Initialize();
/**
* Load a trained model from a file.
*/
void LoadTrainedModel(const std::string& model_file);
/**
* Select an action by epsilon-greedy.
*/
Action SelectAction(const InputFrames& input_frames, double epsilon);
/**
* Add a transition to replay memory
*/
void AddTransition(const Transition& transition);
/**
* Update DQN using one minibatch
*/
void Update();
int memory_size() const { return replay_memory_.size(); }
int current_iteration() const { return current_iter_; }
private:
using SolverSp = std::shared_ptr<caffe::Solver<float>>;
using NetSp = boost::shared_ptr<caffe::Net<float>>;
using BlobSp = boost::shared_ptr<caffe::Blob<float>>;
using MemoryDataLayerSp = boost::shared_ptr<caffe::MemoryDataLayer<float>>;
std::pair<Action, float> SelectActionGreedily(const InputFrames& last_frames);
std::vector<std::pair<Action, float>> SelectActionGreedily(
const std::vector<InputFrames>& last_frames);
void InputDataIntoLayers(
const FramesLayerInputData& frames_data,
const TargetLayerInputData& target_data,
const FilterLayerInputData& filter_data);
const ActionVect legal_actions_;
const std::string solver_param_;
const int replay_memory_capacity_;
const double gamma_;
int current_iter_;
std::deque<Transition> replay_memory_;
SolverSp solver_;
NetSp net_;
BlobSp q_values_blob_;
MemoryDataLayerSp frames_input_layer_;
MemoryDataLayerSp target_input_layer_;
MemoryDataLayerSp filter_input_layer_;
TargetLayerInputData dummy_input_data_;
std::mt19937 random_engine;
};
/**
* Preprocess an ALE screen (downsampling & grayscaling)
*/
FrameDataSp PreprocessScreen(const ALEScreen& raw_screen);
/**
* Draw a frame as a string
*/
std::string DrawFrame(const FrameData& frame);
}
#endif /* DQN_HPP_ */