-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain_mn.py
executable file
·393 lines (335 loc) · 16.5 KB
/
train_mn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import argparse
import math
import multiprocessing
import os
import random
import sys
import chainer
import chainer.functions as cf
import chainermn
import cupy as cp
import matplotlib.pyplot as plt
import numpy as np
from chainer.backends import cuda
import gqn
from gqn.data import Dataset, Iterator
from gqn.preprocessing import make_uint8, preprocess_images
from hyperparams import HyperParameters
from model import Model
from trainer.dataframe import DataFrame
from trainer.meter import Meter
from trainer.optimizer import AdamOptimizer
from trainer.scheduler import PixelVarianceScheduler
def _mkdir(directory):
try:
os.makedirs(directory)
except:
pass
def main():
_mkdir(args.snapshot_directory)
_mkdir(args.log_directory)
meter_train = Meter()
meter_train.load(args.snapshot_directory)
#==============================================================================
# Workaround to fix OpenMPI bug
#==============================================================================
multiprocessing.set_start_method("forkserver")
p = multiprocessing.Process(target=print, args=("", ))
p.start()
p.join()
#==============================================================================
# Selecting the GPU
#==============================================================================
comm = chainermn.create_communicator()
device = comm.intra_rank
cuda.get_device(device).use()
def _print(*args):
if comm.rank == 0:
print(*args)
_print("Using {} GPUs".format(comm.size))
#==============================================================================
# Dataset
#==============================================================================
dataset_train = Dataset(args.train_dataset_directory)
dataset_test = None
if args.test_dataset_directory is not None:
dataset_test = Dataset(args.test_dataset_directory)
#==============================================================================
# Hyperparameters
#==============================================================================
hyperparams = HyperParameters()
hyperparams.num_layers = args.generation_steps
hyperparams.generator_share_core = args.generator_share_core
hyperparams.inference_share_core = args.inference_share_core
hyperparams.h_channels = args.h_channels
hyperparams.z_channels = args.z_channels
hyperparams.u_channels = args.u_channels
hyperparams.r_channels = args.r_channels
hyperparams.image_size = (args.image_size, args.image_size)
hyperparams.representation_architecture = args.representation_architecture
hyperparams.pixel_sigma_annealing_steps = args.pixel_sigma_annealing_steps
hyperparams.initial_pixel_sigma = args.initial_pixel_sigma
hyperparams.final_pixel_sigma = args.final_pixel_sigma
_print(hyperparams, "\n")
if comm.rank == 0:
hyperparams.save(args.snapshot_directory)
#==============================================================================
# Model
#==============================================================================
model = Model(hyperparams)
model.load(args.snapshot_directory, meter_train.epoch)
model.to_gpu()
#==============================================================================
# Pixel-variance annealing
#==============================================================================
variance_scheduler = PixelVarianceScheduler(
sigma_start=args.initial_pixel_sigma,
sigma_end=args.final_pixel_sigma,
final_num_updates=args.pixel_sigma_annealing_steps)
variance_scheduler.load(args.snapshot_directory)
_print(variance_scheduler, "\n")
pixel_log_sigma = cp.full(
(args.batch_size, 3) + hyperparams.image_size,
math.log(variance_scheduler.standard_deviation),
dtype="float32")
#==============================================================================
# Logging
#==============================================================================
csv = DataFrame()
csv.load(args.log_directory)
#==============================================================================
# Optimizer
#==============================================================================
optimizer = AdamOptimizer(
model.parameters,
initial_lr=args.initial_lr,
final_lr=args.final_lr,
initial_training_step=variance_scheduler.training_step)
_print(optimizer, "\n")
#==============================================================================
# Algorithms
#==============================================================================
def encode_scene(images, viewpoints):
# (batch, views, height, width, channels) -> (batch, views, channels, height, width)
images = images.transpose((0, 1, 4, 2, 3)).astype(np.float32)
# Sample number of views
total_views = images.shape[1]
num_views = random.choice(range(1, total_views + 1))
# Sample views
observation_view_indices = list(range(total_views))
random.shuffle(observation_view_indices)
observation_view_indices = observation_view_indices[:num_views]
observation_images = preprocess_images(
images[:, observation_view_indices])
observation_query = viewpoints[:, observation_view_indices]
representation = model.compute_observation_representation(
observation_images, observation_query)
# Sample query view
query_index = random.choice(range(total_views))
query_images = preprocess_images(images[:, query_index])
query_viewpoints = viewpoints[:, query_index]
# Transfer to gpu if necessary
query_images = cuda.to_gpu(query_images)
query_viewpoints = cuda.to_gpu(query_viewpoints)
return representation, query_images, query_viewpoints
def estimate_ELBO(query_images, z_t_param_array, pixel_mean,
pixel_log_sigma):
# KL Diverge, pixel_ln_varnce
kl_divergence = 0
for params_t in z_t_param_array:
mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p = params_t
normal_q = chainer.distributions.Normal(
mean_z_q, log_scale=ln_var_z_q)
normal_p = chainer.distributions.Normal(
mean_z_p, log_scale=ln_var_z_p)
kld_t = chainer.kl_divergence(normal_q, normal_p)
kl_divergence += cf.sum(kld_t)
kl_divergence = kl_divergence / args.batch_size
# Negative log-likelihood of generated image
batch_size = query_images.shape[0]
num_pixels_per_batch = np.prod(query_images.shape[1:])
normal = chainer.distributions.Normal(
query_images, log_scale=pixel_log_sigma)
log_px = cf.sum(normal.log_prob(pixel_mean)) / batch_size
negative_log_likelihood = -log_px
# Empirical ELBO
ELBO = log_px - kl_divergence
# https://arxiv.org/abs/1604.08772 Section.2
# https://www.reddit.com/r/MachineLearning/comments/56m5o2/discussion_calculation_of_bitsdims/
bits_per_pixel = -(ELBO / num_pixels_per_batch - np.log(256)) / np.log(
2)
return ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence
#==============================================================================
# Training iterations
#==============================================================================
dataset_size = len(dataset_train)
random.seed(0)
np.random.seed(0)
cp.random.seed(0)
for epoch in range(meter_train.epoch, args.epochs):
_print("Epoch {}/{}:".format(
epoch + 1,
args.epochs,
))
meter_train.next_epoch()
subset_indices = list(range(len(dataset_train.subset_filenames)))
subset_size_per_gpu = len(subset_indices) // comm.size
if len(subset_indices) % comm.size != 0:
subset_size_per_gpu += 1
for subset_loop in range(subset_size_per_gpu):
random.shuffle(subset_indices)
subset_index = subset_indices[comm.rank]
subset = dataset_train.read(subset_index)
iterator = gqn.data.Iterator(subset, batch_size=args.batch_size)
for batch_index, data_indices in enumerate(iterator):
#------------------------------------------------------------------------------
# Scene encoder
#------------------------------------------------------------------------------
# images.shape: (batch, views, height, width, channels)
images, viewpoints = subset[data_indices]
representation, query_images, query_viewpoints = encode_scene(
images, viewpoints)
#------------------------------------------------------------------------------
# Compute empirical ELBO
#------------------------------------------------------------------------------
# Compute distribution parameterws
(z_t_param_array,
pixel_mean) = model.sample_z_and_x_params_from_posterior(
query_images, query_viewpoints, representation)
# Compute ELBO
(ELBO, bits_per_pixel, negative_log_likelihood,
kl_divergence) = estimate_ELBO(query_images, z_t_param_array,
pixel_mean, pixel_log_sigma)
#------------------------------------------------------------------------------
# Update parameters
#------------------------------------------------------------------------------
loss = -ELBO
model.cleargrads()
loss.backward()
optimizer.update(meter_train.num_updates)
#------------------------------------------------------------------------------
# Logging
#------------------------------------------------------------------------------
with chainer.no_backprop_mode():
mean_squared_error = cf.mean_squared_error(
query_images, pixel_mean)
meter_train.update(
ELBO=float(ELBO.data),
bits_per_pixel=float(bits_per_pixel.data),
negative_log_likelihood=float(
negative_log_likelihood.data),
kl_divergence=float(kl_divergence.data),
mean_squared_error=float(mean_squared_error.data))
#------------------------------------------------------------------------------
# Annealing
#------------------------------------------------------------------------------
variance_scheduler.update(meter_train.num_updates)
pixel_log_sigma[...] = math.log(
variance_scheduler.standard_deviation)
if subset_loop % 100 == 0:
_print(" Subset {}/{}:".format(
subset_loop + 1,
subset_size_per_gpu,
dataset_size,
))
_print(" {}".format(meter_train))
_print(" lr: {} - sigma: {}".format(
optimizer.learning_rate,
variance_scheduler.standard_deviation))
#------------------------------------------------------------------------------
# Validation
#------------------------------------------------------------------------------
meter_test = None
if dataset_test is not None:
meter_test = Meter()
batch_size_test = args.batch_size * 6
subset_indices_test = list(
range(len(dataset_test.subset_filenames)))
pixel_log_sigma_test = cp.full(
(batch_size_test, 3) + hyperparams.image_size,
math.log(variance_scheduler.standard_deviation),
dtype="float32")
subset_size_per_gpu = len(subset_indices_test) // comm.size
with chainer.no_backprop_mode():
for subset_loop in range(subset_size_per_gpu):
subset_index = subset_indices_test[subset_loop * comm.size
+ comm.rank]
subset = dataset_test.read(subset_index)
iterator = gqn.data.Iterator(
subset, batch_size=batch_size_test)
for data_indices in iterator:
images, viewpoints = subset[data_indices]
# Scene encoder
representation, query_images, query_viewpoints = encode_scene(
images, viewpoints)
# Compute empirical ELBO
(z_t_param_array, pixel_mean
) = model.sample_z_and_x_params_from_posterior(
query_images, query_viewpoints, representation)
(ELBO, bits_per_pixel, negative_log_likelihood,
kl_divergence) = estimate_ELBO(
query_images, z_t_param_array, pixel_mean,
pixel_log_sigma_test)
mean_squared_error = cf.mean_squared_error(
query_images, pixel_mean)
# Logging
meter_test.update(
ELBO=float(ELBO.data),
bits_per_pixel=float(bits_per_pixel.data),
negative_log_likelihood=float(
negative_log_likelihood.data),
kl_divergence=float(kl_divergence.data),
mean_squared_error=float(mean_squared_error.data))
meter_test = meter_test.allreduce(comm)
if comm.rank == 0:
print(" Test:")
print(" {} - done in {:.3f} min".format(
meter_test,
meter_test.elapsed_time,
))
model.save(args.snapshot_directory, epoch)
variance_scheduler.save(args.snapshot_directory)
meter_train.save(args.snapshot_directory)
csv.append(epoch, meter_train, meter_test)
csv.save(args.log_directory)
print("Epoch {} done in {:.3f} min".format(
epoch + 1,
meter_train.epoch_elapsed_time,
))
print(" {}".format(meter_train))
print(" lr: {} - sigma: {} - training_steps: {}".format(
optimizer.learning_rate,
variance_scheduler.standard_deviation,
meter_train.num_updates,
))
print(" Time elapsed: {:.3f} min".format(
meter_train.elapsed_time))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train-dataset-directory", type=str, required=True)
parser.add_argument("--test-dataset-directory", type=str, default=None)
parser.add_argument("--snapshot-directory", type=str, default="snapshots")
parser.add_argument("--log-directory", type=str, default="log")
parser.add_argument("--batch-size", type=int, default=36)
parser.add_argument("--epochs", type=int, default=1000)
parser.add_argument("--generation-steps", type=int, default=12)
parser.add_argument("--initial-lr", type=float, default=1e-4)
parser.add_argument("--final-lr", type=float, default=1e-5)
parser.add_argument("--initial-pixel-sigma", type=float, default=2.0)
parser.add_argument("--final-pixel-sigma", type=float, default=0.7)
parser.add_argument(
"--pixel-sigma-annealing-steps", type=int, default=160000)
parser.add_argument("--h-channels", type=int, default=128)
parser.add_argument("--z-channels", type=int, default=3)
parser.add_argument("--u-channels", type=int, default=128)
parser.add_argument("--r-channels", type=int, default=256)
parser.add_argument("--image-size", type=int, default=64)
parser.add_argument(
"--representation-architecture",
type=str,
default="tower",
choices=["tower", "pool"])
parser.add_argument("--generator-share-core", action="store_true")
parser.add_argument("--inference-share-core", action="store_true")
args = parser.parse_args()
main()