-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmodel.py
executable file
·457 lines (365 loc) · 15.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import sys
import uuid
import chainer
import chainer.functions as cf
import chainer.links as nn
import cupy
from chainer.backends import cuda
from chainer.initializers import HeNormal
from chainer.serializers import save_hdf5
import gqn
from hyperparams import HyperParameters
class NormalDistribution(chainer.Chain):
def __init__(self, z_channels, weight_initializer=None):
super().__init__()
with self.init_scope():
self.conv = nn.Convolution2D(
None,
z_channels * 2,
ksize=5,
stride=1,
pad=2,
initialW=weight_initializer)
def compute_parameter(self, h):
param = self.conv(h)
mean, ln_var = cf.split_axis(param, 2, axis=1)
return mean, ln_var
def sample(self, h):
mean, ln_var = self.compute_parameter(h)
return cf.gaussian(mean, ln_var)
class Model():
def __init__(self, hyperparams: HyperParameters):
assert isinstance(hyperparams, HyperParameters)
self.num_layers = hyperparams.num_layers
self.hyperparams = hyperparams
self.parameters = chainer.ChainList()
self.snapshot_filename = "model.hdf5"
h_size = (hyperparams.image_size[0] // 4,
hyperparams.image_size[0] // 4)
v_size = h_size
if hyperparams.representation_architecture == "tower":
r_size = h_size
elif hyperparams.representation_architecture == "pool":
r_size = (1, 1)
else:
raise NotImplementedError
weight_initializer = chainer.initializers.GlorotNormal()
#------------------------------------------------------------------------------
# Generation network
#------------------------------------------------------------------------------
self.generation_cores = []
with self.parameters.init_scope():
# LSTM core
num_cores = 1 if self.hyperparams.generator_share_core else self.num_layers
for _ in range(num_cores):
core = gqn.nn.GenerationCore(
h_channels=hyperparams.h_channels,
h_size=h_size,
r_channels=hyperparams.r_channels,
r_size=r_size,
u_channels=hyperparams.u_channels,
weight_initializer=weight_initializer)
self.generation_cores.append(core)
self.parameters.append(core)
# z prior
self.z_prior_distribution = NormalDistribution(
z_channels=hyperparams.z_channels)
self.parameters.append(self.z_prior_distribution)
# 1x1 conv (u -> x)
if hyperparams.u_channels == 3:
self._map_u_x = None
else:
self._map_u_x = nn.Convolution2D(
hyperparams.u_channels,
3,
ksize=1,
stride=1,
pad=0,
initialW=weight_initializer)
self.parameters.append(self._map_u_x)
#------------------------------------------------------------------------------
# Inference network
#------------------------------------------------------------------------------
self.inference_cores = []
with self.parameters.init_scope():
num_cores = 1 if self.hyperparams.inference_share_core else self.num_layers
for t in range(num_cores):
# LSTM core
core = gqn.nn.InferenceCore(
h_channels=hyperparams.h_channels,
h_size=h_size,
r_channels=hyperparams.r_channels,
r_size=r_size,
u_channels=hyperparams.u_channels,
weight_initializer=weight_initializer)
self.inference_cores.append(core)
self.parameters.append(core)
# z posterior
self.z_posterior_distribution = NormalDistribution(
z_channels=hyperparams.z_channels)
self.parameters.append(self.z_posterior_distribution)
#------------------------------------------------------------------------------
# Representation network
#------------------------------------------------------------------------------
if hyperparams.representation_architecture == "tower":
self.representation_network = gqn.nn.TowerNetwork(
r_channels=hyperparams.r_channels,
v_size=v_size,
weight_initializer=weight_initializer)
with self.parameters.init_scope():
self.parameters.append(self.representation_network)
if hyperparams.representation_architecture == "pool":
self.representation_network = gqn.nn.PoolNetwork(
r_channels=hyperparams.r_channels,
r_size=r_size,
v_size=v_size,
weight_initializer=weight_initializer)
with self.parameters.init_scope():
self.parameters.append(self.representation_network)
def to_gpu(self):
self.parameters.to_gpu()
def cleargrads(self):
self.parameters.cleargrads()
@property
def num_trainable_parameters(self):
size = 0
for param in self.parameters.params():
size += param.data.size
return size
def load(self, snapshot_root_directory, epoch):
model_path = os.path.join(snapshot_root_directory,
self.snapshot_filename)
try:
if os.path.exists(model_path):
print("loading {}".format(model_path))
chainer.serializers.load_hdf5(model_path, self.parameters)
return True
except Exception as error:
print(error)
return False
def save(self, snapshot_root_directory, epoch):
tmp_filename = str(uuid.uuid4())
save_hdf5(
os.path.join(snapshot_root_directory, tmp_filename),
self.parameters)
os.rename(
os.path.join(snapshot_root_directory, tmp_filename),
os.path.join(snapshot_root_directory, self.snapshot_filename))
def generate_initial_state(self, batch_size, xp):
hc_size = (self.hyperparams.image_size[0] // 4,
self.hyperparams.image_size[1] // 4)
initial_h_gen = xp.zeros(
(
batch_size,
self.hyperparams.h_channels,
) + hc_size,
dtype="float32")
initial_c_gen = xp.zeros(
(
batch_size,
self.hyperparams.h_channels,
) + hc_size,
dtype="float32")
initial_u = xp.zeros(
(
batch_size,
self.hyperparams.u_channels,
) + self.hyperparams.image_size,
dtype="float32")
initial_h_enc = xp.zeros(
(
batch_size,
self.hyperparams.h_channels,
) + hc_size,
dtype="float32")
initial_c_enc = xp.zeros(
(
batch_size,
self.hyperparams.h_channels,
) + hc_size,
dtype="float32")
return initial_h_gen, initial_c_gen, initial_u, initial_h_enc, initial_c_enc
def get_generation_core(self, t):
if self.hyperparams.generator_share_core:
return self.generation_cores[0]
return self.generation_cores[t]
def get_generation_prior(self, t):
if self.hyperparams.generator_share_prior:
return self.generation_priors[0]
return self.generation_priors[t]
def get_generation_upsampler(self, t):
if self.hyperparams.generator_share_upsampler:
return self.generation_upsamplers[0]
return self.generation_upsamplers[t]
def get_inference_core(self, t):
if self.hyperparams.inference_share_core:
return self.inference_cores[0]
return self.inference_cores[t]
def get_inference_posterior(self, t):
if self.hyperparams.inference_share_posterior:
return self.inference_posteriors[0]
return self.inference_posteriors[t]
# def compute_information_gain(self, x, r):
# xp = cuda
# h0_gen, c0_gen, u_0, h0_enc, c0_enc = self.generate_initial_state(
# 1, xp)
# loss_kld = 0
# hl_enc = h0_enc
# cl_enc = c0_enc
# hl_gen = h0_gen
# cl_gen = c0_gen
# ul_enc = u_0
# xq = self.inference_downsampler(x)
# for l in range(self.num_layers):
# inference_core = self.get_inference_core(l)
# inference_posterior = self.get_inference_posterior(l)
# generation_core = self.get_generation_core(l)
# generation_piror = self.get_generation_prior(l)
# h_next_enc, c_next_enc = inference_core.forward_onestep(
# hl_gen, hl_enc, cl_enc, xq, v, r)
# mean_z_q = inference_posterior.compute_mean_z(hl_enc)
# ln_var_z_q = inference_posterior.compute_ln_var_z(hl_enc)
# ze_l = cf.gaussian(mean_z_q, ln_var_z_q)
# mean_z_p = generation_piror.compute_mean_z(hl_gen)
# ln_var_z_p = generation_piror.compute_ln_var_z(hl_gen)
# h_next_gen, c_next_gen, u_next_enc = generation_core.forward_onestep(
# hl_gen, cl_gen, ul_enc, ze_l, v, r)
# kld = gqn.nn.functions.gaussian_kl_divergence(
# mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p)
# loss_kld += cf.sum(kld)
# hl_gen = h_next_gen
# cl_gen = c_next_gen
# ul_enc = u_next_enc
# hl_enc = h_next_enc
# cl_enc = c_next_enc
def compute_observation_representation(self, images, viewpoints):
batch_size = images.shape[0]
num_views = images.shape[1]
# (batch, views, channels, height, width) -> (batch * views, channels, height, width)
images = images.reshape((batch_size * num_views, ) + images.shape[2:])
viewpoints = viewpoints.reshape((batch_size * num_views, 7, 1, 1))
# Transfer to gpu
xp = self.parameters.xp
if xp is cupy:
images = cuda.to_gpu(images)
viewpoints = cuda.to_gpu(viewpoints)
# Add noise
# images += xp.random.uniform(
# 0, 1.0 / 256.0, size=images.shape).astype(xp.float32)
r = self.representation_network(images, viewpoints)
# (batch * views, channels, height, width) -> (batch, views, channels, height, width)
r = r.reshape((batch_size, num_views) + r.shape[1:])
# Sum element-wise across views
r = cf.sum(r, axis=1)
return r
def map_u_x(self, x):
if self._map_u_x is None:
return x
return self._map_u_x(x)
def sample_z_and_x_params_from_posterior(self, x, v, r):
batch_size = x.shape[0]
xp = cuda.get_array_module(x)
h_t_gen, c_t_gen, u_t, h_t_enc, c_t_enc = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape + (1, 1))
z_t_params_array = []
for t in range(self.num_layers):
inference_core = self.get_inference_core(t)
generation_core = self.get_generation_core(t)
h_next_enc, c_next_enc = inference_core(h_t_gen, h_t_enc, c_t_enc,
x, v, r, u_t)
mean_z_q, ln_var_z_q = self.z_posterior_distribution.compute_parameter(
h_t_enc)
z_t = cf.gaussian(mean_z_q, ln_var_z_q)
mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
h_t_gen)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
z_t_params_array.append((mean_z_q, ln_var_z_q, mean_z_p,
ln_var_z_p))
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
h_t_enc = h_next_enc
c_t_enc = c_next_enc
mean_x = self.map_u_x(u_t)
return z_t_params_array, mean_x
def generate_image(self, v, r):
xp = cuda.get_array_module(v)
batch_size = v.shape[0]
h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape[:2] + (1, 1))
for t in range(self.num_layers):
generation_core = self.get_generation_core(t)
mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
h_t_gen)
z_t = cf.gaussian(mean_z_p, ln_var_z_p)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
mean_x = self.map_u_x(u_t)
return mean_x.data
def generate_image_from_zero_z(self, v, r):
xp = cuda.get_array_module(v)
batch_size = v.shape[0]
h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape[:2] + (1, 1))
for t in range(self.num_layers):
generation_core = self.get_generation_core(t)
mean_z_p, _ = self.z_prior_distribution.compute_parameter(h_t_gen)
z_t = xp.zeros_like(mean_z_p.data)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
mean_x = self.map_u_x(u_t)
return mean_x.data
def generate_canvas_states(self, v, r, xp):
batch_size = v.shape[0]
h_t_gen, c_t_gen, u_t, _, _ = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape[:2] + (1, 1))
u_t_array = []
for t in range(self.num_layers):
generation_core = self.get_generation_core(t)
mean_z_p, ln_var_z_p = self.z_prior_distribution.compute_parameter(
h_t_gen)
z_t = cf.gaussian(mean_z_p, ln_var_z_p)
h_next_gen, c_next_gen, u_next = generation_core(
h_t_gen, c_t_gen, z_t, v, r, u_t)
u_t = u_next
h_t_gen = h_next_gen
c_t_gen = c_next_gen
u_t_array.append(u_t)
return u_t_array
def reconstruct_image(self, query_images, v, r, xp):
batch_size = v.shape[0]
h0_g, c0_g, u0, h0_e, c0_e = self.generate_initial_state(
batch_size, xp)
v = cf.reshape(v, v.shape[:2] + (1, 1))
hl_e = h0_e
cl_e = c0_e
hl_g = h0_g
cl_g = c0_g
ul_e = u0
for l in range(self.num_layers):
inference_core = self.get_inference_core(l)
inference_posterior = self.get_inference_posterior(l)
generation_core = self.get_generation_core(l)
he_next, ce_next = inference_core(hl_g, hl_e, cl_e, x, v, r, ul_e)
ze_l = inference_posterior.sample_z(hl_e)
hg_next, cg_next, ue_next = generation_core(
hl_g, cl_g, ul_e, ze_l, v, r)
hl_g = hg_next
cl_g = cg_next
ul_e = ue_next
hl_e = he_next
cl_e = ce_next
x = self.generation_observation.compute_mean_x(ul_e)
return x.data