forked from dpacheco0921/FlyCaImAn
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFlyCaImAn_imaging_only_demo.m
121 lines (96 loc) · 3.27 KB
/
FlyCaImAn_imaging_only_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
%% demo for imaging only data (two volumes sequentially imaged)
%% 1) add paths
% it assumes you have already add the repository folders to your path
addpath(genpath(pwd))
% add paths of all dependencies
% CaImAn, NoRMCorre, CMTK_matlab_wrapper
%% 2) Move to folder and Download demo data
tDir = strrep(which('FlyCaImAn_demo'), 'FlyCaImAn_demo.m', '');
cd(tDir)
url = 'https://www.dropbox.com/s/1s2h6yigfmdhodf/20161129.zip?dl=1';
filename = '20161129.zip';
if ~exist('demodata', 'dir')
mkdir('demodata')
end
cd demodata
outfilename = websave(filename, url);
unzip(outfilename);
clear url outfilename
%% 3) process imaging videos
%% 3.1) Test batch_tiff2mat
FolderName = {'20161129'}; FileName = [];
m2vpar = [];
m2vpar.SpMode = '3DxT_song_prv';
m2vpar.ch2save = [1 2];
m2vpar.Zres = 2; % Z resolution in um
m2vpar.ch2plot = [];
batch_tiff2mat(FolderName, FileName, m2vpar)
%% 3.2) Test batch_collectmetada
FolderName = {'20161129'}; FileName = [];
cmpar = [];
cmpar.pgate = 1;
cmpar.pgates = 1;
cmpar.mode = 1;
batch_collectmetada(FolderName, FileName, cmpar)
%% 3.3) Test batch_NoRMCorre
FolderName = {'20161129'}; FileName = [];
mcpar = [];
mcpar.debug = 0;
mcpar.rigidg = 1;
mcpar.nrigidg = 0;
mcpar.stack2del = [1:3 98:100];
mcpar.sgate = 1; %(1 = smooth and zero, 2 = smooth, 3 = zeroing, 0 = raw)
%mcpar.withinplane_flag = 1; % within plane motion correction
mcpar.withinplane_flag = 0; % 3D motion correction
batch_NoRMCorre(FolderName, FileName, mcpar)
%% 3.4) Test batch_SpaTemp_ResFilt
FolderName = {'20161129'}; FileName = [];
stpar = [];
stpar.sigma = [];
stpar.size = [];
stpar.newtimeres = 0.5;
stpar.time = [];
stpar.debug = 1;
stpar.direction = 'invert';
stpar.fshift = [6 6];
stpar.idp_run_flag = 1;
batch_SpaTemp_ResFilt(FolderName, FileName, stpar)
%% 3.5) Test batch_stitch_format_stacks_a
% stitch serially imaged stacks, part 1, it stitchs mean image
FolderName = {'20161129'}; FileName = [];
cspfpars = [];
cspfpars.refcha = 2;
cspfpars.fshift = [6 6];
batch_stitch_format_stacks_a(FolderName, FileName, cspfpars)
%% 3.6) generate brain mask based on F threshold + manual editing
FolderName = {'20161129'}; FileName = [];
bmpar = [];
batch_brainmaskgen(FolderName, FileName, bmpar)
iparams.dir_depth = 1;
batch_plot_brainside_MIP(...
[], [], iparams)
%% 3.7) Test batch_stitch_format_stacks_b
% stitch serially imaged stacks, part 2
% it stitchs whole 3DxT volume (it formats Data to be ready for ROI segmentation)
FolderName = {'20161129'}; FileName = [];
cstpar = [];
cstpar.oDir = [];
batch_stitch_format_stacks_b(FolderName, FileName, cstpar)
%% 4) ROI segment imaging videos
% run ROI segmentation of large 3DxT videos in patches of smaller 3D videos
% which are then compiled to get results for the whole 3DxT video.
cd('20161129')
% run patches independently
segmentation_type = 1;
roi_parameter2use = 'roiseg_3D_dense_fr_2Hz_z2';
roi_n_init = 100;
batch_CaROISegSer(FileName, roi_parameter2use, ...
'int', segmentation_type, [], [], [], roi_n_init, 1)
% parse patches
segmentation_type = 2;
batch_CaROISegSer(FileName, roi_parameter2use, ...
'int', segmentation_type, [], [], [], roi_n_init, 1)
% batch_CaROISegSer(fname, inputparams, ...
% serverid, jobpart, memreq, patchtype, ...
% corenum, roi_n_init, stitch_flag, jobtime, ...
% oDir, jobsperbatch)