-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtuning.m
233 lines (219 loc) · 10.4 KB
/
tuning.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
cc()
addpath(genpath('src'))
googleSheet = GetGoogleSpreadsheet('1Cld_cK8rZ2hDrUdq62m8VqQZ-ZFrKEkOytXEtac3WlY', '875551024');
googleSheet2 = GetGoogleSpreadsheet('1Cld_cK8rZ2hDrUdq62m8VqQZ-ZFrKEkOytXEtac3WlY', '847074082');
tb = cell2table(googleSheet(2:end,:), 'VariableNames', googleSheet(1,:));
playbackLists = cell2table(googleSheet2(2:end,:), 'VariableNames', googleSheet2(1,:));
playbackLists = playbackLists(~cellfun(@isempty,playbackLists.stimName),:); % remove empty rows
clear googleSheet*
if ismac
resFolder = '/Volumes/murthy/playback/res/';
elseif ispc
resFolder = 'Z:\playback\res\';
end
%%
stiIdx = size(playbackLists,1)-5:size(playbackLists,1)-4;
disp(playbackLists(stiIdx,:))
%%
for sti = stiIdx
try
%% load results
clear rr
clear oriG
stimStrg = playbackLists.stimName{sti};
disp(stimStrg)
carrierIdx = find(strcmp(tb.stimulus, stimStrg));
fileList = tb.date(carrierIdx);
fileList = cellfun(@horzcat, repmat({resFolder}, length(fileList),1), fileList, repmat({'_spd'}, length(fileList),1),'UniformOutput',false);
rr = readFiles(fileList(1:end));
% load meta data
rr.newFs = 10;
rr.stimIdx = eval(playbackLists.stimidx{sti});
rr.baseLineIdx = eval(playbackLists.baselineidx{sti});
rr.badRecording = eval(playbackLists.badrecording{sti});
rr.xLabel = playbackLists.xlabel{sti};
if ~iscell(eval(playbackLists.xvalues{sti}))
rr.x = num2cellstr(eval(playbackLists.xvalues{sti}));
else
rr.x = eval(playbackLists.xvalues{sti})';
end
%%
rr.spdF = bsxfun(@times,rr.spdF,rr.FPS./rr.PXperMM); % convert to mm/s
rr.baseSpd = nanmean(rr.spdF(rr.baseLineIdx,:)); % avg. speed during baseLineIdx
rr.testSpd = nanmean(rr.spdF(rr.stimIdx,:)); % avg. speed during stimIdx
rr.diffSpd = (rr.testSpd - rr.baseSpd);%./rr.baseSpd; % subtract baseline
rr.testPosX = mean(rr.posF(rr.stimIdx, :, 1), 1); % get x,y position during stimulus
rr.testPosY = mean(rr.posF(rr.stimIdx, :, 2), 1);
rr.badIdx = ismember(rr.recID,rr.badRecording); % get rid of badRecordings
rr.diffSpd(rr.badIdx) = nan;
posDiff = diff(rr.posF, [], 1); % ?? velocity vector
[ang, rad] = cart2pol(posDiff(:,:,1), posDiff(:,:,2)); % movement direction
ang = mapFun(@smooth, ang,5);
ang(rad<1) = nan;
angF = padarray(ang, [1 0], 'pre');
rr.testAngF = nanmean(rad2deg(angF(rr.stimIdx,:)),1);
%% get rid of trials for which fly is close to chamber ends
oriG = zeros(size(rr.testAngF));
angThres = nan;%30
posThres = nan;%nan;%60
% maybe these should be per-fly minima - not total minima to account for diffs. in chamber position/box?
G = rr.recID*1000 + rr.flyID;
uniG = unique(G);
for gg = 1:length(uniG)
thisIdx = find(G==uniG(gg));
if isnan(angThres) % sort by position only
% if in LOWER part
oriG( thisIdx(rr.testPosY(thisIdx)<min(rr.testPosY(thisIdx))+posThres)) = 1;
% if in UPPER part
oriG( thisIdx(rr.testPosY(thisIdx)>max(rr.testPosY(thisIdx))-posThres)) = -1;
else % sort by angle and position
% if in lower part and angle DOWN
oriG( thisIdx(rr.testPosY(thisIdx)<min(rr.testPosY(thisIdx))+posThres & (rr.testAngF(thisIdx)<-angThres)) ) = -1;
% if in lower part and angle UP
oriG( thisIdx(rr.testPosY(thisIdx)<min(rr.testPosY(thisIdx))+posThres & (rr.testAngF(thisIdx)>angThres)) ) = 1;
% if in UPPER part and angle DOWN
oriG( thisIdx(rr.testPosY(thisIdx)>max(rr.testPosY(thisIdx))-posThres & (rr.testAngF(thisIdx)<-angThres)) ) = -2;
% if in UPPER part and angle UP
oriG( thisIdx(rr.testPosY(thisIdx)>max(rr.testPosY(thisIdx))-posThres & (rr.testAngF(thisIdx)>angThres)) ) = 2;
end
end
% mTrace = bsxfun(@minus, rr.spdF, rr.baseSpd); % baseline subtract each trace
% mTrace(:,rr.badIdx) = nan;
% nanmeanG = @(x) nanmean(x,1);
% [mmm2, gn2] = grpstats(mTrace', [rr.stiID; oriG]', {nanmeanG, 'gname'});
% gn2 = str2double(gn2);
%
% for st = 1:rr.stis
% mySubPlot(rr.stis, 3, st, 2)
% plot(mapFun(@smooth, mmm2(gn2(:,1)==st,:)', 9))
% title(sprintf('stimulus %d', st))
% colorLines(limit(parula(length(unique(oriG)))-0.1))
% axis('tight')
% vline([300 340])
% end
%
% uniPosG = unique(gn2(:,2));
% for st = 1:length(uniPosG)
% mySubPlot(length(uniPosG), 3, st, 3)
% plot(mapFun(@smooth, mmm2(gn2(:,2)==uniPosG(st),:)', 9))
% title(sprintf('ori/pos %d', st))
% colorLines(lines(rr.stis))
% axis('tight')
% vline([300 340])
% end
% set(gcls,'LineWidth',1)
%
% fprintf('%1.0f percent of flies ware in the wrong place at the wrong time\n', 100*(1-mean(oriG==0)))
%% run stats
rr.badIdx = ismember(rr.recID,rr.badRecording) | oriG~=0; % get rid of flies at chamber ends
rr.diffSpd(rr.badIdx) = nan;
ranks = tiedrank(rr.diffSpd);
[pval,tab,stats] = anovan(ranks(:), [[rr.stiID]; rr.flyID+1000*rr.recID]', 'display','off','varnames',{rr.xLabel, 'fly'});
[mcmp] = multcompare(stats,'display','on','ctype','lsd');
tab{6,1} = 'N';
tab{6,2} = sum(~rr.badIdx);
anovaTab = cell2table(tab(2:end,2:end));
anovaTab.Properties.VariableNames = matlab.lang.makeValidName(tab(1,2:end));
anovaTab.Properties.RowNames = matlab.lang.makeValidName(tab(2:end,1));
disp(anovaTab)
varnames = cellfun(@horzcat, repmat({rr.xLabel}, length(rr.x),1), rr.x,'UniformOutput',false);
varnames = matlab.lang.makeValidName(varnames);
pTab = triu(squareform(mcmp(:,end)));
pTab(pTab==0) = nan;
pTab = round(100*pTab)/100;
try
posthocTab = array2table(pTab, ...
'rownames', varnames, 'variablenames', varnames);
disp(posthocTab)
end
% if mfilename()
% writetable(anovaTab, ['log/' stimStrg '_ANOVA.txt'], 'Delimiter','\t')
% writetable(posthocTab, ['log/' stimStrg '_posthoc.txt'], 'Delimiter','\t')
% end
%% save per-chamber results plotting
mTrace = bsxfun(@minus, rr.spdF, rr.baseSpd); % cleaned-up baseline subtracted rr.traces4plot
% average by fly (recID) and stimulus (stiID)
G = [rr.stiID; rr.recID]';
G(rr.badIdx) = nan;
[mmm, gn] = grpstats(mTrace', G, {@(x)nanmean(x,1), 'gname'});
mmm = mmm';
gn = cellfun(@str2num, gn);
if length(unique(rr.stiID))>20
warning('too many stimuli - will not plot')
else
figure(2)
clf
cmap = limit(jet(rr.stis)-0.2);
for rec = 1:max(rr.recID)
try
mySubPlot(max(rr.recID),4,rec,1:3)
plot(mmm(:,gn(:,2)==rec),'LineWidth',1)
axis('tight')
cmapline('colormap',cmap);
hline(0)
vline([30*rr.newFs(1) 34*rr.newFs(1)])
mySubPlot(max(rr.recID),4,rec,4)
plot(nanmean(mmm(rr.stimIdx,gn(:,2)==rec)), '-k')
hold on
gscatter(1:length(rr.x), nanmean(mmm(rr.stimIdx,gn(:,2)==rec)), 1:length(rr.x),fliplr(cmap), [], 20, 'off')
end
end
if mfilename()
set(gcas,'Color','none','box','off', 'TickDir', 'out')
figexp(['fig/' stimStrg '_singleExp'],1,.2*max(rr.recID))
end
end
%%
if length(unique(rr.stiID))>20
warning('too many stimuli - will not plot')
else
figure(1)
clf
cmap = limit(parula(rr.stis)-0.1);
subplot(133)
hold on
[rr.avgDeltaSpeedPerFly, gnn] = grpstats(rr.diffSpd, [rr.stiID; rr.flyID+1000*rr.recID]', {@nanmean, 'gname'});
rr.avgDeltaSpeedPerFly = reshape(rr.avgDeltaSpeedPerFly,[],nanmax(rr.stiID));
[hL, hE] = myErrorBar(1:rr.stis,nanmean(rr.avgDeltaSpeedPerFly,1)', sem(rr.avgDeltaSpeedPerFly)');
set([hL hE],'Color','k','LineWidth',2)
gscatter(1:rr.stis, nanmean(rr.avgDeltaSpeedPerFly,1), 1:rr.stis, cmap,[],24,'off')
set(gca, 'XTick',1:length(rr.x), 'XTickLabel', rr.x);
ylabel('\Deltas [mm/s]')
xlabel(rr.xLabel)
% plot response traces
subplot(1,3,1:2)
G = [rr.stiID; rr.flyID+1000*rr.recID]';
G(rr.badIdx) = nan;
[mmm, gn] = grpstats(mTrace', G, {@(x)nanmean(x,1), 'gname'});
[rr.traces4plot, rr.traces4plotStd, tmpN] = grpstats(mmm,gn(:,1),{@nanmean, @nanstd, @numel}); % get avg. trace for each stim
rr.traces4plot = mapFun(@conv,rr.traces4plot',normalizeSum(gausswin(8))); % smooth for plotting
rr.traces4plot = rr.traces4plot(4:end-4,:);
rr.traces4plotStd = mapFun(@conv,rr.traces4plotStd',normalizeSum(gausswin(8))); % smooth for plotting
rr.traces4plotStd = rr.traces4plotStd(4:end-4,:);
rr.traces4plotT = (1:size(rr.traces4plot,1));
rr.traces4plotN = tmpN(:,1);
hl = mseb(repmat(rr.traces4plotT',1,rr.stis)', rr.traces4plot', ...
bsxfun(@times, rr.traces4plotStd', 1./sqrt(rr.traces4plotN)), ...
struct('col', cmap),10);
axis('tight')
hline(0)
vline([30*rr.newFs(1) 34*rr.newFs(1)]) % stimulus duration
hold on
plot([min(rr.stimIdx) max(rr.stimIdx)], [-0.2 -0.2], 'r', 'Linewidth', 2)% time window for averaging speed
legend(rr.x,'Location','SouthWest')
legend('boxoff')
ylabel('\Deltas [mm/s]')
set(gca,'XColor','none')%, 'YLim', [-0.45 0.1])
scalebar(500, -.2, 10*rr.newFs, '10 s',10)
set(gcas,'box','off','color','none','TickDir','out')
if mfilename()
figexp(['fig/' stimStrg],1.5,.5)
end
end
if mfilename()
save(['res/' stimStrg], 'rr')
end
catch ME
disp(ME.getReport());
end
end