-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFuzzyIntegrals.py
153 lines (130 loc) · 4.62 KB
/
FuzzyIntegrals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sympy as sym
import numpy as np
import itertools
class FuzzyIntegrals:
def __init__(self, mu=None, f=None):
self.mu = None
self.f = None
self.f_sorted = None
self.f_sorted_rev = None
self.lmbd = None
self.g_X = {}
self.g_A = []
if mu is not None and f is not None:
self.set_params(mu, f)
def set_params(self, mu, f):
self.mu = {k: v for k, v in enumerate(mu)}
self.f = {k: v for k, v in enumerate(f)}
self.f_sorted = {k: v for k, v in sorted(self.f.items(), key=lambda item: item[1], reverse=False)}
self.f_sorted_rev = {k: v for k, v in sorted(self.f.items(), key=lambda item: item[1], reverse=True)}
self.calc_lambda()
self.calc_g_A()
def validate_params(self, fn, mu, f):
if mu is not None and f is not None:
self.set_params(mu, f)
else:
if self.mu is None or self.f is None:
print("[!] Error: Necessary Inputs Not Provided (mu, f)\t\t--Aborting")
exit(-1)
else:
if mu is not None or f is not None:
print(f"[!] Warning: Incomplete Inputs Provided in Calling {fn} Function (mu, f)\t\t--Ignoring")
def calc_lambda(self):
eq = ""
lm = []
# BUILD LAMBDA EQUATION-----------
for i in self.mu:
eq += f"(1+{self.mu[i]}*x)"
if i != len(self.mu) - 1:
eq += "*"
eq += "-x-1"
# PARSE AND SOLVE LAMBDA EQUATION-----------
parsed = sym.parse_expr(eq)
x = sym.Symbol('x')
lm_eq = sym.Eq(parsed, 0)
lm_roots = sym.solve(lm_eq, [x])
# FIND REAL ROOTS ------------------
for r in lm_roots:
if sym.sympify(r).is_real:
lm.append(r)
# CHECK VALIDITY OF LAMBDA VALUE ----------------------
lmbd = None
if np.sum(list(self.mu.values())) > 1:
for r in lm:
if -1 < r < 0:
lmbd = r
break
elif np.sum(list(self.mu.values())) < 1:
for r in lm:
if r > 0:
lmbd = r
break
else:
lmbd = 0
self.lmbd = lmbd
return lmbd
def calc_g_A(self):
# CALCULATE g(A_i) -------------------------
states = list(range(len(self.mu)))
subsets = []
for s in range(1, len(states) + 1):
subsets += itertools.combinations(states, s)
self.g_X = {}
for s in subsets:
if len(s) == 1:
self.g_X[s] = self.mu[s[0]]
else:
t = self.combinator(self.mu[s[0]], self.mu[s[1]], self.lmbd)
for u in s[2:]:
t = self.combinator(t, self.mu[u], self.lmbd)
self.g_X[s] = t
order = []
for i, k in enumerate(self.f_sorted_rev):
fs_copy = self.f_sorted_rev.copy()
tp = (k,)
fs_copy.pop(k)
for j, kk in enumerate(fs_copy):
if self.f_sorted_rev[k] == self.f_sorted_rev[kk]:
tp += (kk,)
order.append(tuple(sorted(tp)))
self.g_A = []
for i, o in enumerate(order):
tt = o
for j in range(i):
tt += order[j]
tt = tuple(set(tt))
self.g_A.append(self.g_X[tt])
self.g_A.reverse()
def sugeno(self, mu=None, f=None):
self.validate_params("Sugeno", mu, f)
# CALCULATE SUGENO INTEGRAL ------------------
lst = []
for i, k in enumerate(self.f_sorted):
lst.append(min(self.f_sorted[k], self.g_A[i]))
S = max(lst)
return S
def choquet(self, mu=None, f=None):
self.validate_params("Choquet", mu, f)
# CALCULATE CHOQUET INTEGRAL ------------------
lst = []
f_keys = list(self.f_sorted.keys())
for i, k in enumerate(self.f_sorted):
if i == 0:
lst.append((self.f_sorted[f_keys[i]]-0) * self.g_A[i])
else:
lst.append((self.f_sorted[f_keys[i]] - self.f_sorted[f_keys[i-1]]) * self.g_A[i])
C = sum(lst)
return C
def get_params(self):
if self.lmbd is None or not bool(self.g_X):
print("[!] Error: Object Not Initialized (mu, f)\t\t--Aborting")
exit(-1)
params = {
'lambda': self.lmbd,
'g_A': self.g_A,
'g_X': self.g_X
}
return params
@staticmethod
def combinator(g1, g2, lmbd):
return g1 + g2 + lmbd * g1 * g2