From 311dce10ddb2d8a5dc19e70d358871f370f1af60 Mon Sep 17 00:00:00 2001 From: Marco Tazzari Date: Fri, 5 Nov 2021 11:01:34 +0000 Subject: [PATCH] Implement README with full docs, TIMEIT functionality, full performance benchmark (#11) Also, a jupyter notebook to plot the timing results. --- README.md | 324 +++++++++++++++++- benchmark/benchmark.sh | 59 ++++ ...cution_time_vs_num_monte_carlo_samples.png | Bin 0 -> 68091 bytes .../mean_loss_vs_num_monte_carlo_samples.png | Bin 0 -> 75020 bytes benchmark/plot_timing_results.ipynb | 281 +++++++++++++++ .../speedup_vs_num_monte_carlo_samples.png | Bin 0 -> 59990 bytes benchmark/timings/timings_s0.txt | 6 + benchmark/timings/timings_s1.txt | 7 + benchmark/timings/timings_s2.txt | 7 + benchmark/timings/timings_s3.txt | 7 + benchmark/timings/timings_s4.txt | 7 + benchmark/timings/timings_s5.txt | 7 + oasishurricane/cli.py | 35 +- oasishurricane/logs.py | 9 +- oasishurricane/{model.py => simulator.py} | 83 +++-- oasishurricane/tests.py | 11 +- oasishurricane/utils.py | 88 +++-- 17 files changed, 868 insertions(+), 63 deletions(-) create mode 100644 benchmark/benchmark.sh create mode 100644 benchmark/execution_time_vs_num_monte_carlo_samples.png create mode 100644 benchmark/mean_loss_vs_num_monte_carlo_samples.png create mode 100644 benchmark/plot_timing_results.ipynb create mode 100644 benchmark/speedup_vs_num_monte_carlo_samples.png create mode 100644 benchmark/timings/timings_s0.txt create mode 100644 benchmark/timings/timings_s1.txt create mode 100644 benchmark/timings/timings_s2.txt create mode 100644 benchmark/timings/timings_s3.txt create mode 100644 benchmark/timings/timings_s4.txt create mode 100644 benchmark/timings/timings_s5.txt rename oasishurricane/{model.py => simulator.py} (82%) diff --git a/README.md b/README.md index ebbfbf7..4676697 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,324 @@ -# oasis-hurricane +# oasishurricane + +[![image](https://github.com/mtazzari/oasishurricane/actions/workflows/tests.yml/badge.svg)](https://github.com/mtazzari/oasishurricane/actions/workflows/tests.yml) +[![License](https://img.shields.io/badge/License-BSD_3--Clause-blue.svg)] + A Python command-line utility for Linux that computes the economic loss for hurricanes in Florida and in the Gulf states + +## Installation +As easy as + +```bash +pip git+https://github.com/mtazzari/OasisHurricane.git +``` + +or, if you prefer to have the code locally, first clone the github repo and then install it with: + +```bash +git clone https://github.com/mtazzari/OasisHurricane.git +cd OasisHurricane +pip install . +``` + +## Basic usage +Once installed, the requested Python command line utility has the following interface: +```bash +$ gethurricaneloss -h +usage: use "gethurricaneloss --help" for more information + +A Python command-line utility for Linux that computes the economic loss for hurricanes in Florida and in the Gulf states. + +positional arguments: + florida_landfall_rate + [float] annual rate of landfalling hurricanes in Florida. + florida_mean [float] mean of the economic loss of landfalling hurricane in Florida. + florida_stddev [float] std deviation of the economic loss of landfalling hurricane in Florida. + gulf_landfall_rate [float] annual rate of landfalling hurricanes in Gulf states. + gulf_mean [float] mean of the economic loss of landfalling hurricane in Gulf states. + gulf_stddev [float] std deviation of the economic loss of landfalling hurricane in Gulf states. + +optional arguments: + -h, --help show this help message and exit + -n NUM_MONTE_CARLO_SAMPLES, --num_monte_carlo_samples NUM_MONTE_CARLO_SAMPLES + [int] number of monte carlo samples, i.e. years. (default=10) + -s SIMULATOR_ID, --simulator SIMULATOR_ID + [int] simulator id (default=0). Implemented simulators: (id:name) + 0: python + 1: jit + 2: jit-parallel + 3: jit-noloops + 4: python-noloops + 5: jit-parallel-fastmath +``` +The positional parameters are required for execution. + +The utility has **6 different implementations** of the proposed Monte Carlo hurricane losses model, which can be selected +with the `-s` or `--simulator` option by providing the `id` of the simulator. The implementations achieve different levels +of acceleration w.r.t. the baseline pure-`python` implementation. + +The implementations are: + +| ID | Simulator | Description | +| --- | ------------------------- | ----------- | +| 0 | `python` | a pure Python implementation of the algorithm outlined in the test sheet. Used as a reference for accuracy and performance benchmarks. | +| 1 | `jit` | the same algorithm as in `python`, with `numba` just-in-time compilation | +| 2 | `jit-parallel` | the same algorithm as in `python`, with `numba` just-in-time compilation **and** `numba` automatic | +| 3 | `jit-noloops` | a `numpy`-only algorithm with **no explicit loops**, with `numba` just-in-time compilation | +| 4 | `python-noloops` | a pure Python`numpy`-only algorithm with **no explicit loops** | +| 5 | `jit-parallel-fastmath` | the same algorithm as in `jit-parallel`, with additional `fastmath` enabled, GIL released, and the declaration of data types | + +## Examples +Let us run a series of examples in which the losses are highly peaked around the +mean loss values. Since the events are all independent, the expected mean loss value is +```bash +florida_landfall_rate * florida_mean + gulf_landfall_rate * gulf_mean +``` +it's easy to verify whether the result is about correct. + +### Example 1: get started with `gethurricaneloss` +`gethurricaneloss` is easy to use. + +Let us run it with 100k Monte Carlo steps (i.e., years): +```bash +$ gethurricaneloss 10 5 0.00001 30 1 0.00001 -n 100000 +[2021-11-04 16:33:01] gethurricaneloss v0.0.1 by Marco Tazzari +[2021-11-04 16:33:01] Validated parameters: +[2021-11-04 16:33:01] florida_landfall_rate = 10.00000 +[2021-11-04 16:33:01] florida_mean = 1.60944 +[2021-11-04 16:33:01] florida_stddev = 0.00001 +[2021-11-04 16:33:01] gulf_landfall_rate = 30.00000 +[2021-11-04 16:33:01] gulf_mean = 0.00000 +[2021-11-04 16:33:01] gulf_stddev = 0.00001 +[2021-11-04 16:33:01] Using simulator: python +[2021-11-04 16:33:01] Setting the random number generator with seed:None +[2021-11-04 16:33:01] Starting main loop over desired 100000 Monte Carlo samples +[2021-11-04 16:33:12] End of main loop. Elapsed time: 0:00:11.463529 (h:m:s) +[2021-11-04 16:33:12] MEAN LOSS: 79.96644884090169 +79.96644884090169 +``` +By default, `gethurricaneloss` uses the `python` simulator. + +Note that the last line of the console output is the mean loss: this is because the test sheet required +the CLI utility to return the expected mean economic loss. + + +> **Note:** the `validated parameters` printed in the console/log show the values of the parameters after validation (type- and value-checking), and transformation, if necessary. + +> **Note:** `florida_mean` and `gulf_mean` printed in the console/log are the natural log of the values +passed in input by the user: the transformation ensures that the expected value of the lognormal distribution +is the value of `florida_mean` passed by the user (as opposed to `exp^florida_mean`). The same applies to `gulf_mean`. + +### Example 2: run `gethurricaneloss` with a different simulator +Let us now run `gethurricaneloss` using the `python-noloops` simulator (id: 4) by passing the `-s4` option. +```bash +$ gethurricaneloss 10 5 0.00001 30 1 0.00001 -n 100000 -s4 +[2021-11-04 16:44:03] gethurricaneloss v0.0.1 by Marco Tazzari +[2021-11-04 16:44:03] Validated parameters: +[2021-11-04 16:44:03] florida_landfall_rate = 10.00000 +[2021-11-04 16:44:03] florida_mean = 1.60944 +[2021-11-04 16:44:03] florida_stddev = 0.00001 +[2021-11-04 16:44:03] gulf_landfall_rate = 30.00000 +[2021-11-04 16:44:03] gulf_mean = 0.00000 +[2021-11-04 16:44:03] gulf_stddev = 0.00001 +[2021-11-04 16:44:03] Using simulator: python-noloops +[2021-11-04 16:44:03] Setting the random number generator with seed:None +[2021-11-04 16:44:03] Starting main loop over desired 100000 Monte Carlo samples +[2021-11-04 16:44:03] End of main loop. Elapsed time: 0:00:00.174803 (h:m:s) +[2021-11-04 16:44:03] MEAN LOSS: 80.01731942131745 +80.01731942131745 +``` +This is waaaay faster! 0.17s vs 11.46s compared to the explicit-loop Python version (`python` simulator), a 67x speed-up! + +## Logging +Logging is handled with the `logging` Python module: + +- the **console** shows a concise and easy-to-read log; +- a **development logfile** stores the debug-level logs (typically named `gethurricaneloss_dev.log.x`); +- a **production logfile** stores a production-level (info and above) logs (typically named `gethurricaneloss.log.x`). + +The numerical `.x` suffix (e.g., `.1`, `.2`, ...) in the log filenames allows for a rotating log file handling, for logs +of large volume. + +## Testing +Testing uses `pytest` and is performed automatically with GitHub Actions on every push on any branch. + +Note that GitHub Actions is free for an unlimited amount of compute-minutes for open source projects. + +I implemented three tests, with a matrix of parametrizations: + +| test name | test description | +| ---------------------------------- | ----------------------------------------------------------- | +| `test_simulators_accuracy` | Test if the different simulators return mean losses that agree within a relative tolerance `rtol` and an absolute tolerance `atol`. | +| `test_simulator_selection` | Test exceptions if the chosen simulator_id doesn't exist. | +| `test_input_parameter_values` | Test exceptions if input data has forbidden values. | + +All the three tests use `pytest.mark.parametrize`, which allows repeating the same test with different +input parameters, handy to test the validity of a test under different scenarios. + +To keep the tests reproducible, I fix the random seed to the `SEED` defined in `tests.py`. + +Additional tests that it would be easy to implement: + +- a test against analytical expected values for the mean loss, considering that the expectation values for + the Poissonian is the `mean` (i.e., `florida_landfall_rate`) and the expected values for the LogNormal is + again the `mean` (i.e., `florida_mean`). + +- a test to check the CLI usage from a shell (e.g., using `subprocess`). + +- additional convergence checks for different regimes of the input parameters. + +## Accuracy checks +Accuracy is checked in the tests. + +In particular, `test_simulators_accuracy` checks that all the implementations of the hurricane loss model return mean loss +values within a given accuracy, for 3 different sets of input parameters. + +To have relatively quick checks, the threshold accuracy is now set to 1%, but it can be +made smaller (i.e. tighter constraint), at the cost of longer CI tests. + +## Performance +In order to test the performance of the implemented simulators I adopt a Factory design patter for the +`Simulator` class, e.g.: + +```py +from oasishurricane.simulator import Simulator + +sim = Simulator(simulator_id=1) +``` +Regardless of the chosen simulator, the MC simulation is run with: +```py +sim.simulate(**validated_parameters) +``` +where `validated_parameters` are the CLI input parameters after validation. + +This architecture allows for a modular and quick replacement of the core MC model. + +To properly evaluate the performance of the simulators I defined an ad-hoc decorator `oasishurricane.utils.timer` +which: + +- runs the simulator core function for the desired number of `cycles`, +- momentarily deactivates the garbage collector, +- computes the best execution time among the `cycles` execution times. + +For reference: in developing `oasishurricane.utils.timer`, I follow the nomenclature of `timeit.Timer`. + +The timing functionality can be activated by setting the `TIMEIT` environment variable, e.g. +```bash +export TIMEIT=1 +``` +Additional parameters to customize the timing functionality are: + +- `TIMEIT_CYCLES`: the number of times the simulator core function is executed. The larger, the better, but + for large `num_monte_carlo_samples` it might be handy to reduce it. If not set, `cycles=3`. +- `TIMEIT_LOGFILE`: the filename of the log where to store the timings. If not set, it prints to the console log. + +### Examples +With this setup: +```bash +export TIMEIT=1 +export TIMEIT_CYCLES=33 +export TIMEIT_LOGFILE=timings_example.txt +``` +we obtain the following output in the console: +```bash +$ gethurricaneloss 10 2 0.001 30 1 0.000001 -n 1000 -s3 +[2021-11-05 01:25:52] gethurricaneloss v0.0.1 by Marco Tazzari +[2021-11-05 01:25:52] Validated parameters: +[2021-11-05 01:25:52] florida_landfall_rate = 10.00000 +[2021-11-05 01:25:52] florida_mean = 0.69315 +[2021-11-05 01:25:52] florida_stddev = 0.00100 +[2021-11-05 01:25:52] gulf_landfall_rate = 30.00000 +[2021-11-05 01:25:52] gulf_mean = 0.00000 +[2021-11-05 01:25:52] gulf_stddev = 0.00000 +[2021-11-05 01:25:52] Found TIMEIT and TIMEIT_LOGFILE: timings will be logged in timings_example.txt +[2021-11-05 01:25:52] Using simulator: jit-noloops +[2021-11-05 01:25:52] Setting the random number generator with seed:None +[2021-11-05 01:25:52] Starting main loop over desired 1000 Monte Carlo samples +[2021-11-05 01:25:52] Timings are computed by running 33 times the function. +[2021-11-05 01:25:53] End of main loop. Elapsed time: 0:00:00.478656 (h:m:s) +[2021-11-05 01:25:53] MEAN LOSS: 49.98602443852616 +49.98602443852616 +``` +This is the content of `timings_example.txt`: +```text + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 1000.000000 33 0.001399 49.986024 +``` +where the columns are: + +- `florida_landfall_rate` +- `ln(florida_mean)` +- `florida_stddev` +- `gulf_landfall_rate` +- `ln(gulf_mean)` +- `gulf_stddev` +- `num_monte_carlo_samples` +- `cycles` +- `best execution time` +- Mean economic loss + +By running multiple times `gethurricaneloss` with the environment variables as above, the timings are appended, e.g.: +```text + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 10.000000 1000 0.000013 49.966121 + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 100.000000 1000 0.000133 50.037439 + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 1000.000000 1000 0.001401 49.991665 + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 10000.000000 1000 0.014170 50.000415 + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 100000.000000 1000 0.144798 49.999268 + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 1000000.000000 50 1.464731 50.000486 + 10.000000 0.693147 0.001000 30.000000 0.000000 0.000001 10000000.000000 5 14.800176 50.001481 +``` + +Timing functionality is deactivated by unsetting `TIMEIT`: +```bash +unset TIMEIT +``` + +### Results +To quantify the performance of the different implementations I wrote a simple bash script (benchmark/benchmark.sh) +to compute the execution times of all the simulators, each of them for a range of `num_monte_carlo_samples` +between 10 and 10 millions. + +All the execution times are in the `benchmark/timings/` folder, e.g. `timings_s0.txt` for `simulator_id=0` (`python`). + +For reference, all the timings were performed on an Apple Macbook Pro (13-inch 2019) with a 2.4 GHz Intel Core i5 and 16 GB 2133 MHz LPDDR3 of RAM. + +In this plot I present the scaling as a function of `num_monte_carlo_samples`: +

+ +

+ +**Comments:** + +- the scaling is pretty much linear (cf. reference dashed line) for all the implementations. +- the pure `python` implementation is, as expected, the least efficient. +- the `numba.jit` compilation achieves a 75x speed-up when applied to the `python` implementation (`jit`), roughly the same speed-up achieved by implementations with no explicit loops (`jit-noloops`). +- using only numpy functions with no explicit loops achieves a very good acceleration as well (75x w.r.t. `python`), + without the need of `numba.jit`. +- `numba.jit` with `parallel` option is further 5.7x faster than the `jit` version. Overall, the `jit-parallel` + version is 390x faster than pure `python`. + +The following plot shows the speedups over the `python` implementation: +

+ +

+ +In the following figure I show the convergence of the mean economic losses for increasing `num_monte_carlo_samples`. +

+ +

+ +Comments: + +- as expected, with increasing `num_monte_carlo_samples`, all the implementations tend towards the + same expected value (dashed line at mean loss=50 $B). +- the pure `python` implementation is slightly slower in converging than the others. + +## Author + +- [Marco Tazzari](https://github.com/mtazzari) + +## License +**oasishurricane** is free software licensed under the BSD-3 License. For more details see +the [LICENSE](https://github.com/mtazzari/oasishurricane/blob/main/LICENSE). + +© Copyright 2021 Marco Tazzari. + diff --git a/benchmark/benchmark.sh b/benchmark/benchmark.sh new file mode 100644 index 0000000..d5fb7e2 --- /dev/null +++ b/benchmark/benchmark.sh @@ -0,0 +1,59 @@ +# bash script to run all the benchmarks + +TIMINGS_LOGS_DIR="timings" + + +# simulator 0 +export TIMEIT=1 +export TIMEIT_CYCLES=100 +export TIMEIT_LOGFILE="${TIMINGS_LOGS_DIR}/timings_s0.txt" + +gethurricaneloss 10 2 0.001 30 1 0.000001 -n 10 -s0 +gethurricaneloss 10 2 0.001 30 1 0.000001 -n 100 -s0 +gethurricaneloss 10 2 0.001 30 1 0.000001 -n 1000 -s0 +export TIMEIT_CYCLES=10 +gethurricaneloss 10 2 0.001 30 1 0.000001 -n 100000 -s0 +export TIMEIT_CYCLES=4 +gethurricaneloss 10 2 0.001 30 1 0.000001 -n 1000000 -s0 +export TIMEIT_CYCLES=2 +gethurricaneloss 10 2 0.001 30 1 0.000001 -n 10000000 -s0 # <-- THIS TAKES **A LOT** (~30 mins on Macbook Pro 2019) + + +# simulators 1, 2, 3, 4 +export TIMEIT_CYCLES=1000 + +num_monte_carlo_samples="10 100 1000 10000 100000" #manca 100000 +simulator_ids="1 2 3 4 5" + +for simulator_id in $simulator_ids; do + for num_monte_carlo_sample in $num_monte_carlo_samples; do + export TIMEIT_LOGFILE="${TIMINGS_LOGS_DIR}/timings_s${simulator_id}.txt"; + gethurricaneloss 10 2 0.001 30 1 0.000001 -n ${num_monte_carlo_sample} -s${simulator_id}; + done +done + +# run the largest MC simulations with reduced TIMEIT_CYCLES +export TIMEIT_CYCLES=50 + +num_monte_carlo_samples="1000000" +simulator_ids="1 2 3 4 5" + +for simulator_id in $simulator_ids; do + for num_monte_carlo_sample in $num_monte_carlo_samples; do + export TIMEIT_LOGFILE="${TIMINGS_LOGS_DIR}/timings_s${simulator_id}.txt"; + gethurricaneloss 10 2 0.001 30 1 0.000001 -n ${num_monte_carlo_sample} -s${simulator_id}; + done +done + +# run the largest MC simulations with reduced TIMEIT_CYCLES +export TIMEIT_CYCLES=5 + +num_monte_carlo_samples="10000000" +simulator_ids="1 2 3 4 5" + +for simulator_id in $simulator_ids; do + for num_monte_carlo_sample in $num_monte_carlo_samples; do + export TIMEIT_LOGFILE="${TIMINGS_LOGS_DIR}/timings_s${simulator_id}.txt"; + gethurricaneloss 10 2 0.001 30 1 0.000001 -n ${num_monte_carlo_sample} -s${simulator_id}; + done +done \ No newline at end of file diff --git a/benchmark/execution_time_vs_num_monte_carlo_samples.png b/benchmark/execution_time_vs_num_monte_carlo_samples.png new file mode 100644 index 0000000000000000000000000000000000000000..50317f51506fba6955674b998564b80e172f8bf3 GIT binary patch literal 68091 zcmd43by!vF8ZU|sh=?GiAT{Z32|jrNmUw&@MZ{KMLsA;X6}m zFMZ%Ye9q!p&Z>51&Th{fP0{3^IosRVIontok-M5YI$7G;aEY`9Tx%&n4SF7a_DuXlT-6B5Ll*o6{b8UB_hKc1Ps~ zgF5m9NS5k%m8KC&7T|{{ubR1GEw;F zn~g92|MV68KIsdkUv=Kck*e7Wmi2{7X_vFIvOI&OkZZ+yVq`>ln@niPduM*$zr4I$ zp^zeyk3u$EA?1@~*n<=7C;$A^Oo4vQ>P%gY!p7a{yno&9bvcyNf4*`q#nk?yl;%Hj zSmV0&NvGV3Kj-w%*5t#74_7k^nk1%@f`d*Y`5f#xXtrfrzWcN%v+Q)I2)LEKVW>M! z_;Qmn0k33#*(A_v_=|Fl>+_T$X6eYDbq1U7b?xzASrhOMX^iLVP2{HHx|Wve+TUXY zd`eRP|GLoQd7>ZQhK146(7YKN(^6wl&svI%imLKCbrq5@d-(5n>g@C~HZc*4pcF4E zEBih*C8$_H0nhcVi9%o1>Z-*9Vc+EZ62~f%OqGPzJH#~qx}oL0y&1X~8C*QPpy1%| zBO?TijJbkUq2%a%w2^!w+4BnvgVc_g;>&iNReGU%ES{&Fl-u&iD(D%^B$Y|eFSLfS zb94Xb>S9tXphg$%LEbGVKAx!if|;3_UbBEiLP8=THY_ZRP@g9O=U;2V!nzY8lSwHk zsP~)m0Vydnyb&Gw_tZ*%g&!>~R_Ceel(gvnb8H+OpY*C66L$vB^KSZoG=z0_W^gHa zC7Om4luUk?170}s8J=Cz7z$nV9Jf9BpKaXaH)IubHS=D%&VU=;I893z2J)1D&D?Y+ zX-+JqAgR5h;9Y|Gn>1`qt&+s>p=MfaerA2M7h}Y~f6!oZi?HQ;{-{!xWypI)jp9Mx z;77h;+I^Km)AyrCjRWjxtF^BohsWLSnqa7OTw7+QnylQEXUL0IcH$4L=wckS=)~x^ zZi&-G%`GoyxlDC;-%5~^u(0@SFyFxn`%9E2%3*t|O0Z7B-TmQ{H&|(+uQ7>;i7BGm z-H-Q7KNt-5VUauxmx*DB2oL|bqjWV*Nymu?H7Ldsqr$v9I_`CRSGnh(^U2)a-Y%EO z6@*R7|Euu^+2UIH)YQ~i(X%W0x|L=VWtLsZe5!f+f8G#tn&A)-w9Nl_e?a<<{4T#$ z`S-^AbK?wNKU<$#aGlqGK34Q{veNE%E1BQonoDG4 zt^U?)JM$`72qV=+wW{n%gC$9GT!_ z$lw#uTw`^?Wp?rpzrw@AGxS;cim|b=Phh0EMuDF6YfOB57nknAjex+wbdB8N@^bk4 z?)57-uu=T{iQP%O8v=Jl=+wIIO2iYJv*L5`@-)dQvyCd^!;@ZoEMdG{TU#66Zt}IJ z#%ZYoU+83&>K#7go0u5jF*Y{#b9uSt@9E)S%-_RV zzqQ#0;o&dp%}q_085tSj%>M`_6&Q$-7nosXV+;TA$V;Wfq}?Xu;P>I-N=FRi{`&CE z1i361maX4{ZrdbVla;L#6FRxcDCs=?8Uk8cS|(=Z;-aFD(or<<4UOCap63%vIV#j> zf{z|Ww41E8(3xq(WoMgLf1RG5hHtogc+AbsiKI(}6v1!FC-Ee56dKeSEq5gh73kl0 za&pSc&tL0HyJFt^L0;1^iRU@oDT@s&qIFx5~CmQuy#`55_Bs=HS%?y zJ%1kZ`t>zzY;5o2r8q(NUypNb6pSvd4rJaWARusecQHY~0W=Wb4vzrW9G`*UZfkegr=c98RG-%F@J z)vjCbUcI`KmX>z*yH}V*&^`S3N-sRxbb4Xaj=OSla`vvSEiEl?;OdLbdmnfnZg&r4 z%EC^Ot9FOI|KvRZ^Jm>k7F%1}TKC<{cz98jLV-|6uJnBpe=paWEZ`QJ>U)Brsi`Ru zOq3?AhLWBy?G-W}%#w$a%=Yvf8oUFtA)DXaq9P}MG3$GJOG^6PeJ+b{k<_xE4I6|W zdG4cq6nS-BdxYC+hz{N{J%=&h(C=>yZ1I6QFSm(GyTb9;C=QOuk$hdJ-^=pJ$;m`~ zjwp6^_RX2P`|!pU&nL5jDDuz$o;s}!Q1iR22Sh~N(XF&K-Cyk|x__V3`^a9NuUtpI z!T0Z2y^jDaUAEuFxt5L&?!9{*@SGgj+dn#h+(4nf)@xx~={P2OhAr(Me$CI%52Mff`1I6Vhv(r#ElhOu zaQ|1YIGKMR?HaeYwo2~p?nczs)lrj?knS_$2USLt@yp01(2G!Rblq|Atn!{qH%sl)B*K@tIv zy^Q463cC2tua(f2{!wi1QUBvBeZBpwK<+*nW3A6cp z;kTU+cZYK|Ri>+5sNqo2!>bV-y zFSwjnmAZXmP|`ATa?#Z;8#I>&Vi+|CejG19>iJU8lOm9vYYhhjmmHs7MXcKQuV?ki zbu1$CO9QY&%R_~IPSlX*tyb-9NiQU1;57B)hxp};b)hVov6oFlNI?R8#L09$aQ;!Ez`uR&3gY1xhh4gkSyiKvQ@sP`x#yNJCK=Eu;AQ`sQM(=dgkX3ov#yVBbdh}nF%$>u`(=Ys{4e*_GJwsO7)U+yU z1cX#8EUO5+5BmE288?T8AAq7Um?C@1D+$|wAZ4=X*(;QEWSRHzp7RQ9NLF|_;*yf) zT6SV$0q{SD@^yJF;kFYu7HJZ!VM(i35Cly(JcRLjuX$MDheHoMRqQ! z!12yHWE=Lsb`$k@Z*NbA(5uREDdYS1?@Sv~xu%`5xa2>+e>XYNyT@%6J!iZzoJ$L< ziE0j*KRMXIC6`Zr$gZDEOzmWsy8$P4ZC%Dk(dTzJ?^=hj*B?0!I4DAAznZZY462=T zu1a|wZV!{l$}e-sB&+mh)=6?(k34|*tmFjf)K7d<)r==ZESm^~*UYq> zX}HZ4eNj#TmfGA5eUGWh{La|XFfcIU6B3kb-5t<2H#dLn?zZn2KX~xqJHQ6g(#pyk zAMIxA%WTF~HuQ>(exT8*WJtX^(9zYsQe@Fj$;8Cuc;KzVZ9DaFnq5FZ04=|KkVWq+ z+BayJ_HJ&9hw(!}mn!XMvuwso(8R>V*!<4Du^$MwLC*++!{ylpC2DY36^=Ypjr#2V z{EwS((_DwlR8YR<-I!QdLSe@|wYKi;6~0K`_I7mSK!eSv-4d>@@8IB&FfyE{UFzJ* zVptyx*au2Y^Qq72pXc&E`Zcb@{Bgt9I(b^`1`WRQPoI(_ovE>LF28q6--urM(^a(I zRAIjj?yDkFJEnTLQEpQ|`?~FgtPLV8^{t-SetMJuFoyc($;is+%)zfZ-&Ya`>jY!$ zj&^{G!gp+JY`7L00m!lQ@{T5Ra&o3Cr%NOVRd^n(CwySkuja~>jqCZ991+p4yO9r_ zP~(|-`vAw^86QmXj<9%{gNvMR@ZI;%E#4<4niGeap)dzy^FQTIG01`A$Ox&ZQ zqB=V}8>{o;4GIccdytxlz8p|h#m5lyZgFu@&V18M%}!12ZY1gs;1E~@j{J*mF+r*w z6-|la%o#iQ3rd-jnxU(~Ai&fYHq4s8S&B1ge(jt{29np>vAn5$dPX2@gcozhUUY|a zW30BkR*$7wj)FH{3>(2)$1L0;V>NDe)gy6bD#EoFCmXDAec!@_&)do@2g^FTQiW5e zYuwC_j(E+}%_OZjNQj9OEIHzp>vDQ?92QytWKy?|c1!EqonH!{9-~o6j-Sg2ax*nG zz4lm3ODooNmO6GwjIC5y>#9g!mRgRs>pXU+!c>-YCN9%S*`=j?&hzPKtKSDu{^7le zymr{%;0TnepF@2`bKaSGG+o7M-m}WW_R)5_`mqe5y~15ajo?IXYg{6tqn=5JwGtMo zHG{XkyU zvLF%w+cS%f0H)&p?FI-fVT`oUz9b@=nCuMvQ$R=Icx2?@zf*P@f} z3Ai%BhQuNh5^T0@g2Qa;rKqbvqF$iKck*Yev&w1Z=wQ?^B4fYvwqC8f@?d_-{dCDN ziA+2P{crze^3NqZ!9mFEEi+Nl>j3HQ*ZdN)BUa3Rp0tawhZkw*mdZmDLczO&!B;cQP9&hd-v zY}%QbnKJ89Y+YU54?;dNN=i7;2Tc}QLJ~0;tMVBED|E)On%A(rfHr2oF~UqEpZNXF zt@{?^CDbD$BZA&X;f$IE_HZaaz?*OES^zwoAIed+nXbmaapQ*2`H?ZeJda;LF9qHv zTP|!kAIKw(OVZk&sq2L2MZ|5TRxpnja46y(`ELC5@|g45rIht(<8#`Bq7u5=nu84J z3L<^4vgDH-;ii259%y2dJbY1E$qR5Un$_^bgGZiy4Ss&|+EAMmQuu#lNJl+%-6WF9 zjFbqu=djpz=Yf#-=RuPKi~dgtMS$M9yV#DG|N4C?WmNmGU%x&&t@Pv>)Fnby**!V1 z?ue#;1t6{A@1Of{OubgBzi8wqrdN}j(yYQG)~fgB)2*?2a-?JRVth&c*^Vvj2V(ZL5yaiq+M>RWi*$W_z)o4M=vvGg`>1qthba%(s zu{|fB{y9vk-|mJQ{8=>{dwY8u8qMuv-@kdac00tGDnW1yfCiSo2jSTeswJ`-!WEqe$#Xi6S`=q zdZ9rIYyFYG_X*qqdaM%+O_ID4|GSR?*<%pR|)hUo8^*8%Wzv?=S|bk zPcF>Wjz`XAfHORSs5$IwqUWaolMhJ!$?p=iGjP8TyH?t?!NSZCXQJG2J-U=*&`rw| z;o68MfLR+D;SfCT9CQC!zxQN4Kb8I$Ba_E9T#MBICa6juxBlETo@hANB4jt4Y>Vak zqNO)Wflp_2Ie`4`@?GNAc*Q$fBA>p!4N@#iM*hpIGk+G}+Qa<2yf-aX}|(RLP~rjb;D>*7oBoh6ql8 zs7QXS)`m}5>g{XFb$aZ7LL9PW);^tJ=RU@3Pkw5D`9W*ZvJLtTy8yh@yr!wKw+b$u zyRV(_t;TiM1q6}zi~CR~vpD&D^dbIPFl#d7Z~fNwc!uD8QjM1gtA157$r>CMmui}A zN3`3{fHohczPT^YS3k)rXFdv;2AK2Q_IA&Bsk!A~)~z4!@S*i28q|3@tn`qg4Owx= zFsOerX^%wF(3ojyZj9u^4iog;N9X0`eS=Mk`K>SQ2@tQuLSE|sCmvOJ=l=c9t_02; z<@D=jW@gcJ%Kj|+)jzkkQVQ~FY6LhEuvl4Hd2FYophU6p^0orIfzFXR$z%ZcRhWY9 zE0IlY{`L6by|6U-gpu-Csl^g$P?#FgL3cppgfE;kFBNiPZ>^Tk9y07B7 zZeCs<5in>L7M8Qqod$1U@&N$>z{`$-y1oq#HfaqdU3=gMwF)Vd@Q32kQYgj`ps$d= zfCj_qv@F*>nsjow(>qaajW9-p6ailAPnRt9Jg~}l1jOWhG#A+Q;ZYK$_&YY=Gk1iz zw@1-J3wQ>#lvt<|*bAr8cXT+N-Jg}y=?rQg%EqxQy=SfOYfQnrD$=GCsnV@@<1%sW zA6)L|?;M`$F;1wlrtcJCy<0WI$7%stC4t50u%_8gwF(7f}6v?Jdc=?##%CJ$PjA<^B9XxkUe`@6oidBYw|A&k z$BL2*c@47Yd0~Ev08u|Ca2jmeB z1E36uxoqe{0 z-bBP@5w7tU)^iZ$h_<}EyuUM>s$FU}x3EBkRFSWLZ^RT>?)V0OA0(llCwxy8lP(LfpuN`p#5+->~BhWe+pA!Y9hA5uvp= z9S#G$)ytig;hILgQwKQA6Olz1OBL>k`mAQIJ)%Zo4mGdJHo;4EyoA{9XR@atKmWZK zAl9l@IhumjlE7(>jrrOi7zue)I}wkKR;cl%GMy!rOq$mW>K#|Z^YV%$pTv z^UQNy^UZSymrt@4Q|k}D#;AAvhO!b&#O_b8npNbsW01&Y*%Uz~X)#&B46U?ZThLBM zzK!EOC#apdpizqYs^(Ik3z9bZQ&oP}pLutyIZ-*ssxcl>aVBF32;1lMn1_t!45O5pia4 z=b-pTTxKRUy!jj;rhwO(imr9FwP+T79~%V>WuaVUQySqC!C`J7!8UT=V6Y(@S3x=Q z(?s$$J{>A4H-QtJK;w*A6@1NSW5avyC;a6s`w~GGKYu>0c3u-*8_48t?TlrXh4cB) zc@+mhQ-)fO3P>YV`YF^h(P%&6`11!jw1rcEX2l7T5Nhp$)3?yDAv7@XhK7a)aSH{y ze|Vh2)km2Nk(^VWC+}{h@~)hQaMivCO(gwzfT>VFkT=H-HKNF{x8MIEqHz=;Hh@l#rL-zCE6(crGg@b`@ZeNRArp z*>&g6NU%m0W5hDw9p8ARwL;nv$ldYFddD-GDe>UQg2D~h2T}46LA9aRXlGoVwk{MP zU>xy0&+kD6{n6I;7O83=rkOk>=ouc40fBPwXX7h5!dYe@b%29fr>9duF|l^lYkSUN zZf4dJghzXHyplRzVtNx)f+kQW0kvl-q`WIFbsC9*i&_1a@^%yf2sL*K6UOriY{|yV zzcz<_6aaM`D;8)`6UuL9-G$aNtKoOR`%QETpb9!~Pw_Q785kHO z*yb$F%>f#atX=>C_ZjF3&?E#pi9n%raC7VZm7J6`sY}Q~03F~hO4_Dw59jdFr7@kP z-JR9jpPyUD99((r2Af8tulUD%LO^uHAT88CxdT5=*uUE@H|_E2FYkw6fCsx)H5g~l z#|RLv#(#&Dv>OD~D!&UM>yf-P&@K13CN*cDflj~3mwFlzJiRC>C(6-q+d?ePljj6` ztq!SbeJ?+MrpuB`@J~n}hMPOvZ6!-wl0*O#RgBL3VU(Me;~CE_2CdSiPJ%J~%04%( z9Rx9n(tvuEUf$I@IW{?IUXuq_K$;gWY41_DuO4QINw76{ONGm0idd5V`wlC&!s~oG zx;_TiBfqor3tl`xbn{oYJwG#F^It*-o3l^X@Fp|~gOWc4#qwPNcKG9HcVUpUva+)G z5SSrOKocv4_K)Phm(G0VE^S%IEUg$E&>5iq@+XR(13-FNQc=<4Y>6SlEBfR~j$Rc9 zi2wae*XEa(-vDy~4u=<1N{+r0qB~beRN5YQ$~u2kEJ=Eur;u(Wl<~1x&1dpjD!?En z90^hd*F@-?QPM`uuTQ;e&zR7>>Rrv0-pf!%Fg_LQ)WZht!X8vhz%SpSwO4r`bFdoJ zqV-wTwTD7mDs^5{`Li?I+Z=csjGIhgoA3bQ052Fn+x09CIdvPtJkj^nI2q-v#xX}wJx?t(Hqv+_7s9|qZD2nENe9I zXM+U8z2h4Je!@s5fmw@Dtgi?vvWkRGw<1qreZ0nv6%qPrXe68v;RK;wAmSs%3=nw^ zY>F%wumw0l8O%2ZdBqftt6IK}I;{hN)*SE8vmKnG`;iOZ#x7gA1jeSP>FKBFw~UQF zoW{lm&2en(EqC-)5xOasfZCr)%)Z~LbB>&pjQNLHvUkD*DsiUss?>^fdQU1-&> z^Nazl>JA>>lm1WQ2?A~`P-GY2!TtkE{#Edray1J%@{Cve(n!EUgSw9kSP_mbF_#4n zbiAzRlNAX<1xjCwNj1t}S|_RC@<|;ZPGm(d@K$VWs(?z~X2Ox5pAYs7sQ5r4F4IpM zL07!YWTaCzMfbA_%$v83CSp6_v??#x|Y5L z6LVU?BY_pk1U`~@X^)Q`)GUy80PB+QIR-$Lv+D5yxQ7VkmLN#HdZk_TROHPB1Mo%Cu!=xFh;^X6{DW>usPCmQO4! z=m3a({rc5{`IhnX=P9i0P=ZV}zbz1rB;T6*8Db9@J$}bsF1vaO>07bOm@Uu$H1EvG z)?2Q$X%-B#MZPa~c=H(L#0U49=jM3^Qqx1HWh^v6se>|$Dxf|0Q={n^zt73EJ|H@=*2B|tAWQx}JBBDuz-8-7 zLn6FNgC_}D+$=)cKNM!!T=j1?i&12o+)=Fvwh+NP#q|tUYom|oT1p48&GP(W*}YQD zu`0Ro)eWRO8Pt2X10XJ)PSO3MMvrD>Y&^?1A{ce|M(-=`*$!O1#v!haR%xrR$98`T z9Gqym?qiqe1yj;3q0<-%+=E9K2j1TrZdKV3E{Y~sd#LcG)FM{6)bd{ccqzSV&HKCb zq5#%7nOElLKOHwzR=QP0RlO%q=wM`bBRq6Kg@5+>7CYDzDAAs!t~$XU`#} ze)8YQ8uheuDUd6dDU$CARb-X-T_Pg%$K_VTN^~3z2bShaSwb}GAax+pe5JEAd^PKL z@d)k8b*wgJJ?PM$8^<6HkPIJcWRj@jW?i5F&Bjj0R=K38;Fjmnbv<2eoT^0J&%2cW zScBuIk9>c&;Q4Op->xEJG*=Sih*QMH#dSYF<3n?Gb+u#G1@-kE+?0(C6JovdS9<(5 zBVf^!0?L)6mV*nugyP}DcsSnS$;n;O^r{vhUWXdxDy50`eCVoSEAF#8j+|d;oD%d3 z%b(^n9kGgC5_-88;z*bZ=!hcfquQO+ybg`=|5%7S=AOUKj-7aH#vX%xx=$(-TANxJ z`yfM~B?FWY?N~+mWl&A?U8bPHLK81AsOta}`1bw#bigFg?Gg&>PZ%^iGZ%+IfRD%s zPTGiyii+r5YFl!IgHxI(o1dVYbH|A3-)Iv}GazyBB%Fu5f%7jkZoS;iD zf}}_8<0YMs9vm&RnnCx^XLqUoWwtS!1oC0#fhJCmd5;b%fcZt0$&=9S zZZ9z;o6uSZivsxgqY|CHy?q#C1S z%Tz_+wwnkIy6ujKgE(UjUuv7CCwCvx6w1N=bvI)nO`BD+~3K*NEeY2P+i@)1mx~^K&B0tzwaq#Qc zx8`Ol{c!-X3rkBe=EVr&{O+3i4~2V;yS#Zkkzi%2a_>4x$K8d((!+=L3(_6fI4u&+ z1=h{r81BeZW~(tI@Hx@^UhYQ9oA+KjEx@LfAQKic@DbjF_-qebELz4it265AwQH8= zhM;GiVJf;mS^qekSDglN2F!OyD16Stqtb&8Do@@DW7oq89Zps2ah;Nnc0NcYnBCyD zP%GT_D#wxrB_FY3R(ey-!CCdb_uqT%XZXPD^@W8f%PQ6E^9Jms zs3_GBt<)Abv9Zne7TdiKhBaZwf&@{p6Ao>!#QAXC+Oy!7S#Npk*+9*MhJ&2cHC!sk zDlE>|XCM}#0SL)a$;5;}j}gdeuPGz0Ko!r0s%CNC00#oA^YgIPNTK2F44a|t^~BB; ztN^{6=;%*j zLFI)I#@yPP_Ub(usCZ$Z&r9TLb20Y zuoc*DIv8JJi;6^r=gkND*|FJ{l5JVVnD&nL4AC9>2K#h|hKJ*T!>mh9KySrs}vmZb=onK#<@%9!>;>2U| z@cY&?6B3_u!QNTI?S+|q0^lG4nF&OiDOP_^4!A4_0zh}Xq*P%uewa0>4WY5?D;kT; zBRBF^R{y4dXIx;{jQ_2i8AhaM%{DBnHahOo5yz_d^y$YDLl-!j#<2TA%BeTNoS0& zaOXpdLXsAnTU+d4IEn?~BGC~fVZ@kJar0=Z$_Y0318ZyR{DQ#bp}6}1s@=_`#LQfw#rK~K=$^n|C;NrTgsHmu?r)M#k6|$UMUhYz{q5ajK zqBV>x+pxjcd2QgeacgL?_pxJvURBfDV0QV)eUe9>Tn8JY*-%%bS@aW&ir7HP69*hJ zR^?>=MnL1gvnqfmZ_nh^Z|Z=d2#uiyc0R0(a+Vx1@``ZNd>(r!TE!2DBr$q$Q}o%A z3!}eX#nCe}oA0r#x&vQT9DD-Ro{C9IB6_S$97{KNE^EWNarI9I1pbjE4TyW|R=pB; z@bK{1LpXgpsZ>5wa|b@TZN702{yo?r;kQ_l%qyr_@g=ybNpNyWHHsJR8K8XBhBOZ1 zTEPn@PSc>IKS5jtD8y?3G$=L4L*POK$83-cCxdRn%io-R{dIs z+IsEbr@UJa1huRu*%IUs-xx{Sz%kds=uHYD%m`kB6ayj1PzyjA)xM}nZ+L@W$04`q zsB7qY1|kZi8i5aG#k5^Q%GB$dgeB13VHKPF5dEukjUny{Rl-m)Kb5Yg&(0r(?qHNO zlYVvdPW@>p7+y|r?_bn%KJ64?Vj)Zar9|Dd!g>1Bu@F1^9o50j@~$dUM=Ir*cvEdv zDpf&#&&6s}g*e0pFSm{xVfXSnb+*pQwEZ2c0Zv5@q*i(DW>65p86+hJ&{XU3`=P`9 z)o0J1p=hjTqmadvtxx26o@g0dmBT84#1b;f_#v?=IPC!{A5=X@y+ZQ45;JZeIBkEc zFLDqky{Y`@5fiB`y!r_2KXfdtMd(y!=V!-8?k)F0X<1}+dR?W_sR`X`$Lt6JH3sitEwTz)fZ5Rz{2NIy0pX?7Em|vBUvR`2oFYfZEtDSGe-PRMNx*1p@nW?~%9&n;1j+_Y%BHZO~&B)Mbm0 z2CqjmBp#4`-MI-qKL}c@la;Kn6};_6LOOwwVO%%1&u@h4_G?5M2Q$IHu^h7}n1+|P z(q_xz7ub<BDi?_2IJY9P0?vSR%u*-c4C<-mgSq7q51+|fAU5a0F{L`H28%U=5Cw}oUG>-D$(5q z(LlnQK3a{{upSBZ?Ks~OVdDa-w?n(r=XY?8A&#NxWpTd!7Y&)&XZUomu-|)o!{9FA z)k*GR_6Nn|I|N>R6*VDxm_8VWqQhfTjbE}Vc~yYqIl*b?v6~6b$)N{o2)zLid(_sg z4+74skKtqZ zV89(KbgufNaT+Q7E?UJ#*WgrtLd000asVFoz`Yd}6-As9$PXeyU{(Daa-zu3W2pM^ z^}x}5bMGykklig3C88i6e6&oJc8KjD@d!kb9UF^xTqQMf|r2ee?9{D3qJ>~kogkqcuk`m;%Z!+IbNveut|gOEk<>F)dwo7wslcubJ4 znguuR$PKyr%OHF@8+g94zHKLTFv>wd5Z5kjMqlL0wl%7{*i1jvTf zzrw++08FTo-E(0ccyfBG3LOcnbEe+sKD0#9v~P`#6rI&h97)^_*REYtE;W;fAY~(1 z{Ry zyx&KvpVs;vco?dXKD2)Ujm{X<>XwlEmebYc1`E=eonBEEG{6h4yhuq& z`9O8&Y9o$#D>bKg-EF7aS2?<>IFcmG=-7hvMA+l#n`ektsPl7%>z7k_Gi-08`iRI z>C^Ky{kJu==yvG;h5s#{mr?`x=ZQqk&H04Q_$8;CD69Snb0G-Qy9YtK#X&`3@qCRz zu(=@jLx;;pisPn)Gt-wYc^lM$D%Y)h5GDmOjNlz-H*~fG1$#DKW&LP^eXb3{i1Fih!Y;1om#fH-meiG^8!wE0u8m zVx7Jdju{LRBXk={2z@bXK{TJF^SL~T|qYqMf(^c9j z5yO4F(vA$^k=|GPm)CFITNOwam4>$wr2%Of+$bFZwy#xH5GjWs`mnAZUqrtXgbR2f zK@~hZ-+KGvWUw-b6mTawY%;*eB~B{}Xf0u6VTFZ-Qj2>aU0r=eoiqG-VLp7ws;*^j zY3a2bP4o1$exU={Hh%t1#;X-)Os$tcl$7~BS>FHrKA||GzL^2XcBWPus3no0JDXyv zkT^@6YR20+R8^#oXbclY&Mk9d1Bg=)B?o*YryTXbaau%I@fPH8a$=gS%>J&#+hsM> z_dhXntls|xGdC820})PK^S78)JK&LVa*j^*=lUlMI1mm71ZuQ7Rty4h3>6UHLj7a3KD$rgp$1}?$n4ku75pGb94*t$PA~Lf zb-E^Krh#no_;>O8ggEUe2M2G) z<$^GK`)YqWv5@yeC=xAAP4;Gc*A1~(#;VaWxJVy$ptvhp0`R=)lU<)!&yAJ+v}LD3 z(hd+BHxM2?;f~LUtw;n<*8EHA{M4MmEZk z`l*8$0huzSWQs;oZdoo@v(bf1$%Z~>_m>T%J`6|~uuz461 zzX8$6ffPJ6h~-g3zaKEu^I|YtvD9Xq!)he29l8`ysAyWHX16LTD)a!KOdIZl+BjYx=KoO^qn*KQ>(NB!0cWe0JHZPQe89poz-9uMM{i@QErJT!Kal@M zoNKkuN))Y2gNZ^u)f&m*R?8*vgg|rz#GxGNWn}h%jYH<*W;tN81R+9^Hpasbt$V}5 z^#Ouj-Mw||1C`R(iu<Q@4 zSW-14q)pe0hgL5CTFXv_Arj2>p`2z|w|BX@jLfoX9RqPu6#==Pjb?P5DHT(sCW3+Gu=3Trte&4yO?@mN43GtWGwSgzTo63Qi zsXRDPXdxad4qo0E!~_5?onT95+iuo&-Q3V2uk(5NG(ksPeo4e+J>i}NbFq#yYKH*%H@kc#|{2p}Cx zW!^gGJ<09+TI)_8QTh4I2s#HjKrL4z1WKf7wb*;|)uxD~IRw4NIkY2zqgOg=xC;wX z$0HsJ8q;0{_D797p-PM3E0_uC+Jb z`Sa~RLFf>);MX0KmCuILZ`YgoGy4FNX;v=T5+Jhx#Q{T| zrU&XRWM$&Ep|2L#`u@EKoO`i~=zRfI9C=M^;V=%Nz;nXnZ7 zU?v>|xpeQkenLo+nmOnHP@?tfzjsJxXlQtk#|Ci(t6Vk+AgMg;CdE%7jmztLH1D&> zw~SG^Hc?E6FURuo0zYrlbf|Q{d3%KPQ*T0gq#S!BwUIi-2V8|hc1Db{GnrXM3e|tY zEpjZ98fY5Cyc`@x;L#(-gUv))kY=HZ1_s$f`;R?Qd@n%F8URj)ATnsyXrE!osMNgI z44nJ%FX?c+A?g1bkd?z~9|c4p6d}k&%htO97%&eJp$G|(gCwS1 z?Mx4nYmPQ70PE~rvPhnZUm zd(_dxg3Oyntnacb7aerQa^*p4ca8uZMmXUqzJiu)9ZN#b6r`u(%^|r$M!lay>>AYQ z&DC+~eW&Wr1J2btY!tWIg>TUF_iUY!M4dJtPDGilG@K5OWU56Wl zi(XMNz!1ge zOhgDGXqY4ubbkz4sw%)b!hiSiknNI2Jo9VQ_390R53~lBqUn)`mILA;Q`R)mIoEtf zM1n42GcX%2t!O^}#v&DZ#rWpuVX92=ZBpE-WbZf2u@*3wDhE*J1{(OJk0dG4MO|Uy zww(*ex|jmXD-1He`q3agotH0PKIG$5hSVXFknN1U=G6HmIT97LG3mqSw$DcZTWz4< zA5&t+-upHe83tMRb@4Zng%8X|8oG*Ia|Al8|_k9Xj|_P&I6(zTTY^}slvbbYjMH2fM?w6h-(y;5aXVYDy^I`_AYsMH52n@)Zvb?JqR>NX+U;yh7<%4 z(>W)mzpy*6Jr%h&PXEvWN5}Wpb94Vs_OAI2emh2x-%eBFP$hb1YZILx&@(lL&ME$f zM~jsSXfiSAlwg)2nsP9y0MFo$np^Tl$WA6*@(m!y$F=LX{p!Kol=-kAFVOA*wl8Ue}34#N0p$A7{vw2 zevNApDCsjWd676YI57`kAOW1b1JYOp=yv7L>yw3J2l6M%U-7vPI6QR0N~V3War^1M zZw4Q{KATpg4ke%RYm*nR;vWeLLXHQZ6mjG({9y2YOjuiQ;2 ztEOM%fFq*FtlQ}w%5_oa`!|u|$s0ECTEIWLtOQT-`;p0?UctAAK^7gfSNqMsUUQuj z{$?yp^!3U_x3?Yczq}03|1*uf_c|!~OGroGNBwIuXw%`#9*CQagr__N`dR;jzyGQe~rSjBDnrXHl}2z67*d zm$0eIXN~@O;K=u4OTI@EbYRr~sv>J2llQHakuqB{4_Q^yJiSu;e;ZD#=QUpZl%5U> zMjGgGM@L6LS64s7HBe^i4hQ~jr7V6MmSye5xj7U#w`pmgaFu2D)!E;~p-5!cTwgd& z*Ze1LV->WpaoOX1HAbOeL5N6f}V_e+aBw;K81aU+Q>-%^Kj7bFM;aEUc#_KCoa!lr$UJn%-k|Cqud3i9C zZ3^M}9X+AvnnxfzTaM%rgPn<3Qpm6&;+}a07Z$QYo6iDj9G{q|0^_jYCv-poE&ZDu zP^p?j9h>@9epZzH=*qm?=Cj!M-d~1sM?)VCt+}x3 zeSHi=1;r&LM$p(GIQ9z$h4$d%32<<6{qdO{IT z-!%r|_|T7syz6qHnjk_Te7*sj%@`Xc6%{cEuRzd87~;aizXg){wn0^-SIIz!b<2h^ zHjp%NAuj{T-`F`PU6^lz?)DMvI)uJLkwbEi_3()RB(vFleM&GZAOf}pXrg>%KKpk- zp$6H7TYui^&!#ra@bxrYoXf(EB(OcZ409z$AW?JK%_JkC2aiY6ksuZELTms=uSmpVIg@uKVeqMp$ zQY0{eMEEKE82+{S>*>vr8j?{?iW5fg)}I)6wav z?2F~j*;(Pi65tFfj~~CdOG1)7cbp-XdDlT$;`hN%jewEE1fNH@LSi+1eN=SLmv)&N zkgq)N-Al>$oIR6~QL{37gv^KYU4ZVc(+lwTJRB_t>In#yDq33c8A@~+03tHHdZ7L1 zUzI}mDhcRDDOV9J*!fGS>g!jj7elokPW1fzI!=OgbW$pGcU2&YSl-c_$Sr$0qgUuu zP9=9ZaRJQ-uvTrXYijdJIqT!*aY#W+cqLF0?jIuaBV z>c@@_4iWGHDBPwyvkk29xMkp?24G^8yVXfY=zzO}4w;vceX$Q?k=CK|5SpCcNM46i zk}&mXTBeTIgFZKPx7Lw~T+fPaqiD!xTX}6NC3(6RB2kOVYA4wmxtX9NNr6SL0#q|2 zJUrY+xZ>k1VYv?Tv28tNK9R519?4e&&#%7kQTbaa>Ftq7=XFA9m7KlJiGPo=F|(V2 zOu*W_Fm^JyBv|)`LA$%cL(}nKtX?%qrTWt!6ebia@EQtSY>s}-A;cGm+V9PAPRLWO zjpW~l2Qd!>2WZuy&P?`_%6i`yfRoa2YVk7RzAcbbI;fT(2h z{&%KO5L}(O)7{;Te53~4AIL8^V7$hr6WB>d!7lrzR(pYTR}P za#U#{#{W^>7Xfvu5DY zPU=GH$j16{4B!0)hpq_bX^`ZMVE2PisK0AQpa_^`^*(X0`5(c3naO*mN9Bq>GI!~d zbB|WkAoc^T!DzPL$NO}vvMWX4FkhJS4T_y5f$DeY-p>SLe7wsR0%c4Dnl!H>FtEmN z{82c;E`EFm8KTMS)b4Y$Qtdv3(W>!v%y3jtO2hFd84Z|EY18VVo#pAU$I@|~2SX$( zY9x^Rg&s?5dwUS1{heU!6H0$8XbtU9Upm1Cj~Dh6Li75wiO>nKR6i*#p0(z~sMA{L z`1trGWFQJr8zGiMK|wK;r>*M5!VI5I0fRsxsi}t5CM>xps^CmyGxEY*7kp$0_bjhP zANjOT$L9hll$YtPTkCQlB#C5Kz}G`YUe`zRlM3V}JYg8#0&Jjar-Fil$18f zeAM4K@L2SrK`aI=He^}}W=T!KvjXKZ3R2R${gPz;ASXevC3VdSXNF~Q+`7f4x??N* zKeGrc>nqho9PI3AFtQpsP|w`}PtM3PW2N~%u&S&d=2H&qctX(SWgaDI{ti49`u$gkDIaW`oV zl(<;l6>P~D$xd8}EBGc^nzlp~{yy!T_>P-68xfciZH^L&dMxR_HNnC~PK@c=?=8c0 zwKKijz)%I_P6Ws|w6`UYCXtLc^fwT-@Kai%HLP%Bw3Fd;WOSAspG0Oj8-m7M^+i^5 zR|h_a=#;YA?BNuRGV&USoplUD91wO z(eCu04d)!|<{9=L%7{}%cw1;=CLjn2dVih_GB}CFiR+pn4t(gxk@#-+(!Rr$n${?a zWp;00^yHQx#7IxMgC#*$bMc98z=PKVynfDjK5E%l0K)nE^k?ZhW9_j*gg*Q-#*<9AufV1#XveYuMYsZMriQ~{4QVMktY257(Mx<2q9a%B1){5Z=6g z8gvzh| zAFRD~R99>F?yVw92}(!^qDX@@B8VU*-67o|C6dx03R2SD()p!BKtMVLBvqsvlu);;)se{dvA8wvV&VgTKhumZm%=XzJ8Aq= zx2o*lh`0i^19Zu`;c#p3?Zp9U40r}|P-QItEYGpF*1x~=N0o}8T4&B-le57}$2Z__ zfl>O+zc`n`yFUvpEpWN`!8Q!clP!nHk2tEr+8pAG6mv72%8YGOnSbvw^?GD`*Kp%J z!C4rR@5ASK@pzJ`*-er**1*alDkp&a8FbhmgJ=bv2(UL1!rqQ7HmF`WPdA+$9kbxR za4DXpK?@pvRj;Q)GBO^((ScZGR$^K^F##7Mm-M&^j$J6m3?L$dbTgo?pI%rHOBL|2 z({a)T*wbROFE&Jyli>|*LR-=ns26Y_>HyDGh2|4ZFbX2pErdh>H4vg%!s(X?5@ng& zfi5f-&RM0AV-6k;o)`mg6GcG-X4)Xz{absYzeuK-jw1ki1^rM_~-_6a(3D71tl3GfDEvz5zR|pRZzGZZ!m}(H%en)=Iu}X0E zr;}IVs@~4AFZPQ|J)t$(nqrj?5@q3WXs}CGSYEdKKFzbxL6uVzU2C=pp>X@%&u~GI z#_|=0GjimKPUF3)J09J|ClMpf5EV{iCQHgxkrbrB2xIhUlqdVV_>S;aO!GV6>WKUHqK5SLwLh{w9I!U<5@jH`13a$**i#EBjqjyg!GF* z*@-ykvY>o-+I%f{=uYj!YeVnYQ^vv&V4VY4@&h3wt8Z%h0d75Br(1reN4JEWr`l*3 z;%iQ5$KCI4*?MS!ky(VD6DV=2_rO5GX3%_feX6m4vfhpJH))%KoK8qj9ocl!YFRN$CCO8q zlEnLEOGE3L{Lp&Y8u_jlcDHO2C{$H7h{(`Uaa~P4tHWqm4(4DFR|YiOBd2uR*t=1s z{dK-mjz|Lryc~U!5k5;b3Z8s7MJqYPe)5dQ=VyVkRd{6%F36@}`}pzmr!8a!P;DJI zCg$Gekn6sQ&!jd}T)lQ<{Mv)Y3e435zrIFq^CmaStFEcD)7$70=C}P{(9+`D9AEW* zS--ryCu+f0v&`OH{jYiCld@u|qJkFLV?LL^BJO$QKB z-ov*0>lfb`JE7^(-sDrS1N7vWq^2cLYOfpS&Arx@VpIpIaB13vEe4GN+r!P-nJ__= z<=he9Et_(7HqVT)O((~xk;JMc`>hOai~Q{$qPWxZeS1J3AhY16yU+oPX*aVAe)3JIM6|9g5=`PZUQ=Y+QIfVc)NsOZ@^LT zt@%MUNy*}s{Ve9kkBhipS;mY=GouHCCrYz25KIxJkY|VcBKFAP=Z?$rKX)f?HK)>> z8#pG*>0Dtuh{xSK{z}}DCUe8XFOESHwU`$Ax~f~?%WT0xe`2pcgqx?o@JgtLi@#R^ z91S?c??IC}!RWvIF0A{(%orf@h(CLF2|nqUaF`t9F4Yt5bEMcN7TN91NYhr>&ohl# zkOWlDy^S&nLd;#@c1I`+V0>>K9#)w$Sn+vNy~@ewncM#84VsTn3!SA>M9mcz2KLMG z9B!BiGI_M{AC>Kc_(K?%U?(7ndbXiVe(Z7IB3jCx*)hx_?0|tUB;`}NP(FO^!?|f^ z#99C4EO&Mar4+pOb#zp%Km1E0?vbDYq&*2aIZb=~Z*!Fr-^s|~1}p^}uC3s|#Txk) zxm6tbnE&FjLBDJsxzmlY2D{$kZ+=Q4Y_o(>`Pmyc%f%R8L|SFGt4BMEo0NrCgd&l7vpz9e1dYzt(Ggw$zYOWMGw?rw^9c+pTi|(6 zthUza?d_%4Yv2cK!YrKnD|gGG1qmVn!cY7U-~)c44Y=|hOorZEP6g;7G`b+>%laU@~rmJ_0uQ z8R(D0vT}hGMC~zBxF>3XlRJwEgWW+Me%Q5l?-nH zjgo{-{}NIGg7FbCLxzP#9hkxj0TbFMFdQJ{DA)>jkl)5`a!}dTb)o<+6BZpQ_~Y3i z%?rP_H-Q`55w|WBU=;LTeb(002EgiZ##kqnFT3&vMk8o1L|>v!epf4=jTr&}xBt`q^pYF2qo$p`>Z+ z?hb?~JyLx@xl6)howUeZRb4$6_>hqi>*dRr@D@9u+(z0*ASyu2suXG)fT@W=^z#U= zj}VqIfPa3#r`gT6VxnBjPJYeLdmK(UP1&vvGXPLi3S3QK9Vdn`3N;N4JN#O!i4)^! zvI}u`t2+Fy-zknH1BHfZWN7;=h!hHnHPVHoroM`VDALG2$V5;VS#8g3=g~780Rn{< zb6j2i^Tm~8=VyOYK)n}Ff6)B1-0W_fAyIC4SmcqL`ol>285PQ!Lj5Z5e>^B%0hpp6 zo({UFf>#W+^#FEy)XvLt$KX%)FUI$nSrjL6jg-r+V&%^Uc6WC(A%L}W)-Pqpu$BvKasJkDW@+k)8lloRW*1+YsQqAe$NtjD@rW4b%vV zY^}quemL&vBBtzcQmde#Oy`Kv^*$|`pNvOSVn}yMmg+i#jw8r$ zhJdh!9+epl|7*|BBHii@KuRhF3m8;W^02{F^zi^1wMCQ#{QDiCf(Jm$0jLw20pyv? zJ;X z?Gf_WE@SuOl^o?Q47o}^fGq#+Pm+xrggLx%9B% z-JA7K^!^#09N9{=_Q#ZX?s$I|6>CI=lY7;Fo>N+jP0o%Pa^~Gq@{yXkO;RvVeJ8I* zk0s<2W2yU?%WWj8<#ZVT4<1JS48f-E=)tQ6*AaQGu#gO(OFXjMYHtg_uVOD^RS65Rsz7NHu#)BRp)`2sRc z(9Jh3s>P!qCod@(xT_VJ@C*(;R-NR$rNQ>AE<3-#&w)@c>!J?Mpy=Rqm$6EZ0MuA6 zHKx50?;;k#ykS*-3^*A$K^=j*$Xi(Pv4AGcp4UWvPDY9QSyV_-z>kLQwKuuNAoR+gcm1Mov9cCB9K4?X>itt{5oy~)7z#<| zAaPcBpb3KHP}^ngeSwDCXUHRPn)d2L(+yVfrMFl_jBGC3#tjguAa8qRZXUm`zIy$1 zyboAnmLUrxmOE8z1(PI^jFR~Mx-{Edw70Mc9^^-{EqNA_n>>oOqyK|kqG3Bj)C7p` z8$z4y7+3P;tR9W6**WIjMz%D&KdJ(!)R^UoL0_xx<4oXt_i;t%(vwE zwV}wwseJ#VDM$8Q_$&#TVg{2d;gXo1o{q4>VV4_bd}22*0f%6;!PEFkmW8T@KN7NJ zpqz4TEk)JUxz%pz!QrJLzycCAw2PBL?zaVv2&GmASOEu2s>})>S7+x>Y6Uf(XMB*0 zFaTE#oXiPuGl%`}Li?%T@9v&4+9wgJ7I&YwZ}BNg#v7VORdNwUlAmWN<;6X9dn9;% z_yBZh&{s@PLI>XoD@o@@&`?+U{0UYY9ky0Ai3r4#n#?@E9veRO_zLAm-zv_posT0m zu~RB0@(mtIUge1`pUI}I)X`~T*ZZ*-2doyQTmkyex_`V#n_I^04Ca_5ldv`x z?f6cx?Xkh1aWU&suKIuuwy((b9}wGvaLs)gM`EX*Rrvp6d8K$dW|GauomC~RC2(RM-gg_P50XVn zqoc0>PuZeSJ~uTt(+ya@TfjK@_lf9v>=A)`5sC9W^o>{rok|-DfaId^_~9i-sMt`p zcA#G&neCNsP}MnGM!ye3WaJ`srZ8yi$rHQdU&~Z1mDF31tWRS#EM-%iR>-Co`-ZdB z@>rk6Z0xUCIGW~|o=7LStxkEe{4iss#PPOSHhkw`J>>I6#{rPx>KDNJA zfp;`^a)MI-#8^|xX|=O_`iD^e_od#yJxdxFXC!w8>U+*(W*iQUNu zdz0UGR~JK^=&kh!FevIyM#yG@cUZXp^@UK{6{J zP?w0g8e}aM08@g@s9b5G3MaIfgaig;-J8KOfP55VW1TXqAN!GRa;78!@Tq#Ba7MBp zuz*G?T(kIqf0f=Df zLEFq6S_&H)%Z5G;_!Yhkoow2w@MjrCf`uKhDFk5RO9d|kcvYIAu6hoy(hUA_YHv@y zTSr!@mKy=X`z)SI)R?*r9O<6n&jifYgZZZkD-tkXWxoxd$;4tb;duGTb-LV(N8T!0 z+cK%M|F7CWh4y0PS1h#e9540Zkc@-gI>;>T;7Oca7H@1YZVqH#oJzfDZ`Ul{XL#F(IhMXET$X#$PKbl22FWt~xJ0Gznz#sy!*Vfq1 zU3=R^V|Pj5$tkDoJeM)YY!qv_U?b-HH^Sp9kgE_A=Qr8;xUt3i*-yGM-T#k%OSbMf z7I>lVL2_%*>89}hQ?K(RIJE`}H8{cJiKOtL{ez(TK^jN6u88?S+Yhtvf913GIrldG z%N2n>0mQJ&3ZKxGYwTzNRR)-PNGbqH*1Fi;06_%~%Qn!qE7kt`z4LgzD~Uivb|-U( zEt+*{H#t}WW^dC1EzBsYE#d+187V6U*aRy*{Y=K-ZIV8+A_3wqLYe2p9UhRd2oP-K z`w&=I=M$Vs-Ef*Ez`@k=>-}-x0yepJX_$HjHSU;)M8BHIVSdvK`uQ5^=k_NlT@rEv zBKAEtO4gSpNQnu6EMgt~2I79=lpd|{6+VWBmrgCo=&>NW;_75zo}~?@umOH-=Dd(G zIb*bF8~$x|t$Ay$%4Q2#*vO}W)W^_Ad_Vc^KCfatN)-1Q4d?xznS>v=Ngzp#Yf}qWnNq?6lb{ikVp_W+mMO_Obc1fCm@URa2UWNe?#)h29)7} zSQP4PFsXGKmsz1`Vn*Ro7XR3m3Jgr2B*Li>SPE>c+YlHA!%Xbl4}hn_wsvJeV`%e) z5h%%Elu`i5&znC#(kj2j+#@N2%gq3>Eq{RAClz*r{3sSiATb~?RJceW*%mkmAWKW) z4$F^+Gix_!O@sJqH{zOC+pJ!ywLiL&64`!ppUcPNTTAXx+JltjvBp?{SI5+lcUcjg zCH?w;p@BWzc`6(k5rK4N;qV2dv(4$DEjU<7;1Y~%gpx@c2oc2C(m+$E(@arYs1q9i zlP)Cj+YLqVtlL^69w00MuqMVpYc}XI+BF66LId+anN|3Ke^rHieA#i#yh^s3qO!}) zcvpUO?x*m^kALIJjk&Z}JhER_sflb587g>pWI_5C`teG@se#yMM8<#7!zd}`5qcQh zRgp5LqoW**m`r|g+1UMZRfr8P?rAa9 z@YPz#DoNwZ8{s?eGlr*UV=+dReElKe(47er8*sslvIK<*_@Qn?Hd^>QSuEqU!lj%G z5C3?^_9J37V+Jzbqhb_B~2((t;brKvSrb0S6ilEC72buW=6a2(PAX2FNQRs~%v0xipwH z%%n{AMp8uFVk~}s;ajbAc_pPB1kxeKU%R`pz~KvRZM9s@d6g~;Ip%$;LzW*6xam40 z4|9p`M{U-(iPTkzMp^s+>LjdT4Cm-CQkwa0n?F_`5N|I(uwy4rT4TRJ<>#p<@kNp2 zdV=5gGR5oJm2n?@OJ^PuL=poY1da6XQXBys!h=>cT;L`{iL#6UQd*`O+F{-<)KSnpsG)ko=B17m*t3q1p=hmxXgG+P`j znDH_nnkAl(aEO(#-D+G1Q}|vW?2MeResKZk6=||UZ!~W?r}*c^kfd&VqJsRQbkFS$ z1<`BX^`cLu1^-x2+&@m@W$Yq+ph2ZZG|MovOI9B7tfzRFq9G>AT2N#TBvrGor)Nz^ zydebl5h1bSic-*a3P_U563$b(Lh`4-3d9c3C;lGLQzpe>bnowTHN!G##USL6^EiKi`Mc~%Qh=Mtx7dnNI#6c@7axQh z`zn%xdM*x#zjc`|AriB*rL?XtlTxPt;sv-ITpCDg?tLjvX_V{b3YTW$cqBUWDxL(dZgq7->W6ln)S$u(PiA?l_3~mdl2JLw zpT}Ejkk}Un7+(g!#x8-u?}Kpo5vmwQD%5sl!km_`&}o`@!vXsZ(Dg3Ag~M)%z6ey# z`aSnwdea)E6%{ad2LCNg$U@91$J!$nm2yr6^fLd>@M6%Vqc0EdZrY)jaNb&PTvgVZ zS2A&G9D6ql4FRO-cI&}&q{C`pp}845)mijo`6}+IbCmy!#bJpC;WgUp?4B+Je0_e4 z4=P`l#1vpZeIa}>RpT<@_iK-gIG5edyiPTPDZwVU{b_@RK*;?{KY#0y>YH8K0+JFE z)6f%sHu?k$0VhG7coQIp(0-`wLqZYI$({Z4=Obw6V9S79y6xt)knR^}A#i;kE+)RV zBh&&LjorTSWHYGT00od`x}SM*Q-X`*|Jy@6S{``5V7{5$svb7VZ23HV6 z`M~$lRj`_&D~(Qlft(1~SB`H;bllbT=nNMuN|RIjo?XaO8F=n1V|t?nSLCSI?QK|3 zIN>5XW4QERwHtUf!Cv*E>o0?cK5Ycs)Bj+@eF33_-}5vM z^kL-gifD2$C<=O}a}fVt05Xx6rF0w%(x@t|+EpzW$sJi`?xCTf0pqYEsczc+eS`v4n+o?r5f!%cuGTOX&M9nqNw^2k|B84kakR18LO$mJxTn~ zkjbUVhsw-)f(!5S>GG(iq#a0KG$+VBr!c`%eC<^P<2_i}4jxcFetV}57~?TdqmjgMPqvTP=44i^v%WDO4$UiG#EU^7yPh5 zuNx>GgJfE>)6<{IW#2j0#M>G?`1jWz-E$IL`nD(jT_fi2NN0#a@amF?3VH|lrAfeG zavksPJha^q5RUKa(@1do%<%fT5Sj}`U)2*RY{VXF)nER6serbnq}y~>_oioziWJSu zM=o}bQ;n@^951U|bUr*H?aMvRVC&X@`sFkocmR|WEeO-jypB2|qU>&1Qd}HHri0dE zWnryHMn?JhR{#`wiFVNJOzc}~dl3f9#FXWFnF3v{CCR?(c6M5jzyBwLmJdJ>wui;W z2imZ{W~#%?3Mz+O+aX*uD=9`yerUk@21hvu+cL=ys3+gE_f!3-o`2cAF-e=-5b?EJ zUj4TPFY1rx$`h{l2stt04V@oPog63dJF$(6rPXfw9J~kqGvt?I;|`70Zdk}bJ|aM? zIIZ_nqw4+GQh=XX{A{4a_Ro>~2%T#j7!z~@xQa;U3p#AWdlUlBl%64C!dw&i$xUkY z=oY<b>}k<|f`@<<|)i^B$g1MPYGY*ZiPdm5(;AJ!+s_Ve^nEQV&5YBJC--9RiuP z({A4kv9H7rEzAQF4F_Q_?BJSAHo>GK%~Eq`Y{n>w`0wlg!_V(8uLda$(WTl)5NtS| zq_&e!;r}Nk0`6-4uWv6SmPSyQav}(#$uEvDoG23wh$%b8N2(2)D3;3z$!>VAc^04t zOXbb~S=`h9Sr>WrB>hj}o1lih>uhOTS3d@~dN#obqZ(jFsUh6?7C>VF&mdk-1p^BU zJ}oHxkBCz4VW2BmRIi4=%>ih7yd;ICe){1BPOD~B3^N$3fQa03aD0Poq##J!`Z4AD z#_Hxw3l13tS=33?qu{Djpc0cFk>WMZL-af~aSV@@$CSK*_&k{)*s{(*!e+B5uLHx%xfB zZ}9>#H><%3;#I3>g>2g5jjoJ&ca?;7`V!a%%T9~**c`OB>yGRN%d}cviLQJ&?MGRrWMk9tL(=k89 zS?XxX0+4t;2W^fi>&ABAkm0;mjo;uK?yTTm_o#qzZD6@YrW`zW+qX(7E{LDfed_kj zn=*8ps+8VQW%BWhbBc_?{edOwsJ!rnIc$8{YKzWS!gm-RzrNF2aeIB&VL5MO04uq9 zPdTikFXd@L<)Pkc2yR#z{U?aOs<}Y<>fi_k*HxHO12#PKsfMTE<7oqU=i#9Tc^l*y{(B=a)b_eyZ z?OS(lml+3C(NxW;J8+h@zfYU%*EbAzL`Uz`NtH(W+l)q}bOQduue3fkj-Sc~<9~<_ zBMWTaiwx_4Uh;dG(Dz{pf*o7?`=fj@iX3AQCPXw4074>HeaObGbR(1Zye>RZ3o`KA zzCg`^a-!e4NJQ2CgP!Io#M}7daImg}m`I?cQU6bV5DGvB$%nS*c&tUb%8FD1Nw`E$ z=@sYiI_RM79WOumLN574OEq6JLN@x$Oy{qN>635SaRG-iJxo;bL;szrhiDzhz!Ko! z!BjaUf(y5W)>uRcQE!J9{Fz8RbyIO^mPr69c6ckUK=5cVy(OPr5~xC zfw{F(t7KmQ^)R#c=P;-RRx<@)qv{{IuIOIB#aK)bT}b-d=S{knDqI|ZZYBy=WCURj zJu-F8+eMB$cTXmk2CxJpRIxM@UuVeu4DL+8eUB^XU8*rkM0n51gT>aYjcOQ+G$+}} zSyi)-FV>NZe(2d$T0PY6z~Kz*S9)2{CrBcy^Mt8tmv|!I936~(024!+>4?Wb#}Xzn zYU_A~U{973O8aM9{%oXIrn*{-de4{o&%+%@F&3+R@cQFnZZ(xuiCR=_F7$!1pRbWY zEm!YTB1JvSCE>k&7N^&Q_T2(^Q4)Os=>;%bxfF%xg)uo8pNL~&%!GjFu zyeOOC&~Db|;mP}1T9u+i9)7V8pukGyE}wnY#q`mFE%4UfbA4)_K_}-8B2Z!>u0`-2 zmB1?*0h0+xV9!91(nu2#s;%WG%*n2IPkqp^S#B0Q%BVTjBO5OkAGM=)=ek3feT>U0 zu2iQ=W5m0p*>TH&qKy)DF^x8kw@dNMO>(L0H$bh5))+6BKmuCAu9oMtG>5s ziuhgWtymq^-%NHvVsb%dFY=NbLGK{BH&-Ox&aUY69T{Nln$i}4~mpT81{`)f` zD`{0j>BNUB6@|GQn?4u*m^Z->#uqh+at$`}zUBV27HcZddc*++n>>Tg2@)@cYxtooxx9Nqoi;$lvj?_N9}wjUp95i{rlOz{G+#xEx-PoYO;p^Zd>1Wz#N^7 z`6F~rUjx+p7e7|`S6hp15a=r7`I}n|=Ae>bK zekRDEK{l?isJ*aNz^lz$!_QxWQSO@$!Dkh9@9;IAX+ENlIF>RR7S;K^qD^~mp8w|B zTj;ngIGCY{=ix_d{0vqhbbK6jOj3p!V8jO##3C1apLz-qiave96aydALj;Nd3V2*% zA^{1BI{iVi=Q2g>tx&Dp;cWL@b-8c9c%~!&Dxma37+}6)l%%AD1vkghg;vPWn}XW~ z2K`gf9wilwU4pO9n@T@t+aR+_jPghH_B4gtD4oc?&=~A1=-vn z|0B6`Wc~yE3M{di<4(zs0doVr9{hoyFr>$d6?`o8fb;vP|( zq^8(etw5*i>-UVWb}2MJ{KsS^X~7L15c1c@NuSf(ook(yiXH0RLzFsE?vjg$pa})s z3gq6js;s{Aje)ZPPyufMcSVs48U3fT3 zjM1O#>JZ#rU#g%yL?97@UPH@Z&031CbE@oDDhBVnZKjGv8YYLWcLHO+JDJ6A|7>Ie ziYMxte9z{$O;z{f-*aNr3wV zR-73ybs^R(Xd422DRcmV8)vFX7xH<;dU~aFwEs#%GtvqWWeEn227x#MscUO{8)=Yr zF8CHyaxgyr_|WKrhHEf_7W2-s+Utj=de+xtH?SOl7b7Dj932&fD$CC_j{3>WL`Z(L zJ+u!@bogdrTwB!W7Pu~e7De*pP2u7XXiHoMFO-z04=n;c1{Wxfo|kVb?p5|eRg*`d zX7}4W>Sw@TjhN>lh?ta|yhjnzH}T6h1=Xlc!=Ul}<&i@|b&$~ch(-y|$0bG{wNG5# zlb$P54=`&=C;f)7d81gnv>}pYYWk}{3~}|q+ea9uD0U*~#B>Y}Mj&V;aWi=O@!K_& zVzF5-H(hSF@l|Kbtf(k|3_acrK723=J7SKg9+on0IDl4OcMCs?xk0H`@ z3Bdwhf*nBUL#PYq5i-1r6-bAxocB*%4{z@=sh1aei9i9_4jwOL!WKP5ETCVMiCFEd zj{;xdrP}JRv!_UB<=tsSTXNOyJbC3C_zl$l5QzxUl33!Z{%%XpsVEHb_lX zwAz9U8P2sg@&fF9e(;MBJTj69fhVy(X+T-k%O@@q!Ap_JTd{t4<&0crUbBMe;|t>JE~eBPvEAxwFGI0u#_7zd z3MVNv(ajIp)Vd@eDcLt_lk+fjY<5e{j%mK%qo@tTK8olCq~}NYh>>Ak;HUAWmW0$3 zaC{<*(5>NPCawB`)J@UD)+2hjQ|aEzYO-|n^#0JGWpmv%g9PETZwcJMXy|Ku8nhU8 z;+c}$JwxK;kGDqIygc+xe@q=9@IR87h6-07`r43Ch;85~TDA7ntO7g?n z2jA@w1ouucWI;^ORnPwbml531>{+lAIQhc~|0XDOK}YD833F*P`+(KwCdYzyu}0&IK|N=ioohT69a|-?{7jm~={3Roj~iEM@;S#`SOodb{5Kr+ z$VM!w+dGM_7_yTBwebmjdifWo1&<2#zm;9SQCf;Wk)MZ5)P-T5fMi1h_YcCXhCet# zGf#Mr@ouG(ulCkOn@6OfAuq?A-a6e6LrSNF(AB>!#?!7PuW~!g?CJif-E$*8Yc243 zL2kb9^Xo>k#_z#1l$KrBKfVu9suvRf3|~Buf`N_%)yKBmqnytx^SXUPMXOg6$#|@x z<6#8osoM|)h@bzET;tt8YUx80CH%^`xu#N_;q`t}yT_W5Qg71x9(Vuf*z_zrn&4Vu zUu(Lry(Lwp02V3m+n=rUyum7+%e!*=u@u#qQ!TO~%)=|@T<0#k2=>|*SQCgB2Kuca zUcJ;*gE^;gOLhMUGa;MTrOc>}9-WP$_$nBRM#QQu7=hXb?8Scg{u#8Ym|>V{P=iP} zccUPlZC?k5q&4;hcY9v2jB}h-PfKGel`<3i3rPpoM`+{T57M?2-mj_2O8GB!rb^d1 zuH$$|>+R&5nDdWYr3b3Qb%b_VsDZ{FiOGN`8Yq_!BsE?$QJv=l4DtnRKZ|gAg_6_# zV8Us*;6*6F06qM6<(m6`AF_t`7&ofKlS^95Bn~E)CLa<<6(lxZUi}(W;&*y7Zbg;q zYo9&C`Kw~BC+>q08#@P_*zZ!{Y_0~J7$hO_5Sp|(Oh7~MU1>M#zrZJqf)a(!bKYOr zq2S6*xFJBB8~iVLh*cA)#egh;G=$S^`3io-m+f)vF5|<-btw}xnR)AE!4~gmY!~y0 zuOp8nWmdlU<5_V|N=iC=%}YP3go6%}pFn~w)U7A0(LSXjx_W;DPWozWOiW}#Ak1@5 zgp|7a)XW#oN+mJ%?Tb3Ksm1Uz_gcwY=1h?&5;MxsUdB8Zyd z^IkHtC$&>GtitE3VZ3Fu^DY%<;-IlT#J4;^wcYmMf&Jp{_NTzgxcPf#J+V_Z@Tot5 zBMC4DOC1YWg`DMeaDy{sAT97?=EriKEc<6jK$P^pnP^h)jR%G0Ah zHb$b#-fRhUehY+JsD@4wpU$c9<#-aMv(@e3l_j}CyKxZ4?u#64Ypug@UKmz~7@1E$ z1I^SoO7mg(CzT8}>6MV;-P)d<0v3fdAKsG=zM#`I#Ej@%EQzsjJu~?U^dKl1#7t^we_?5Xy4JbDfrOl!bJPK)@3X>WqZ|#IHFl6 z3c(Chs9l3hz$Bog><66B{Sz`d|}@Ee}po`z8j06^NF@MLLOy zg^pO)`EqbOKg(f%=zIxDmFMU8;});;vn~RH#0dQ!w$DH259t1s6F=kTuA8EB=({L1 zKO$WiFNmfiMYcszf4IERZ&Pl|>8O$J&s0$=^gM)I5}-NonVSHn0*EFMK!{u0hUwcE z=O@J_-2}pfie4!JhTFB}%j;{w(qpSXZ5RUu`$gyUUwJ=A86K5<7`)?@3Z3+=Zl>Z* zAmr>oX@p=fm19-zou90+)m?lExJ<{V>G`~^tK}IgZFkT-DR50L^OXn=ndR`YjQdci za=!ziJaA1&i-@=}N=CGe2RPF;9CvoDOE0?7BWhI+RfVf1R+rJUcrJ zQ+j$FDR|%d-XuM9X>fSP*JfTZ z7+B%moN;}ZF=5+NE3{;B$A z7~K}ZI!SwGOmAy4f|Gd2tIA&xU(0Op9E+ycW2=oAyr$RQf|i7U2}rrrF}6gd@wC5j zcTQwny3;Qz9ft<_C1k`40*M47lM%?1ZFY}y=l!*;&h(#DtLm!Aj*G78VkNA5c`tZ4 zExL~Q=uV}rZ{0`}qRZ1Q@C^U*oQ0XgXN0mb$VB_LLvCkM8l{nufzfK2Pdq~u7s8}V z2R9_2BO^4a9)8rpy5F1B^r?jVF|B-$HD*Ioj)z5>TI`>@9*}?s7yM(GeF$gxBS&8J z*pojxXh~C>`u#$oK#|!h$T)1g!XCYe$+J!WGWQg@)Kd1Dj7|ib zGQ12(JC(I0-4vb|`yeM@tCpH$GF0ix;o$nGP)hf;*YoGskOc)W33V;49e^yv{pYcB zy+#uXXZdV8k!fEkXhXVp!&!yR(flYTP4?w?p2z|6hLFCokeLn753lo{DaX?Es;Au` zOG-(B*o}w5A2|#~oFD3DC6&YT3Dfmo+mFg-+wBEk9xWPS+BMU|qLGF1 zr=a#vdY=4k{*ipMxp(CTmL5_3Rw=A9G9rL1$Q3|@XBsx6VU*U` zFb!$45crV&8p}NS?VjP+em3?iYJZZFNYA^Rz-rMl zY!YCYsUTNA3NwA6X5Ji>X8jJ~W%%=7K{ZUBqvLxs^mBAn(_!Vy$F2`UF#j^mY*=?h zP1)T|X%$8p3N`*xVVX03Cxtx)0xk^hKs<(!l82Ck7PFtNRB(vV+KE<;Bq?Lgxojda z5p(SsX3U~f?9#cVoBG8B|7puZhLH+f*5Kq|->j^>9{e_$G@qIiadNOvJ%L=V*DN1n zG*+_Qi!c++`+;$1FRVGY#yE3T8P!6qgon1*FRAQ1%y*!T{lIshTgSN>LsmPyYbqL4 zMnl!f5ZDaHZphS-!_W*<$fzG49mUrcUb)pU$Mt0FLt00`o0wGPy$J(_jOx6e?rIqi zTD?CB;)As!huIq6-RC6|9G1;j%S72#=?&yun)zLX{Uc;^csASmnB2?hqHYuMAAa$o z;3qFEPc2q!4?sV&*fCGlOv1v-)?Y-oXS~eOdyObN2cv0m%2`q~&tj3dP+?4aAe*p! zoWQu>I}qIJ&|b{j(zUkrWu%k?=9ctx=jM$tS}_mP&~}=bnhwHBhak@p*aQRr%Hrnn z%>8`i#>p;4%9!;k`)`o`_rG}MPf+>vSdF^cJ^Leq3QvbG_iJ*maLzon`a>b3lR&=+ zi?9;ri?F?U;KRmQ$2ws+Sj(xdWu|^&K|pq`+h^8>hmbz-9Z;~8vt`nt5>qKu|2}L& z2V$iW#uxyi!TA<38rMNcYmQY*hUKeTW$6IHrU&`xa;Y4o6F>R8tw;Y;}fvd(G zm>R*;oPD!-zQPqP^^Bky@1$t3NXlGbP3sPi8y~U{PR4n0kpzl<;JMYzuM;Y5^gBUW`%8Fh;ra;4FXj?; zT!#}bxO<4hhL6xb!1IImu}dQe!D(WvA+X@Ye9W^I^22=1-t<0+>^tUfMX1FJ_iJ7S&!_;OEGkj|M}Ocgsphy zWf6_;+{D>N#7(m27oWC&X#5=VSgbo#$unIY^l^Usz2!IL5kA&SzBP2i684{+@8?vM z8NVrGPIu?rxt?^S=W!zPICF+>5fl4C=n|QN1lJ%y!u>+N@mvw&qoodPGu6Hd6%T1t ze9I@P7s|2Gtgw`4y00x#Cd$9}ALPQ_ZmpK0sSWYE<3?PArbYPlIi7vn-W%8ZqU#(L zu8UTD{Ru|5c5{_K;JJ;oHfeq^yM$aq;I?B{sfi4}fVP+neC7&-zH@r7=R`}cbre$9 zs{WQ(;c2+~V&_;+qF2VaZ-(~|=7eNpL1oD)tM|31u0!b;Ou1RgLWGLj=1e}$v}x55 zq;$W7Ur;X;*iwi{9g)TxQm8+Ko&RLA00& zFV4E5{0?h!qgC%b^)?fB=Fhh?O}9=#k@-=Q2Ww=ul)4x5e#)=o$nY=KTjT;oRj1rV z=+X7$us4NoO}cHs?L-@)VaN-f`6Oy>B{@AhmcY1R<`vKGj=$aQG@QUosH(cdhsx(R zJ6hc3Idxd4OOehK`WlXtRIj}(V8mE7DUi(~?@t%OM(5L6UBOJT@ru8HBZq25c`Ek6 zO{JqxNAZI+a^9R0KA*Pj?%Tlz@|(MXSR zZ~`w^N+q9tPN%oRndtmtw6n<_W!T$Bn<*+b;5n~uQR&s7e$7VFT{4b9cs?MV{?wKK zorYI3-M~bO?CXk8!shX;r1zdaO@^T7HUtd@Ky$3ne5j_j=vc3=JMs8#cNJw{SOCGd zXv*BDZY25L{fV`O;y%AI4HkT(|6oiB)v{2G+gCYYEPtK0c)wM4FniXrQU28ZiAUkD znXQe7IFCqi;&w1~i5TN+9qw<-!nrUTpv2)QbMYV!t}mP=;gsdIFFM+l*8iX(He_%) zBV%R|Hz(NS2zzuX#1tPNwaA5}a_FZ<3-@m~PIJ#l+pxGkE!QftHaPZPStg{Q*H3#9 zUX-~r=H*p-v}#ITNDhbA7t~rm3MIakuNuqp`in0rBQj5#cs5T0o&*2r(Xwd!nO%aG zBq=kQg5O=o`FEQqXJF-6cHjdL^mDjl%j(E^cgobdX>wDwM1GyGuh>AIe6iSeg+*ub z&1}lJ5To?K)v@20{-rHS#m@`aZ>~qTAC*aF{-WM-Rk>rW!zVRFe0^ZP?Q-tOc1Hl4 z9{!@wODs+1{PFYE6;JG1ZZ)Rqu4G@h%5$FW|4-!t@-)}2_Wu0^y z>ecW>_F5koCv#fgpR`;?Ck{uA8ci1i8c#*F3jQ^3&7+IEO49WSSciti0 z_xDY*XmO)i`AKSLsR)4+RsvKeVlXBFZsXtqsK1;4GK(H7Cw6^y*_PsshWRe@3AS!z z!g7ul>erwA+Dgu&&9`jk{^27ZFSBJcnSE~_$SH%?7ArXRrAwhm87jP$` z%b9fvR#lU_cF}wKe$71PDm7)gh#>kJ@u+vUS!!?BfQf>@Fyq)gr%)^+f$$jPWsZ{a z3Z~3eANt3>`+X{eS(mDV>Jp^?0DTA-5&a7C|k# zc_(p}_u9{Ifv>`Pq`n!S^a^6gKMeNjzV+*1#0a1X;esev!S{yKIblR*+}D`*C&hu!bz`-Gwm@&LSIlE!Cmt%ogUJupYKT#2%m<+m3Q~6 zs=&|N!m@fVJv~sE4MldEME77uIN-6i52n00A%+P(E2O%tAtmpt66=sq<{c6}A=q2Q zd9Iq50T+bW)?QKg$oeKb>v4()NJJ!h3C8jUD`*%icLjoG)1Ec|hV~!?xBJl0Uc#VR z4(Q&|6&289K?W2|?3Kt5xwMt1A#?th`9in0%@WnKrPk4{ZZRKpV;TzE-L0((bfZbDs#!T-PHZKb6D`>a~l8il+Lp@+Hr%wxlJUQ_J|(~m#xu#EQdb(KTrgFmWo>wp z_?2(3JeG+XFZlrL=#d|3|zc zk_MRysm|D8!T>S@A;oQ-7lBQ{H?)-eMPo(dPf~rjWx(A-TFM+FJ&LM&&&!;Np}YFS zLX$r)aB*+retCUD78`5bRPK&m8|-zRE;K3BGFmg(H#+(%(9Yw>(DC6VfLzvae1N65 zUMoCTwvHS}gK};5pT=`afnbkt>EZI=0`k6M;!$k9P>y(NQV9I}tF4RsfA_QKt5_b3 zGRkrFY74dCefX6Bqt7RLF;$3tQ)B?o-D&ZOW{gFVjw?b1v3}{L^qxa` znBkOg9?^fWrZHigf#=;o)^WJRxc$5?&}_JEXV}0K?4ltcNg%*uX!GQ0R_5nPyV5G2 zyyvZ1XI3P=OTwi_er$eS;8E%D#*4(y{-U^l<=SaEgVxV`wme?mdhD7|JMS*pD>Dz( zu^rp$z2ayW(!|D#2aN3g>yg#0`jcLPF_7dz%~p=-X266NP^utMtlr>W z1M-Ae>p4^P%Jzb1(Qhe(z0P)650dZ5!=j_xK!nKy_C4?sM6#6PJ;I*sv^;|0<{vO# zk>VuOp-q!K%e;z(t6OhsWb6nT|2Aa>KoJ2W#pNW|kN_p1_9Q zb-e4A$ib~$_a+$9NH)j2=Ewkb;9SV+3~~njqU=qJB#Zi8onOx%%fe z(xwkgcMdl@{Z#A}tZpWwv?5|o)Bi*=j#C5~=>z!(;Aw0^kGBB({=6=GJg{Kt{or)Av`3IBa~x}3F*ejMHFK_PK6n{ za}F|R#*1w%I6mO$T%)8o^A{Ap`1CsOzY+JAVO4HnyQm3DiBbXrqS7HL4U$TCm$V=u zB_Saa(kR^^9n#%ON_Ur%(w!3fdDq(C{=R+o-sha_{5ijLEn&_v#~kk%&$ypEEN`rf zFFEfsa|e;i29*O6k%%oC>cz!6RA1*5bejTgWK*&tx^xp`1fOW6e!|Pg!}8yww=vSB;{W$j;>$qchR++;3nNGlLT=c*qo!NlHr2gVrdX)A}PQhKoTO7Be8VKub%Wz~ROv zDrfj;uv$saFu=w}x+A^?i=3<rptUEmt6(s(zHm^^^@NV=8i3 zXLj6vrQ@VMA$fXkWknpSM5E57g1_$2B~8oBG|YtWPu%mWo}t2tmfMD!%0LIj`(*1bnv(VO%DqL#Tz5xs;6K(mKi`OWL9;}vZ&x; z6ibzKm>pD-fD!2oVZRUH{4oSoP>b_O%vdM0`H8u}3ch9X{mq%OSo8=%2(qt8zJ=xM z!g%-~>`>~Fc3h9$xui%w-^*8d)pn#DgglvZwh~&tjSux0$zarbQfp*9?*d^yuLIoW zi~4bj4;Gs-A`gZ*YABQtPfU7-Mf94qO6-K@f$OT{L=S|kRYEql`t9;pM2|F#j`f#~ z7^hz9s~nkOSm0CF;ZN1I>w(7?_$QLMySoD~sHmK=zDeaq9$({EcbvlZpD8t?cbcc= ztzYtSxBV7ZLgDMin4RC-U2lB4&x|XocOG%j#lsy!1m@{>;~_r-P)%o!jEIg_sRk`? z@8B+IEBb;|Gx~fF!ryGP#PU>F;fuTi`s*>sXVwd+^#1^Nsh!4A)G_D^+2xUbu**xt z%uKlt&&QXYl{5Yf!lu}$h=-`)O0)x*GqMbjz;!uuPc0RnV1_|AlgmW5+Izu+1ur<= z$OI9>pcT(kYVD_!pL?gLv(u#YL7>G4i( zRtI~{U&C(xW2wBr-rrWt@x&g_ghSGUQ0#+9`}Q**;VnE0eH2}3^60nUZz;Vi)(vD$ z>H0S0W(zKlAxx1NLIsj%>8-Ab-f_U=#an=~veyG6Z_K#S{$NihxI zJQ?xA6+0AfvO8J^0KR)GDfip`J+weF7ACj&fyP0=6uZs)M~6%nmuwQ*+A-MUiP5Z|O#A9M z7*H_8_M&@*$VFy;)?|G)G&BV97W#*Rf-Qq6dwctqnVCc|g##Bb4QfCKz^ z$i{dH>IcNRz-Hkm@95I0C>gz8j zR6bnum93HpsW6uNs)vId-$mql`Jbl*x_mvG!am)uBv?{VASGGf1E&2qwW2wXHiRbv zF{34y2}w**x{&WJC{H>Y5UvWozwtZ{J=Bvds)XFahwL`8q4~qMwAA;B15)<9weKT( z6%fdEOFpeb%5&%|&jTiaptWftPi(D)abx^RFcqSH^H-y*^1W$1*^||(psq^_EfsgM z-=OQEN?2YDFIT&?B}rE@CBk%1z|j08lvhGsCMo}DBb3LWT>ACvEcx<1&U;H};t&pe z*b59>S*;755MgKM)5pCGV5d!uYrw^K%l9&f(!}QF2wkVz+07ivF_!hvH1~V>u(r||OFEXc6qnV75 zF79tWSszeb!7sc!OQ`FaCz)6wuQVeoSm7C6=74|NMW509ZhmCvp&9QHuf?Z&e^FBY z%fP&>Qc3y8{|;Vns*n=q9V{OVFXJO34w@HPS+{0ljNiP`e8oP!mo``rI)|G&!s721 zG#)r@{8?8RtZBYc1(!Bx!ZslW?9kTlgu^!^J>95iUHqriVDY(ULlx;(p!*ql;`{Nt zHKYOp7o}!*)1Y(VbJlS-znA?+KE{|Tp$dmsXt^jXYa}NjyAvm6ER;$0B{&n5xc96K ztu!epDtgo=gyJo=zmhw4n{{_Nl)Y8vl5jg%Lg+F&?jijUEwli*Y?US^C!w1`2&7gq zFjbNl=`B zlz^7+C*2Ro2-M(7ehKqCx=TQvyY=l?SGWF;;JQCga*XiOu3e-Fl5vS72#|A&= zAlS)pz)Mdiv(w%&6bd?{OD%8>YNVCL4Yif`3siRnw{H>wOpE6=w24>tv*v|c27=EV ze-Q!XK9z8_Q9&4*ok;s}47Ca<@;YuOMsT3Efl03uL?0km=l0`S(_vpnlWUvn%T+%t z$KL6hzROg;dQo@rbnuQ;TidUmtUb(^{*}$PO>J^D1_Xpt8ool0V07Re^btlE78~1v z_!>`DS_gM-04wT{L)l5Q@%!@9X2(u25=%t6AhsXlu5Byw#5H4Tl}6eT^8-`3fI>h}JZmYLh? zvlIK-m&Y}qB>lIy-(sL#htFXIEel6y=M+Yv>oY`(&Jy^O0#ibUwKyI{?_cwD5!Yxg z#?N~=3G6Gf@m5GHc|B9hwX(8ew?6g-obHjl>4CvP^_q7KkY$UK3@DRSB5&1moln%f zlf7+BClw`?lbS`==C(P`1Y2t}yQ@I1dIcdh7+D4c6;%gV)D2$`TQM4=k1)7Z39JTZZ0#LXew1n zI!|-J0-=kaH!e@LVpl@q4Lz1lTb%@Zb^XaRtb9w^nGe`0&*5_A0q_S7E^af-+ZdP{ zfw7pHy1M*Vp_{;}MMA&|OIRE3xLA*FEJ)3$+4|4x?MSUDc*`?%wrjgiVR8UXcn$z0 zm-BORrtKrdIiu91P{yIu1qp-}0_w8K@=+U3DWIk8WL@ zLi!xZqig-I*%0kG5)}lM6he5wab@(e&?OPgRUCX`f7`wxK6ql3H&beYus)0s)kN;u zw5K2yU23Oq`tl?zjc&siXr>5Fy#N4SESVZjfV8r;HZLlR>{rL=^)-cw_N8_@d|Ojf z(?Bu-(gc|{Xyya$_!E>iO#Xtuk8>W!b4Gtu9AMy9=Je|AO8P!f>P`%!PpcCTt%-ZO3jN_0WqRJC&noQ^G!9SDCkM*+|Ne2Eay4>$P43SP zA7nu>L#Fp{9An|>AA6l|%bin+?1g2aHK#~P1loQl;2NB)m-PB?T={;*R9xNs?`vX? zxeaOuTb{fZ%FX#}vKfqP*=c5qG4`+Vc`pBc5@eQ^OQ;h}kF+oqu%VB9W;30Mz4RPD z%n7zNRZvkw{G5Um%bxS7;d9{zeV$q|9UyXm*HmYkco;&l0aSs0M3C_jr_Y8i*^2_@ z*OAp;6SG}n8;Zk2Mtl*uw^d`H&Tg-;WL{OcURt4VdbG-ER=%b*7xIR@%g+n$imx4h zGEiPPqoBS)cO#n)jIHm!J*4gF4*%*jFTouW31!uHsgC=FBPdUkd`YHMbPe+^i z*Wu{ZF}_QHotnY zx!-WehAM3EKj0YcVp##`?*ktM9M%vztjqQfR6uZ|fdylGZjLe8z~_;|-p6ai%-(Q* zB}mptG3r3cGIM$Vz7p}(w zA+M$O&`6Q_Lx^mk_!kru1n07w|9!)T%XBIomhI|GqWs&VriwdkGbO5Diz_-LnbbQ~k;cHK4Y+4zqMB>_;a3ElUA6|or>n>{~``NN!>xVv!4Lux|{k1k-& zNzmO5(Y)90v=SrdE;wJ#&(9mIhN4N0tq`xD{eB{mvAJnFyd@x_n2`eC)FV&*hr&r7 zg3QS((|pE?W!be3+kA)G<1KWT!ybh^Y@5?b8LlWPDxGh+g>VUAfgC6GX|@OI*!vUT zUU4~B(5@b)g_rk7vRAjEjf}LCzxLzyV!!Gm=Bz!tWfE-i>m60#NQCEhVi{3{Xn$fO z?SjlLx~Ja^UyNau#t^EZO!ko%Ubi@(DE>3_XkUH@11sN0tRTI!ri4Z_vp!oAU+8`e zeBKYzCaF%#M-N@J%uj5!zz86+<`iUCKR{^*exH~C!=%EWu#tREYc?sgpTV-Envi2Q z!(nJ0Y0KZ!hgBj1ozCBb3?*4M!-+G@q~Na$4VuO}tX;QXDzs^lDPn~@q>CMW7L7HW zPT?%}?LxlS9_q=2zeW%hi>jZy!g{rGH5l-aH_ucXHZa(6lOW!*U|s~qy&iC>j86#I zigwn^v@A5(p;01KXOmSI45HZUcZ>pXUl!Mf%8R0*C%togAS>ds0cTjDAVVnp`eN$3 z{MSc?+P2Pt(Y_hJM@(qsi8}2UBljpKfHtM0>*^0xZtZL;cLCdN>YXN5==U+b{q-Ce z2Z*sMB$`MRk=#%#;CTBdv*|`cS2G`D_=qy&FZTBgv_VcT^!YP?uXp!U^J6b;W(s*< z^=3^s_`@J5WTD06GbASj41bFF^I~0= zVZn@v5YviYitiN#6|J3lLT8B;dR#poC7g624V@Z6{yeC?`hQL?IYe)f`;*isr(O5(d(;o##V{*K7^7gD)okn?y@@1v~I++AX!+#GVp z?hCvK!kL6OdU6KYy_&Ld={iB)g3gOx)ICqS{O*xcvv@G)%6y4UHyH2pDb3cJ7@~-o zf}#Nd3qc2t7|4O|4RR2M>JN@{yHi>FjVJ|Aye#2}H8?sGLG~p(6cPdNZ_jg?f#XSo zZ}#n5z}A&sp<6IN(NI$B25X!2=n`bjZTu{F%JE}#xM#>HW(uL+L6ZhSaKLMddc-03 z!ht?iTj1tbaoJ4K4x5~(+8>=~Hu`?)?kBrxoY9>(a(9%O>-^2h3#eqAX^z#MtkS4LCeLWMcXZwWpqmNgDtXN`RTo zZP>ZRRmbdQDrDQZl4!qh`hEW6$e3_p({M`fY;&h;a*w~RS2bHI!4`r>1;|#Ylb)7_IB6qd zRDk>d0AYp7mv;ZB{W}JM5K(6$hA{V()sQ3uy^KudBhgKRr5`blQ*wI}Z;j}c(MV=u zWm;CVl1S0lVd7)MNs7qz z2C-!#9hZSj{NQI4?+b^Z9PO)du!7?ZiJ*pSo z8%Jl2@?fbcJ!jDeOaiym_ae&iPc!CJGieiArM}NB{$RcN9Qu36=y>K@(dS8<#hj}6)Nk&ccs!V));ka z*F#xf^Uc|tIs7>rGtfv^G0-!jfNkX7%f@)7_b>8WnKz>bvy=-Dhbh@G>|l~9A?oEP z@W`WCO|X#5TW=y?2IESMsKrEAy8t6jdiF;_gYF*@JUjimDQ*Q4Y1PB8j(Q0Sr6j+K z?sDfa{=J62bwx2M-iq5ZnBs?|n#(EbgjiG)MJx z*KN!pLiY0ZSNUXO=)X$RwABXr>uQk*xW&T;0|=lb`0o3+gln1bpT-L7MaX|MGZ8TE zQ^Wb1E!{keB6t32x%*+P>K%^B!JN^seB^UCHa*?xSX_PkIHtAkZ-3g+6*l}`W(F@u z-jxsnV;W}d&Rl_{h55WF$1-IuH`4wr5mYWw`D1`SOyL#@&h_#9uGMNcsPsp0h1d;UcJPuJd#OfvsEKVjSAK<>_uWEaAO zq7%^jp%`}!<;hm3C!G3#HOwom9oh~zC;y5W=KwI^WU`v!{r1hj4XC}Bm1oaGw1Sn) zdOoQcSRPrlrnfQw-8K*Q+MI8B!(LPy`@HO(1#tIpRh|JCPxh9c7*s_iyOVymjLmsp zoG4%+z1k}dK%y~JfN}`ww*%S57GhXvm2(VNLjzksr&CBMQpk3SndR`?D2m9JbLc;1 zz0;j$SL!3UOly$M(zlaGsPuZQ87cI;KF1s58Iud=E>F*TMi=w@Cfd71udyoEx-*k;3&C5)&`QYbetCPATt5cpWlZx zbOcw9WX#Vxh;c%*GjpYkyc5)*GIV1aOMmqu`%mgTp>sWVnsLAJKP)dDpZ>c-yg0B! zznrw+p~P|L^9)G9YX~tF!%UjvA$QRM$FF`cpatd{Sj7Vo1IpR#?^9I~equ)7KYucE zJs^p)#L(U%|7U@+E6NB|$k{=n{H2Gzb*b9TFL|2L9;m1WGX8ElT2A6ippLlwc2MKgg9C8E{PMMpmT+n7b#`6$!6;KC*|2fOk0LM)da z3yPZ@QomDHme_%O6wx`yXYG^1ZcI=Hb#~73H3~rR!Q$^ZEIf zup1}cI}Ddg#n=N^by(GnSqnI#xYe+#>G|G9$K`Ol*s}pE09}JX1pz?Xc zgqRr`#6}!3*;i4PL5t7_gYY9TeZYwjA@WiCH>Ni+uj|_04JhRqsw@0Ro6z}-+kni& zj6I#hVrhts++j;&SS@wLWG=ViWt~pM&I*6e(4xS@XMB<4pNwty8_xHuG_D7{@f&j7 z4nMOJ^M5eQ%`Wt&NjNn*X1F)=+q(&}Y<$XGSJI5`cH){ezaxer$fv~KS| zX)k~VhJlu)#8mRW3?7{;EG#Tz4ekN}p1nduH;0yOg~@6c+D=zpZSJx67NlrpGu2+6 z;sj;72Y2S?(aYCV<5%r00G{JwbB1$KTj@cNuiCVtfOc{4W?-d^qsaChvpq-z^ko|3 zsoDNR#TSw)D_m#gnPt z%u@h3iC<37n9q+pU@Imvb8VR$aPi{~vHu5*%${Qi>2B~J}9o`Ev1 z*)PY1(9FX~AmzyowRY5j{wcK6tReNa{`^oAOr3!$hvubY@@s5%l=EDcGyn88(F5H; z)f1`O5%U*{+{=SGqRMLe_Z5$1DRxisP;~QyZCGO{>rngB9NdRur#{Kw74rQk$5PMW z-9G+bRXs)2gu1=}DwdiJBiSer?JTh|AsekU1F1flg|_22=Ta21uuBMMJ2h$cY;5Ca zPp~3dUHE-AF}ZffcY3o(wEbs(xN+7@4xXIHII7ae8cc(xL}2d(7tdHaPo=*qgMe5@ zl+Svck-bhnH{ggS2W}!tw0Q8eeABE5hKu@dFyUP-4wPZ0jz8!4_?Wmr-|CBmCywr~ zufgA!JJ(qP)FMZ&-SHoaH)Invx30pfegdhLJ(9iz;4)wJfRIeA_9k$ zw*dG@$_ssE@26ma3jM`FfJ*C6mWaW!*$C!QWH$lhU0&sLrI*(h%cyqv&R93u&9~2t ziB}bXQ~p#Jf!0gzbhrNXq44}jr)TsvW&S^*wOdtJg>VzijN;W`FT}6fuLk)L{U6mh z_&;b>#f?B!M_3&ID+3X;HHc2bbDAh1h1%;uklx1M7vjEBX}^c9Xx`h=xOo!)s$2T3 zezS_rf~W+mTYoqBc4>{AkJt$SCAY9hjsR{! z)M$ubJ=Fe)t!oJX=}&|pO*HF6{oXV)A5d#|KI{eGIP?-F7WdW zCN4}xv>O^fce2Y_QVy1GNwRH@%lbUHD}<|#aGXO*Z^RV4cCUvA*{hqiBn_8~ z(bHN@6lV8mW!~VwTFYo#URzNsBh_Es-IanO$ot!T$$XOhkq=ef$FsMGZ<9MwOSW_5 z+7aNh*#N4$#-CVZ{9Pa>cqt=e3`TVjTGoV!#&oQHHAgbZSYo!N1~MGXM>YnBRSs9A z?=Lr`&}#P&Q7oyOJJYk?=~-wV_S`=&K#46BF?;vt`I=yp(a*c&Uh1ELrhXR=tUyrP z92^({esKIZZnO)<=`LAVM~@LfCCL||jaXXV$RNRpFA_0df~@a1+@SBKy0TGSAHel# z=@*Gbd*_dc!eXWVm1*_x+{r$q?h#2uhJ4F%wq6?e!Jt|&hD1zg7~|DcDdTwxZO>3+ zS=?&rAC6t_h;Q9qy!TCVW&317n|?Bo$==T?GDq6zqUglDy7Wup@8P$%#L1HdEx79s zQQpY_+$VdBd{-18$KKaaP1o)ZNFE;_zXhuZ2eyu>Y`(BfG!c6NBrK7n39c|4Bd} z4+%kq8}uN=8-sJRHht6gh9JTAO55YF?5gd~UJQdhAK8zN9++#tk>tf1 z*4Z7!z7RX#Zy%1h&?S`j(>ur7D;=HUs(H!19L@fDabX_}J(y`kdID|TR2pMpRl_v1 z@d`>WIx0)~dL0_Gsf)0M@!X=L0R`g`T>6Q6t=JxFzk+?wM*tFX(&@NUrlGD zOovJe{u%arc;%l|2{NC&y>CLDqz3_lQ24dN8qsd{=2_Qpx(loO-P6-oe>ZM~KGjZD zGN79hxWJ5Xz*LNirUDVjGeZXSkf&)gn6j}qPJU~3d|@Q(0(s-flr^0fcF1D@-+2ej z%4&~h-aml*1OR!15RD9VvfTtd->1vtkYCeZj#aGF#ZT1k&8`Hfv_E_$VzEA>hB5-B zA*(C`P1Xr-S+6!c-mlX*-~9ZTglE9HkBL67dpTGWX67COS0lm301_`ihJwp}|BII0 ziAv4i;_F)PJklyLVjI-33WO!ASQi~0bQu0VpAn&-2)xPaG+oo^fE4*IDS3`um5)YL z%(&}#;)?BwqpR7-y_gUjoc9M*sffRTwT%rD@eQ2XA()v6kX$a5zm+k^YMLJP(0P0& z9(O{tquNL_J#?+&j+^kJX77;El6cOuh>#H1uB8C?fycGnSW#g#lUa-#FM=Y-UwC1+ zL;@<8h{%;Wsr&d~ z=2de2rYLTFv~8Z>YClqtbw(Uh-DUoN)K>6r@U~Yvefkl#g~c`S?UIgdedm!`8M2t{7#cBu~Dxu4V1f#YWPLnJ1C_9ljtk%)XiBJZOgcr7`aQ`W*makBFe0&#O zL9Gy2fL1!~QG%gz3ovm?ow2?(G`2pKnP0H%{6HAA?a%vCZA*uG=XW>>{)f(GRDZ+I z*MI(}0zyMxo`1+6LtBhonG#+*04|>QR=`mdA-;pNS|KFTf-NF!zw*<;FOA`>dom@F zs=kFbWWL_oJ-!uMYQ)pCIIvA5aL@jeshpS9JvlnsYXIqXpyX{^0< zdruf{WwNSZ8Q}y(3fzmGE3f^+_cn^PSbhePV|mJa`#mC_TN8`zdc~N_28cGL9T#jSVgvEw|oYF zm_Yv7j}XWvrD2TBFJk|2%$t{6RNN?(kBnXp89j0g0r1ZUY&cn97$U7T(AM|EU9H8F zW9)JgZ~Xzo3VRi4Vj_{Hlv~&W$>p2|bHqTw9l>d9eB2+2xu9cSds?uZX)ExBlt6ZQ za@e}kFeF_WKls9}GUwvZyvCv3x=t z0m8(qFC5T`Fo~ss(QH$@nP;{)Qu+7T`hTxHxJ@p>3%3Kc{8?qBED!dhRKv7N0$)OmG3sZm!~4YyY3xl zHObP>4Ay!~<%N9-hczxScsGI|+82~HQ6D~B0h0sccY=)1SYlXt9v^QFG1#f21gmYN zyVMN~nQwHuXIfc1x7pWr@(daXX~$3H`DxZhPX^%YttEQ*CJ(3uk6~Dfre@M|(Q)xK zbG82YgRhJwEpl(OzK4yJBebJi06BDI@e$rY0g8WG;&x+nbe%Y7x<*ApeY_T0w?l{hb&eMiOlY;GLow1*Q- z5i5_%ejnHu&U<1+QFJ-{D9V62zEdv@!jOlSWdn?Jh~NucDZVqM#dvClqUW;@q=!S(gPjMTVdtTrpaE_B`GBY)DH8s!!R*ctW`2;X!WBGDrt* zprVFBKNB%5;I_-kmZVbxD+#bt>nk>r1Qt^Z6zy_xrXjsC33o&8*i6+0Z~jr8q&XVJ zSm!M}-nVPg9}}Zi&VK9PB`PF#4LX7gQ2`CVa7+ca*6OqL2e)%oB3n~W=XF!dy*S~B zdVX)Is}HL6TX*h2VEuJy);2aF%KER9rKULGJHHJ5cErLOsf+<@&Za@}hMQT(VDaeI zSbvrn3+eUhudDS}zOAEIR!_BoDfdyQ&>YF55}OHd0x8z?{?S ziB_32)so&;G}nkWlAtR&evA0j=R{BeWs!I&LwxJPG2$t|?KB#>7uRPd6Cbepv0A++ z1+BM_5O899xUP=eH4)-t3BM~`+`bUZbCvPY_pYhE#-%5!*Lo|;CkB_C&R&M)BlNYb zx6_-JzLMQ3HiKepo5LXr7ao+^lDEhus_)?~fda7w>LyOuDZmV{RBYk4;_+-(W?%OP1d`e_aZ z$*@LwvV3oSWyB7{kh2%I5O0=6Ceas`#JjJa343Z${{U24O zsve^cy|CxnC6uCTk^qBM&Qa0>k<5w47Wfk){w(|Zb`S}LSkwSkN&#bnt6s5T`#nZT ze+5(!Y@@K_id!iFeE*richA*%zU^8 zIi?7LQc~Xi?P2>fL;S)aanA3SbOMT`K zHe8isNJgvd*ieGRq{||WvZj0Pyr@7$Jycew&SFE;sgTi6A`P0zvOvj_}SuRz-O&hyVTCXif>ct-oL;O`h#f(5=D!+5Uy`XbDXsfR^E;Mz5*WtA2%Q&6)&hdB3+D* z?AwM-qC4A4(lqsDP0TPeyT4hKTgGa-^8KO6EKCihGj~T@w7#z_yKkR-Y5zixsngN( zt0CLAJBXm*?<*q<$vV=fas{2}W85#dim`=ojVNfl_;SIc$oP^M>goqk^0~tpq`cAK zmKgf^^LJp2^#!#etRtrwq3g~CxRaowZ3q9TW6!C4(BcJSWt?4k9;uBRX#-T4WwqE}v7S;+$A zYpb1)h%yDpcpbL^vLXdCGt9FwWDZNkJqv#=jH z!}nmHB6~k-D)!STg;GX@m@wF3-cf6U{fYIKc*-3fBh+ftEZhz@>Bfws$zCm6M+MFR zPkh_$b%CLpCBcxFPuJtMU$gxYHRC(tjeM4oG^>0IDE-LT;N7o*4)i8Hy^U2hG^cor zW#sV*2~WnB4fOTV%xBx%+cEAleSkqTgAehH^IG1u$tY%{G&8OW4*z7nFKJXJ^7%3} ziNp$c1vWh)+OqPv_uRDGxXudg=%>-$=QJ*YaBJsfmU&8yTUPP);IJ^a7Qb? z@|jVez5u4~^>Jnz9%%>0NH%|L>lL>)H5>7*Pex}3VmD4_uG=Rd*iOCEOh$18`?|#9x>c#02J1uBB z;U#%6+k$O%bLXhR5>M#?I$rDBWfeBd^v(|wm_^UcFD9rS@qH9X;lRds_BmCZUb(mC z?V3FhzBP>1YsM~^_j@i~^27oyEFdU|VW7>QMtpKXYJ$RKfU%0zc+$(qhscNrP#(q* zXs#5ymv=O+P=lA%ug&C&)^a!mUAk3vp2)89Vcfp$^a`yA$vms8wx*PK2j*(_zxoAp zP_0<+U}aY5Qtc}625&wqU03zX>8>p*?QwlO`>DbjxdAY!eF#E5=5;5|C0G_}`obxo zM_X*WJS02(jNC!!`1kse7N_+GpHT^UuAVRj4Fl)i=>W|#dWnj{7woTy!?QIX z+Uo|^{Jdk*u-viJ#8#={k99lIQTdzHp!{`e%}fvVUIVy>J#x6WwEO2G=E1Jb>i!I; zjT09Ioxcxsh6u1kY~QKgpxKEzR&_`fovl7rvT1j~mf&%V&#IUa68CGXP<{}+!PA7U z`>}i8>a!!!@_f(U`O4NUfY(k{`CdmU5zU&hzdmh!ewH&DiVcN*OFZΠ8|sPbUD4 zooeQskc=#eWJ${2*5hZ*P_xv>i=c(Gi<&_TW%EDc3CL->B;ZTu%vU6E_I!PG_SJIU zSE;r*wZl_vqF^rsLt!+Pv+N{Z{H5<TxF55z zZ^0Z`BA@w^)6HW-&r<2SZbWWt`mPq_1l{tJn2D-P5h|8nS3Hn_;DgTM0}s+mq_j}(&xy+3RM zO`GBsFp-EEFme6@GX6dQiBTh=*bzMZhB&Xb4eYMGf8Sg(XtYvg z_r!;lry$IcE`bG4`ww?H{?%bJfoT;TLs7B2d`>JY%O7d9pI(Q!)~r(t)UAn=nUU2x zfxh)`Yu5!g-ONNq$B7ROBOLS=yu3N14qY-PyrBjlgBk#K%3mHo{%&^vx#EC&@ZNE~ z90&yb#X%sJ><3I4)CN!oJRZ!DMpBVM{#o*FLj(V*4#sn^HHhYQvhk?J+A)N#)5jyR zd$m-dfw&BdtC1;9g{zK{-G5Dc+r%g86Nm>*l8gH8jvZ2#=hX-wiNdTo%fdCE2eoJJ z8?W1aVm#WE68*RI%B!ZG_;B81L}W2lfS=?GW0}h3--Ngimzh*6EVbRv4^;oH#_z#+ z-W$e%h`0!3!Kgm0cfFCbhZW8qM^ z%R&&;do@sevqt_us|;iuv7Kz`c>M->^7m%jHPt576*4^q$|jEW*Iw7Q&$AY2KQDa!%~;(!kF#!SSenC;jL83cZzAE zOg70J<7;ZyowiI%hH{ITqK`1JU@r*FMeZvyo_N^U-$6#CUitQ`d^y!Flo9#5$Tq9= zl2?WljsRUhTI2}mn6%S$ia1_Qnu_K_EvxhYwrpiv=w|SUwtVq)QP+1|Af!2t`SWKF z#fj{Q!Zy< zbZ#e{36C6gBFq&|i>Hp&!~NrK*abz?6}W$`!2SbHMa@Rd)_g16qhSR&_GrH1axbmk?rza1YEj*?7TODfLmT`5G3xL$6VU+En2qiK?Wpn#>)(RupZ-SjEF zh0Ps3w}Z92PW#O`YkP0xde@g#@PuyZX#sHD{^x*OVKA(3&Hgo;EI%$8tb=499)`cl zDN_8IlPuIImg&>g?=dG~rWX?4TE5VwIvKGr55?rnP?w|qajn2n@?ubJM;Fii3ej0+ zYrPW9l&kC8qr)2F5#BoMo!!=KB~vzhS%)K=$r;a+lVcht-V6tsybOziAF^exb8C@GtMDP6I+ z8TMEDinC{8bZPW@9A-Y14~`R0U}f~n0n0YMxNE_t_?+qLbMcmNW`AAv#b*9;3tPHcMyZQ^vsvWJUE&be9HO?N8jo(8>3afs{xz(N z)vtcP`lM(oD-m(f*4>Fp@YG5R=C9P@q25Jin)z(-8-_O$stq31lT>n6Z|hO6x)CYI zRkTinoX8b}=z(YMP2w;^=^Ml0$QxTqGEng+jKxuQ|S~z2klNYU-yw&zO;> zcVMoL*UdJ)WpmLM8OE$!%H5|x6kdUTKWm*~bjjvmb+d1-un6^m+9*d3_ z2Yz-$e2FC{J#sZNBvoQCo_`v`-p0$Z5o$Ccx?*|H`&LQ*@a5cFaSD&?5Pfi%YkjtC z`O5ZX#X~ud=R?WXZLQrmRSQ@gBX56)XNXb9=1THEy9CYgQR7 z{|?sta3{U<#;;ZNrAt{qXUAj}fl2Hq)yIx0fJqP4{e7EjBE3SZmsQR1vDy>utTYE3 zo)`=O%)h>rkrv70b$U?tzPg@|q+wUN(6(nbA?M_a^ZNaMD``P-*&hYkv{=IrlD8Uu zsnsj#)LdF!uSeNEhgj zSCZLjzbYQgfgP)P5Iot?yvu^{%+~zxvpnUuRxh&`{bmu!fjN3!%3*bv&j`(wO6FI8 zA6m%nsGR*J+G;I*rZSvb(G*qH8n|c?8s4gTOS~ta73Y;}ZqknWW=H5EcK5d*L}DfUJTFu zTt%_`0B?Qr-6vHC;guY*=_r^R`LPAITxvGb`e0sxQ_=FLJI~|X?g@_=ZR!Y{cueHn zi!47_;ml!&e;1oHQ8C1o52N~Gy~&#%H~9V_~paZD7*R4JSN@s4vK z=-K?%9udaTZ)BvWXC&HknmA;+Wis?IYQOg#c;I`qiV45^bi|HHotGVm%oQwQ3z(~vZ`It?R8it_~B=LQ^4Mn`q{l_ zmQR+>?-bem);>pc6M{^)UNIwBTrj}1Lk%=a8Rk+7tT>E18aHH}Wjj(A0P8Kni&+>Ao zsWQ9~MKBCUWuP~a0#4L@zuU)lg9o&N$wsN zuT0N~#q<_+@lQ8B6e1A89y|jq@C^5ib>x)qfs5wpHJh@Bh>& z$LrOKD(UG33MroSKW`_GbV?{w?_+%a;-Sx!tZ;cr%{39n;pg@Smc8s;{|LdIqsLi9 zSf0zv?f-nvIdbF~?X0x(bF1awQ?zNHz73iY`Tt;-W6*kHgH>I{v@R6nqKI0+&yA3L2ivzs*v_+S;Wm+|Ik@ zI_ml2CXNa{vSuuhcWZ}tgWo}^BVWFWdsFF`{OK)xX;k4%r&p$mm7)L6ylO34`ZGUvb}x!iNyq0o@Bc^$~nBSF3p$ z)^L-Bjf`~v%P(;bnN3x*-yFtqo>D@yoR0O-z>fZe~j^!&G6@Lna;m zy!WhbmT{^P844?cL6#|M^F}v(d3db&ZXeu3utd zVzN(^3kwU&XDf+K>R3Or2xB#kn);vM2i~)UlWm6_W>}!IxOeaFd~X12IMZ06e?~%Z z_pTu1X9reGb9EyVa_b){8#2mh=7#d#s+sBwg@{=c8$3}nhNy(HTs}sfqd=q5m zjHQ62g#3*VXsrL2VgHXGX@%bLKl4Ap`hWbH{}(Uw|HqGX4L~lZBX~DK*5*~1@+>7< zXrfrI7E2)jGvX2m-j{P*TOp9EtfQk-dps8aj^{%|i!o9F143|o3UDkykc|S-6<{QY zsLsLeN;r2owz~O|0Vp2f1%bi&BKQHbJr^b3{rl0=_;)TxGo*v=J7$oUC6T%pU0b7^hkuae^8zrpAt6&ROx z8xs+rg1-w<65uUE$nU}l+!!MWZ_FB|_`5X;;2!gv5&D0jO?G=O(T^o1tT>cXjte{A zzke4hNY4TjMZn)nfHct&^%OA(hH%p-V7~~E#XVBe;H0Fa>`r<+`_&;mNFe3nuK-R2 z5|Re)7HG!H{@BK^!6R8hO)VPMJ_|@6ZpuMOf$>C&{|AuUYeRxc@8giI$qHEr7FUAg z*@(bE3>+n64d*(Y_O33M1?xPOT)6a$T@7!zyqLTZfk&dQt}X!&Sa@p?F&(%fD_mIw zNqPojXBxDY!l8Gp7$v{p0*qv|WJIG59u)5vobpuOe9ZCB@9L6jnV!}zDlC+P@NzUm zGK#;wa(dV*uS^ypZ_K1W~SMY$7mWwgX9tJ7cH&Umm#>S7J zgSd)KM5HlhghxZ>c1(^0l7QS=D78Pj`hmPidS)iLGd=(;wGEW^HoPkI^b2XT=kO)H z1V<+z7d8zJmOMWs*OOW3{9nw#9{<(&00_g<8%_Au!Mq>_;BtWVL*n9y!8U&ZS%2#~01kM)I>jjfO~i00x^-tba65 zBViE+&H}rOohN@%Ly*u(Y3B`7`PWhZt+(qAit6mwfFUTDkSK~3G)7$@f`CDhW}{i? zMUkcmhz5a0Kv-%N$z6d3g(w{%h;*p}%L*2Xv=tF>m#Q>TV5P3Q!rtd-=KJQ}{B`f# zxtYm~gNx_vIq&;>f8{Aa$iZ#I5FkaM0tk~$0#*d#aNl1+KdcHZd)fjo8o@QH?bD|+U9K3p=~rOllw4+RW>CDkwya{iy1I2?S(ydo z3g4(^k!6xW6(T|9j8bPA7o?qGgPv{-2z7GbK_OjJ z1x$j|&)ajgGhFe4$<_ss@;VF+n;&gm79~QxeK`!S#J)HsN2&?_9g$AcoQ_6Jxg%!J z&18~Fjv2ruLZZ|v@5850tKT>mTv3fy;7Y$(TwFYiRXMY86|kL{)926U2v9FyzC8UZ zOjFT9=acT;8pEq3pDyV+LmJ&RP~Rj}m3No#w|`jSwx10gX~ND=VuJ z^UzpJTVHKKtl41oYLSQxQc2VK0>&Kys!qBwR6Oo(Q1d>jZ(v{n>64oa^=+7xpC7VZ zJfnTvm8^slAd!DKKWQ3z5=wA{v=Zit%Y|`5%A$u@P6wLBo~=l#Jzy zl`Cgvijq%YiC~5-bFS3Nm%qT3zSQ&LR6ePsWw1x=BB2V><;Tp%{WFXl@GuW)Yiqo> zc6Yy*W|0$%r8ded)yPSErXt?{ZjM@AT@9a*m>kQ3kvb|-<|(f1)%|Af)40MgAR01$j71kas&QPUjZ_)NE5b&E zjfHxF=?|iGn-Z%$lfu*58Cd?blABqNdmdBSik<^Cg2G1F-btfgqQA?qhx6|DnFwTH zm#gO6VK60Z1e=Q)9yvUlv_YBwd4?uLVj>{7S6%UsUcc$kZ8p@5=9yTeO&)7Ou^D)H zSx`?;&mQ_Fp~mq~*A}~iA%(wnsHLu2zF|)kB6PyUnsdSd%@8K}F&Ldyb+3p!?{g=h zhV%%WzCE5J%OM>jzWldJI8F&bUWIx%!_VGsBsG<`7V3)v#p|yz*G!mHkR1hZx|6N> zeS;t*FfD%DEcb`Q9it2WAEYaSj!R_!m!aR};;UbwJ9TRz^km}N9M?(V3S5fNGA3mC zilxq_rPAWS+a2I@=6{uBvgL6OhObflsoslF*TF|G0Tw}mAtUR%sFTm?n;B|WM^4ib z1y=`Sey3TKY>~4SeRK+ig1(|-Zjo4MAuSHZg^QnO410Qdio&#H^@zN+k}F7PzSe&q zZHykMZl}y-c$*4RZ2U>(=4uQ7G(01=uh(M8u_ru((-#mCT*axn;}5#Fk9jiq9c3j+9@pw@+nVQFSOi z0%5X0A|pot8-q6WEvRcj(KyRIXZ4bAmlI+-P8~Pwo4F<)4!LE7iJGK>?GPXsL?0iz z!|LklZ=Pp}K@+EvW%KD&vjc%zA#fv5Eh++uz09pY669CpH;#Zq5Pkr6OC@(XRHq<8 ztHV(3?2EfU{(8Q1msJwYK{Lhn(YPb@;`oW}FAj^-yM9e-4=riBso)GiqfSoCi|`JW z=kluek04P%;uqp^O?k7!gPY{jt@Y7`>^m4Ys~SW&=Z6P0!?LCDHQUsel?ebFKPRpk_dw9hHdlhzO!dZdz0k5hOy{l7Cf;S#H#Ys_Wk$Uah`M~fOXlJ zHVOF9vkZ|)yd!@pIw~*`5Vo~6-t@1k;Olp(Q0A5q{1$U00Z=uYFd!kNKn@c^H+|f* z-lMAgMj0{2B&w0G1w~IBrJLxwWPjC*T2Zcc_civo^a-bjzYDXroTo`^^^M;-;b-;l z5$M-vq2}qfKGx*r<=ab(y%Coo8ClFnV%&uMI+$+LDlYy)4e|`SWgZZgjon`0)-l~D3G5Rt_m(U*H zfVB4PTN707U)(DG@pV5wLlK112$?=K3I6=$!~tNM5d$B!wM7HURD`2`Ll?tmYARWS zGF`GzpC>ITSq}*ws7tDY@dOo_ofmrcfSi-W@CV@nY!QM~00qDS4u^2ZLy8pG=_DY< zNZqTho`|LR3RN7ar#ONMDOzBOoC-YQd5Xc<6_nc$Nr#V6Gy+Ll$2nlPQr%3(!9Hv>ttRZOUhYtqrsljEW_Q-_5g%#q)rW{ZzvPd@E=q2-xG$ zXBEtNR6j;FHH8|DNI%BM$B7dGkjkSenn}1_|B~POP*TPqer(Sm4>PdK>E4n=Y`R_$38!Kz) zm7*CC4;Y7Y*TCDihml&NcvWaXtH4KXNGG$s5TzSl^X0HG5eT%y$J!KG#V0O@i8J9t z!``W>sm~tQigY>VlYAACDOW%`oj-UfZ_prC}9m>8-IeZeAr z0^Y!ucYTx#NWTnw7E#}jZG!L;s09TDLL{&TsIjr;^PadNb7Xa~I7(zd?iWo3r%MJP zI#$yzw?6B(v5U-})p)Z_eIqDz@{w(x;TWd3ozdz76n3ke+>wts*;lElsR zxDspP^_w?$d-%VSgAzv1z?DqAgi%~veA>k&Zh?bkCxh3ahtE;tQTX|4u}T z@{;jMP&>Vil%Jn3o(nnh7|gkc%b7eo9vBp>_Te_E#lhiTpKl5e= zZPog^ImkN}8s<4c)p<5_70N~t5s})?P8FW&?%lhGu~TU_d<1TqIyQJFsI_mSRp|VF zg{t?zUyqA(i78uMw{^!ahctV{PU70QNO6(>M>1;NV|WPYl^9j}aFQ1`2jXNG>HO8= zmZyh@G3>h1u|^N!6Hgl(P0)b2v5{yDWFl&iAiZpgc3LKhnuf8w92k`5-b<|j_*A}M zyI}V{!g-@7QzH|a*|zw7$ZMNE_&nV-zR+?@@t}vdw*|IH0fYl&sA(j?(;AV%6yFE3 zHd1$f3e+M;Ek1U-?CuLaMiSb_z`w?T*PyQU*NDWooPdf-lrE^1;`VxFlOdW5aj308 zxbws$jR@Oz-Og&RquQBrJt zCe))@UgFZ4)=;v28YsVc^L`fUk;sWQNFWp5xGnjH#*>T5P`6Dr%eOuu7=s1{UK)kx z>F#bMYnh*mjd=uxJ-&+gIN#&c1;7JX-DBt(lHu7++?}$rDT-Q0?>#P^xh!RV;S~0^ zvq&ohzn$*WAKDwi6(I|4f&D03nOoj10HoQ7Z5IQq@0qaGSO(S%Kl8O(fmNvOBqDTf zIP9$EvXii=B6QOIKfDS%eBc0VGN>!ouFV3}U0+ZFE|5feN6pL2n+8ux4ka;et`R{y z7J-@+j8Si1PD&w3!B#tnw_f?5ZCKk-+`)&F^l!78MmWE>(kCoEKN-Ro&2_SIcHw zp(}m((xneunEmH&uEf4fK=4u{@W#?%xHv9_SVkk6JK`Zap zmAVfwIviyLkU_0#c%U1xE|gB^ZK3sdE7ag<$4T4jwbr3a#pCsp`bqJDUZ4J!sZZHG z=h)y~;FSnAOszW*jCD=OaS8-N_iw{ZG?7M7vo}svNNM;Dm2;{-VcF>G>7@cCFJ9Hj zJ8}Ftp|KUbp}?_;hGW@&=Nbs(!Wu=DS(3;5_~C;Q-P;uuHqVI2&73q^FyG1U%C5Q(^ zby9I59VLUIIhWBN0lqE@*H*6z;@r6Rx&19lIXLxV(OpBV#Q_+v-oM6uZb51PX#s&{ z*7}F`o4qv$o_ELFt^yjI1J^}tqennPTuA*v1ge>lhWR#{DzKMcMAHfV&&cEXZLXZsFOQVy4aKb-1f41hC*I=c)0E)wME~` zifuZ9e2*cGeCMN;!j2sgSWOzw(y_2Z(Qie%RMWdJ2YDjMRHszuz8$W`BM1xAjnpXT zs*m}^S?;hZu}AYC#z~if{wl=(;}iGY`je53jlL{igzqdCWsS&Wwigm!l z0o@A9che4hN~fygjN0-B4Wj)F*Uq}m&OZra9i(@O7RI$}gikis?RcNl)|;=k2X8Q> ztu}}9G(q9?N3uCP&boo4XC;ix(Ohup%HJ5kn-AEuv$nQY@!}gJC1qveXJ}(=#zT4X zELtG%&t~#0XfG1C3?KoK$1@p_C9JvG)*ED2YFWGF( zdyF))&2clc7b{bW@7=3uX_@$sZnBRLbMia?KL__{VcCES^+V{Bj*eBq@B!SAVrXE{ z`asXRhmpT@GVq}tBuwfZXZ-@^(KF0{O0haO*GsFfpEK*FUmZvK0xi|YcX>>GEb?Ib z?y#ZZl1UA2WCg_KMn3q%0|HT$X=^V(xghVgmvFLc@v4Bmhfp2grq8t4=@=@X>kE`_ zxRK9$a@lv$&U(pWX_RT2()kyCFECNZ%kd;W4Ia0$a4%Ygq}ME;i4pJJ@5Hq}M+Nk<8EQHaNRXEWU%7I{`sP^oeFdaA zFgk>~_w367z&WMpc~u~Nk=8|AMb{2nHFk7vviJ5SRDv5)fDFqefbj5&{yc z%XwSf6`tgsD87o3lP6T61}24H+7a^KKM>k_gqwm+ZxC>y0)(Q@O?jI}kF_X~2*wqz z*^K@=dG?JlTCwiCYiwX>0lN(&#MVXRs?OP22SP=U#wiI0<4n5}y+s#qAa;E8#`WtT zP~41l7gEC@yj zEDjA%vJKU(GuslK6Jo-K5-niUzWxf&FqD~2hH+kQcYh2<`wIPV{NQ^G>d5nBjnE{* zL{1lj2x-dTfm4txK+_`xsMaMu6dIy|K1OJ$;+_D4kEb!}OFGjP>NwYhZ6y)>X#I18r8C^}{Q;b(t^;OC2ASyMs!#?DP{e2m z-#DCMqPZ~Jt`2AG?$pPI@%g&O5`$sS9mY5Lu9;3R)G7#)87dU_wdBlm>qe^9A@ zl~*g63zsP~)ej@3lgR~!DVntAqW7(89QAw63+)lHJ5E}hz{}0AKVlnsziRoRq;AeD zk9ObQgoR<-1Sze+&(RZ_V+--OZr#23u5%*Vn{w%s8fwV&lG2?}wOg4M1u+_s)S5w0 zx{Jms+VNLe3+2TrIdMEafR z$T;WADQq)HY(SE^2I`Z6fq{QzWI#Od2zum%s+}qbcisWa*ASULjZ=y+phu%RjU zwzjsyE)q=>LRXV8Z4R@2a~Bl z(felV;$+KEl(e?ve8{60P>i$|VYRkQ4c1T1%*druuaM%AOd0<^hS^bJ_jF@j-JRfU z8P)0Tk*ysVdd~D(sD7tsy#X@_O>d)f#zjwi;g0(S5J52Izn~rdkI^Ro_)h;DSj$Vk Zpvvdh=B*n2D+TbMzP7=k`~&vC|0fJ^;Zpzr literal 0 HcmV?d00001 diff --git a/benchmark/mean_loss_vs_num_monte_carlo_samples.png b/benchmark/mean_loss_vs_num_monte_carlo_samples.png new file mode 100644 index 0000000000000000000000000000000000000000..65ce1d29f3ada9a033a56845df23d5b139dc00e6 GIT binary patch literal 75020 zcmc$_Wmw$H*Ch&pkN^Qfa1Rn(gL^`d5Ih8TcXv-9!6iU&clY2l?(XjH?mE@y{Ab>G zX6}dkDXJFTiKhN=)QF{u(dO>vSejsV`Qa&Yiw_CZO6mJWbwZm zFk0CfG4&@44}ne)tv{>S!N3r=LVsW_haCi9U}0dyg+G3CPTXH`a>sPIZ9W<5j~c_#)FK}cjbT2@e%XHgGU?~} z?_~3YC6WYs#Jmr*E{i2fnsG@tgZ&ksx&>|&MaI}rNPoT-dO5P18$$FQydnK*Oc?PJ z3Hsq*+5dmv+;*aVP+uHO=I^_`*h?yDYi+f*u`y})2SfAUOslDhmCupp)(XRAc}7B# z!UOT6@J`n((rQZHD`{#hYlF@u9+D*y^WJ1MlLwN`hJyTmOlp*kepf+RS-EyfB8D+b zuPfBS_MpuVZ7fedho^ROLo``xW4-p9)PKF~p4L)OQ2g1`ba*r})%YzeJ6>@1!qe4M z#oY*~IN@6Uo{jXo`^|dQlL?KHWV>Thd=KIIcK^cme!i!Xd zLv-JDSvCah8}tn$A;W^79?h!$GOvza(NI~aZD>-UV-5&`-YEDV*p!Q+a7tChU2jbS zQHjl`oB!!Y^3BH)dho2KU5e5_6JIv(pQF491Dj#P4Hk^eC4NC#T2iv8ce7BF0q!&O z8>$h|&sF8ZD`d1o43LpW0t0us$)JNjeH)N!e2S^0gvnVw8|7g4$;P2*>!0oK^8uUP zBmWJnWP4jR>H?n^TO^9a416b@V;w`D4cXI4>V*f&nC9-qwN%RF+Y>PK*D-M7V1~>1 zc;X34nt42U<9jA&y>##M{z3-_3!RtmRpr#M=LuOuNz>wtkt_=?jPczFUqcBbo23l{ zYEDGZ9#(Vl+~XMMs&(#8k;x`Iyruna+52<;{!J%4#OFinAuuNYU@l3@!E z6MVOwJK|-a;SeT~)FX+P?m(~UzU;rt4wh>_t}__6KB+;=%i_O(y7Ta0bF`F_I8i{r ziwT{ZO1QABI=1A<$hy^{Hv?5p*(Y@9s8Gb=I}BPdiJoI4yX;M}J5qxWg)2w{QfugO zy?t!<77`LC-n%M;@#Qi=o3^nz(%%qp>JANA{pWFM9TeVy>EpX*>)qk(ntM4Zp1P;& zJwJVYS65esjE$)ysbn_6hxw7pXQ!vrr8;nSoBb=B30B!2cb9|Lt!-^g*RF0?hZ~P~ zM^t2F&p0_bpFMk4bJ|OHv+RRbs#@gm#!g;4FjR<+knfv$~6k#IxVa1 zmOQRbdZ<$V%%#M}e%93`1IKYA+3j$p4NXv3fk~jN@vv@BSxL-eLEv_qoY?bPr{A!` zPD@S>oq*F)f2}jb{c^^rP`&nzm)8?dt(M+{m8 zeAml93dC2($GNA|c0>GIlF#lg5Befy1jL1f;l)A;S1PA8$r%|#!vr5=zki3(blu4c z3Y8mU+p0=QA%R19wS2YYMa9H)qZAeeY=Ou*Nnz$K@2Rze+niXVYUxw4^P~GT_ za__=IQmx(AGwn*%n z7Z(neTBz!?)m>TgRJMAPZ2wwkBvpVmgK>Okxj`R{e{it=@p4O4Gy$J8vqqggtoBT~ z!A86@!R%<3MADqX#CdIfz1`UWCtRu5lP4+>&p1r@gy7h8*?LE(F4Gv(SLor!5+_qe z21`OtLxcDoom}*rTGhETFr}_Al9Hq0{J%D9qA+##J3`jh)=?Y1jVV$I920KpDB#rm z;%5rGU-J6TQJ^g9xIkC`YmAPJ!?=EZvbJr{v$74@DmLp>{o+}rXTmeS0<*2W( zUpd9(cHjI1?yuESqvf+E7#A0pL>`BHA-*VX!9`>Tu)3yUR8&-2$Lvf|5;@YibJbLw zhA7#pk}oL0#{d1sz=%$tFb)es%J1L5o3~QD1}~)aU;5fL41lXm~c3Ny2?po4gfbeEBy9?NYh z8tBWGdbsKNk%28{6OVWqJyN8`x#g&y>60%a$V8as(bNsbs1|OY4B0!+aWs%X9;{=skgMReS+= zu4UXpxdnAkgQcNTowi;6V&6@64tz6H+F$jK{|OzDs2jm?_U1H8Y%=&v z;Y7sE%?<6N>FMF<6+WAPVIe&6I6gj3HJd7)_q;op2Z4I~VqmLF z+v_VTi4|Y3j9UcF-)ZYRfq)Z!pIRg57j=~<`R9ZpC0%y?#e}qaDFG%q zc$j)HHjA<_o7Y{WEiJ_l1C;~(3Y>C73&1rp!r}t7BrVUKIzO* zp!|_l=oliyL0oVitIMWa=ZaZtrn^hd_fN|APjc*7-znpkpNv^wsNgoJT|%bACL$*9 z&h=w8Lu~K;Kka7zX(ysc@C#e5s25w+98-mkX^+JmH?W?!mgOrQH5lD@kTc_1PwZK< zj$67CaQdJsd2ARcC@D#ji~S}KNCk!l`gI z%rY=E+jz>7-e_=K?=RFBk5K_Yp!mfM;p)MSJ}Aex>}W~v<}{fOcd`tNsfg$Mgki}E zelodOI_|6WVwEu%bSMUriUE&N`Ks_-2@;r3OC8u+fl+76#-CzUJ<0b{*y#NVi#;`W zL6!?hkcImwp;@!N)!G1x$0rxF15(={diH2eu-Y|xFDC!~Mevt~x{`R1=EsCIg&as) zhDV`IO*Pp1o19Oij)m7dTEGcYLd{MJr2BoMW>%bska9SZ2gg6GGruOHCvL8nS&V

>2KmJ%8$*Ob( zCrkZoc{WSN$Fc6ajTnT$e}EB0{L0b?( zq&H>|HEte0BkZjfkYJhP^G4q@sFfNhX}Lk|Lp>DQDyx7T4sX7tq*FXwN=~m?mz0yE z3O3^(_=5mN58`r|$qB-TRQ|(1% zmPbK8RUC(}-`Z$a(7(@+1J7Xa{+M%me*Kw)GPB}Qb|X?UAw8ozD5S%ZgVWj`YL{!k z-2dXrEqLROFNVb^5w#nZDAR2Nh|MpUaxayDPx{YeR=}}Qebq%VrV$|1V{mdQj}=P5 z>)1Y>=JW5PSfG#ka>PtRd12B(6-NX{2Pmu&C}! zWO7c*?C^BxhT?~UlOf`2tuLmILTgpb{mrte!o~SOl`Wy@KMj1L4Ne_dkGHp_!FC7w z^lVVYU4o~n8B#uSaP*M*D_12#a6%`0_Cjl6t+S2oXMv z?6HW1kWx{K{*&^kN2^Mb(0G~mSLxg7h?d`(-hO7Yr0nk4{^s@%BR=32bcI(ZX zH``-5Xfpg4m>|6&r=tt<_I|dyw&nt`*3Lu$4xM6Qu8-5Z-rK%qM_@{4r}=O&&gwSL z^J8KP`2luaEzh*thryqPL*r}qK@(8kut7r$qYdM~nzwTYQ6J{~U@nF##XaIb36og~ zL=+@UBwqI{u&}TV=c5uhM0%E%j8p1%D1K+9Bi z4ArG3W0U|*$sb%WZtz#LWkpH~UQeKM5K9|5Q+Y{dh=yZed}<~SV{>$dT3V8+O@Owx z_FI0}^P1%|fEU{nx$R(ZnYCdEILw;|22j3(^?h%%Dl8g|+X4`^Gr*~}cZc;m(`9QS z9oM&eC3f4xq%fLp2kgnttB6}=q@R45ZP!18<{v+Pgsm_f&|Ro=n9w}ZU9yv4ZxmyG zn7ut-&4(+DYtXvezy}3D4y_hOCu_imT_NCv*BM7_aytT0djr&etV$#o0p1x9Z- zWxv)OM;P7yZWV<0{QCNToJY<6X8?fXv&+n9-oucQljHF@TW4(`pb<;PFlxXkSDDX< zgs_E#guLVBCHQVKmYtR#^@ITu>V;Z}eoq8)V_2@{lVhX$SOvSCVwZg3_6Z?(L}Dz6 zN72w@kVAo9_zNI{@IQaxoBh$r^BL4!`B+%O0k+dRhHzNUE3c?V;ei!CJUoOkpZ&Yz zeMD}0xn9Glzm9X()0q(qG6(@{n6sY9|8!`is!mp8JVI9Iu;*J}&r2B@Af3d+Vlm66 ztEX4MXY};=FnG}2-ECT;b$JbTi;=5wc2S~aiudmAq%#B09Pg(AZEy z3`|UWXEX}{ssMJgNo{7_#I4QEO`d9ge*OZ8%uJs0>FFsW*Wjqzgndfyp@S!xGtE(L zBcXtM&7k7WXBiozqeX~=ZPD)h_&~dnS0Y872hOv}LLDn}dU*KpI}aw2Py7j+qW?Ps z&6pw~BqWrip2NdHi7qKAS@_qNftEHfj@9VB=e;wa`Jh&I)bu0}_9u?DI5)Su)`ATm zIvV}L($Zt^HF}7W)K%U91RTIAMXAcLBDo*v|V`8?ib_6A{ z>t>BL|FLy&aIj1m*fc$oS6APk7w`&uGDI2X~A(=$Zi)YSCx@-ai(!kk}uX zSy#P7LtFbZ6_s^LA3l7Df)g?QI^l-B0Z!~v$xiPTBhm1;sQJqGIUvvW-<0{ED4(9_ zzoC5O(6p+na@8V2Zrk#4}fOPtz5Wu`dL?q?oyZ6?^1@>ZBU*~2qS2Zxh#%DfVirgrZm%mt%I}bu| z0LrfT%A|!dD=Wc2eBWvW=yY|uOs`O7&G<0L-~TNIMZ1fn944hyJUo}_4sak}ci6%2 z)xwShHj`12iK-An?osZXCGY3R`H7|m089-Y06-4tn$+7XdRm;rqmOd|Ys15zHE-w_37gX-dR8k8iA$rR})=d#$Cr&8>l1#g#h^H_1-zVxR?k&Uh6@cwj?S6ZDxBlSMOw%q~SJ{ z%gdF9@BR;qE?yH;KWkLw{rzmp{3#<8*c*TJs9f^rpK~||GzJ%T$yS#YtGO=No zH#9W-l_6c!y2bl>A*ii^m9{(ImIFLVPft(F*jQv~DKj)s{WTfGeXswya!O7iN=D%3 zC!lqhtrq#JEEk~Uz~kd1l*NV;)hBCRQ{w$Zyp9xr6ueq=3lj;#4*&i8`;0jyJ$*1p zPmZ@U!bU+5boClaw@oH3qS+rMO0giAu|1bYa5A2lCjEFyJbh2RuO;dv0b6MAXBny8 z{pt05MHw^$8iA*YR}@2TLXryrrHLptQ>d>Tunefp&-CI*VJ&HDIlF4;ajNJ{%@5(i z8cOacUH2?i8fE%6(YB73wiSXxqJ%Lv4OSuU|6vt$OZ{J8wD9sEK^6k733}`E1le)3}@_uv%(phcV4`Jote@ zaT`%BZcUWG3cJ0~ zysTMYj^HHb0?n^~f|OUCOx_+ddWi!tELHBc8}MRdr}&4P`Ma@X*&KBmN7PKvY5bOX zPRbZQHC;B1j8p?qRD-(9#g-2WLGy3F4#p~u z>U7k(XvC}{9x|_i`39HElN#vq3M*-CZ!705Q{~Dk@TDW`AVC)EQ>0zB#t$Kp7Ee!!GN+gG7p(Sy-baVuQS1nNGJ$W$2Iz!z_j@|Eb4UoK z(*cvQBArZF*t(=6ddib$x~HY{u8hA6DuUq41uD4LDR@J61SxvQQ$Dq3TNko2$W(@$OJ=In-8pZE_wF0vAK#0rum$7*9RF(g7N6u zCSuBhVyd`737=nMZ}nk>`O%v5GYVqsbZPs-=yOW-N4JH{NWoj9-N3v;p1R%nn|!2< zaL8HCVu6+qFDHT3fXSB~!e% zxwDOEjE1V)w@>wur!0;8Vbg01)ZoV#_PDU$H7Y7L+v8P}8aLbVHE}PW<=ZYUd1+cK z7pG|Nz=h@+7eDf<-*C$2$Hst?ce_ExAVy0#;FQMOUVOH;W(GjY!Bc~DH$p8%U>ojP zcSt}B#LG(^g(n$z?pGI}`|biHZ>!JhYmkkIoL=p3^P&3kZ_aDzGuU1t7K*1;{w6a+ zKa47pGPn0j*lfF1TA6zKu=}ygSl_2m3V^DZ3Re^SNwy-*#-GN!m_*+B! z7al^}i=BI`RB=_9Ev>vQ69klAvX&5SB?z76?d&@dtHf=hK_-HS8% zQ2aWzMi|Z|Tfc82@A5Ui6)~=5JCR@N({s3?*b!XTw2XX9j9kYRj`(}lst35f5&CXz zbkg0}yYG+N_xE5uYz_%#M^XTd#N-~alcd#ldBeQoV7yR2O6KHPj{*7W!GxwDhiH$i zKUt?Dsm>E_h32W|5o!BbuqUGu+{_x?aCuoN<1O9!Tmj2p~rUyqpCk7vK3jN zo^clH8HuS8;Iid1x-~Qe&|k6Do=%~o(@(o6M&dn>O1ZyN@5){1Ir>!KuexOC*6Zl5 z?!LV}hOU%k)^YQUZpGky^^n-<>wGhaVg>_fxgBn}XuI#!^|WHQF8M>nzbpM7)IQsulU_PgFWR1Vd%6Jiml;cgdAX zY1LdQF+Xq1S<_hpz&8dQkL(ONj25P*`v{PJ3|E>dA-uwE)_S^Cx;$E1iX}yqGvf0_ z`E+rdJIuFlIDP_%x59Z3-vg@hL85Lc-wvmb^=Z}@Pa4AzdJg3JQO6Oc+@*INh15ts zYG|82EF`7+t8aWO@jB~mj^0#K2P!?eN3}NycfF0MSNymRugpd?38D4*3}SO!ezov1 zFg-pXQ}}DSfFIe@{v8%hxyCx}?E0X3X%OUC$`Ds}0KGugc`_nKGE!}&h0Ua?uBC%G zqWvuceJGrqjtvcNewgV`aS_DXM4^XbjDwE8kwBJk@8uq&IpI`eum|Q`;0}p>K;LxK z$VfH$5Sm+ZEP-APWbfeK`CN?hp7{sWq+rY9K6xmY*aH~ay8pu0dMs&>60i|D2$EX0Nj_S9CfxZQmfzSHp_@y_90q~y{`56OK4XWWU=;|r?l=5s7kYTUr^RCJx8<=zZwP+X(j1Ra zf1a1KVgZ?5uG&S!OGeEGToF0v{jx6Q3PY5VrbiwY78X8$k^o@);qw9wh-gZz4=Sgk zd98prrvYTlKsGU3X|_ksMvDJuchh$(N=b2+@6~ZwS}~{-aCE_mwf**E+9h@zkXARH ze|Lpe$dHt;XJ0?!&a#5sn0Wjy$({E^_kK&b`ecn?%j!M0I-HxA@o#0Y!|L&_;_z30 z3d?S*n;wehAInRIWS&WckO&e(G>2B&{Qh}nqKP@1h})H}xFo$-v-$@=Et1sfEUfCB z1#!pli}YeIu07`3&3T>!5@j_Aoa@V1V%X17K^}c5~A=|%U91H-G*1$gyegTkOP{zkpfrO+pEG1e;g6c{gb7V0C~Wa=5Xj z#(A1@DbFSUr)Qx_pqru3N_%4@YJ(~l8Y#E+g-l5Cztivpw$^ab)6o3>i=oJm_;BRC zC=Xk6m4A6%L*VS;aQ|FG2?&maN2LPfjPyqpo>uS78dur~2^#bKoNudh;*Q(kvG>(J z6swrt|9YKH1K4+e1Z{kFq;pqWB}SiLUO!STnGdnHY@9NZn?#&+Zi*=!lX=wk_L6(~ zMO1ZEeNZrKWxpf{yh^BBwo+u2xko4-61XA-0iSl^2SErswj(j5_og(s~n`cIQMvi#D;X-`C5#UC} zXw=g);a>KHoLwB-+r0cka*rc~?o)}dLS`ArvGIi<4^{AiBcKD@h% zE$Y=(azI_qAB1f<9s5XM6`!LylUxqzxj-w7NNkb~B~M&Ef74bJq9s5C{dSlq8Yg%hVGlt))I?dD zMXl&9 z<8{MM3X{po5k_#ck$+-dRCV+3c@R3bW&fsX>9*_mosw5JQ?dmONb;HJG!C;co&NV+=~@Acs;;rw41zI&DsJU9-5+NMrLx7oFk zB%1Q+8?Aj%Of;8Sl;$mQysp2Qau`Qx!(7K@8?$)hE(quO5N7u-qDs@k#q!v$u+|3U z>Y^@8OXjgRGb=LoW>2!}omC_wMNIDYato5UHn$?3xQw6_kh`J~#J)~%fudHAnLD`q z6ME_LZ}T-!Krw*Q|6(u=RoTgYfbAqn$EeP zP8*>z8%qDpV4Fa(!2HynfUafm%F?H&fxJZd`N~^HOAQb49Yv5*_oK#EH2R@)H`hmxiA^(mmd_stE9_3{TzuLlPtBu4jl$a2Uge%d#Z0Nx=i zs2%=Rvd6qh;Lz#oE4X}fr8NP|qy%S28>i1x&y~=o;+HV=A$*q_N&SXP@&W0M=MR~# zkC!{PBEdZ5k-SodJ(=$s1UEhSLX!E)RuGGCR`3OuuDEZa?`au5Lp3Vo_32uREB9g1 zp%P&fFaJNiDiBqK-$0uizjhSonjnCXnw#sNnMv_Y;T<1eL+c3;&{#G-I4YKC9?VbW z$dGIfrN|5=hg4gdD(pM*UM)D0q`04o*FFHmMnOqgZol*Ouy%_WD)aevF>1U2^Cvu1 z1_R<+-$7Vd7!}Z+K}DY>jkkfIR8=**cMqt_d7CaGP=(^U!UDP`i#ZM`3kc*({k>6i z(0b9k4!U0IK|4wO1FUCLkhRbDz04va;iso`>m9{ycXjzs4}9w9{h^2btb+S1hbsp= zSi5U{RjdwF_^N07B+60UX4;}VZzBqHcBfwRq^hHf$l(&dPh25w=u&V!@CTIGrh>cM-@6PH}7U_~sWGWU` z+JtSfVo~Yuj47E;Tx?&`OcY-Z3+A6cwO=8&0B&k`x6wq(2tb7EVo6~2n%{U|H4XiHH*MNiD0K6;(8JRb^Sm^PrSqVB0&KCXE zs05RSePL~FEmY?E$qyA4T9bVLUrgynj20ym6PlBg6UfDcQv^I{A=039*yf9pQCj*M z=o*thlnLaCwi_>RNmAqB6;`UTD zOP^Zf-#{od8q^k-Y>kNZSNyilSLo`h`x4QH(m%Ast|xu>U|}Dl!|=f?k2sT9u=g@b zg8RISvaq9LTSI-@y@UBy%Z~rY3K2eUgQ(o$Rlf`4#g(Lor*Cxr6n+a(YQZtP8^TmNJve`;kOEpXNmG{?Pm!OpN44HCjY z@ersjSlijbX)ibbkWAzX2NGN8ae(@X!^XSApkf0zP)1D>Uj|2~6R7Z3_&9)^3sk&& zK)H~bnpzvM_)zM8bdT?LI|CCNJAG;ooJ%MLKd7gq<-wlB%M^dgC!D)1+IdJqVM!yU(FCn5 z<|`c?W$EO?6TTy}lB|KIrvvvQ6a1=vN&0{QQIdzan4>TdI+vg zThLH2Qw%(9yzj^}Lpb9=Z-okun1D!J#=cAB?&vE+V+f+l#+ z4EDIn?x{0`pmsOEV0*Tb4oE@^DwMx?&D@`*JT>J0+-iA2vi@+j^g{b=a{$Vs3B@s} zRdGcY0o3ywfQ%#WBfT=^moHzw<>gHPY$bsvG=|SXh+~PsJu^ z1zyyrpQs(#yJ~X#;`lWwqgkce%mfAX-0V=5H{Qml^Sc43xa>ApwA-0UvCZe)L8~47B3=L_TsVp(#b3zD2lhARJkQrTZx}1`b!5>OVbO;l}nPw$lRNi3p++Oky zGHM1h&>@Gdv>|#tc{yu3UGhXbDUe(Mg6Ur4*Cfif65* zIPvSJaSq8ZtE`q5Z%A0Fs9q#Vi}|5qJ@J6OV+%~T-YcqB{OtIim6au7U}G?W-3&X7 z@AR{VpBmkNZa!F_n-vZMhwBg0nSbRON;6BPwBWu6y;D&>2(~aFq#_|9fm~n}=WLLhnj7M|TE0R9LCy?rF2rI?G$*8LVH!9o+tg_FM zH=4}Q?6$6*8-g{3uZ6k7NM_^vnNo?fWi#Iv7uypnpUrkieO-r- zMPI`eesA?h@3r`Jv#AVCIra!kOI9zqAeK*KFRhNYIckmy&Pt~R3w*C1H zQID?9ytJ*S`VUCIv0KMPrQ}mP#~^$eo6h*notA8Rtm{3s;D86D_b?JrM`QC-CRlGK zjVm=B>roOqya!DAuNF*OEGu;@xf){@tSVFo-7FZK8W$ALToi-i+TkkA(&m6$KWAjb z)mUJzsnfN#aWJp1(YAJITVCCrKH3c|Td!%Ez=DiqeS8|Gt-^{l8+@0;4j4cD|{ZJCYQ0W|UF0R*yOO}*Z-(;&H+=~E-AT9xw&^{8V4Gi0{-O0ME8~{bH~Xh1TozeCW&U=%*mX% z^bB#gJ&RLLi&p!K3HIm|qJ=oD`bcG$Yp2`imv)Z^ah^QYLT{9#7m82%j9wg@9gOgq zA;5aO{V5c-ebL{9KnX#H@+l+`MxRg6$^q7}%zqG1|)C z!LMajt@c`W($Kf(Eow5EI^PxCbBiX03!;)3=(d_0z1hxvupQS0l7zreIYg)9jJX5~ z6!F$n{NX$v`!78)`JYO*NAl`;idJMXpC?sw@>p4^*E3@Y77}QrQTowV#;Og~c>+$6Iuw9AYHEfK3&vzvlT;~=|E?2HXC)H0&X^LHlO?SEb zrs93cfg+vao(p1phqq(ESj6_Zt33i-{^EDd60r$_VZ2wN53W9EHPYa(JsTUlt`3Of zQw-sd*xLD`hB5;-eTRs0U{G1?06UuW*Jf>IZRTwj+>6j7grqfz5}u}D1S|;ZIZx@H zxv~NQ_JmNGZklrC*IZR<*@1OBMOz0$TLolp<(`Scb!~E`itwPMRa#qVNcKwBj~>ge zzG9v7nd8biW21_w{R-a3xqatpcE_%Z)t@rxvJ*`~Nf-hmlGBR_N|laL@F+#VN`V-S zyBhGcCg8484ain{-wB_bgu0A$2II*WyXQeQao|41moSa|@&IhEY!mU%pO?>u1h;@r z&j^T4KyfIBPM%{15v8b6h4%lFaeXU;SDA4;ScD|}{mT{@6l6n_r$9?fOUBO+Q9QZ5 zy2SDMAxH7V_;2%EcL-TCK?hyQf6DFl1^aofWue7{kR0m4L}~kWwQzoE@(+^ZwpC|d_=&MrUdT$_wUzLkM@6| zZW0`Uz1Adq!kz11i+S=?l9U)AdCttt{6jaFuRsUrU@;vXonL~em?CN5GTQewG{4rf zY*Le@M*haeM$qneY^?HOY;`p!xC^LEkA1m6BTw21uu;a?4ww5iGeBY+p}&6pLVx}G z!=}U8h^PA>MZtNA(`4lcGNa`clXM9jF*w7WA)f(rQL6%t1MkJ`((7=Q?O;ZLK1OP} z8tZG^UQgGd93B#58W^paGOzBe1`c)*L4rt#$jMJG(BAUz(c`J8Y?!j%KRlSsRWX1& zS%iF64yXzWI}`Od9aXxQ`%9lJbr`V+yk{&s(^X!+L~Y)-q~K_l8UIBM5J<7e0wA?r5KGWLkz}nK*&*%PsBuI@QgnGIh|rxwBeU%~m~GjSwA5%zx-UIWSQ(4{nj<>Z zv$9_<^8!(cXb&xkaqSTbu?ZX#e5FS+XnDSgge4U4Qpzx~)eBi#3h;>d1qMowq)qK0 zqP`N{${}a1!7Z|)vxiToeXyn}M>l0(j#KeJ&_}vlmwd$?uw6y;aX~iNuu?|>i=KxF z8-iMqfQ*d;X9x*(Pbg}&mx&VRP3mpkN-4T`$)ycUPv5nt&JWDb&&@~0QBpeR;a5z+ zVjGYXm6OAIuB3!BAIxaXLCsi|o}QZT`ppLw5)>HY$D6+(ttrjHQ%|H&k!FgYzu?<5 zfyJ-QNZo8nBU(92Xt2)_oF5pJ{=LJyGWT_dp;*}rA>H*f`+0t#VTB&6+OT=3$Mk`* zBZ`Q8b8*@XySZXW8$VAP4Lem@VD|gtoF(czO!nqtYGnr`4uy_vTIC75IgTXniCQg( zeWn?u!hFo!tUYl2EnBs#GB|+BfvlYq@uD`Mmn>c>s&2=0& zDP;c=YC;{a*OYFOd+_OFjH1Y^to_`o*MC=^SzqO!;BowQJs{^Y9)1gju6kkoovpu+ zS@1&$`Cb2@30%X7$i=dmeEnqy6kQ-Xm7INqN>HHybtFR!0}n4CCx^TCf?7evA|&@%WQrV=``Nc|CS#8_VMckB<*6f&nbH4k~r|%uJgoob%1#4w@B^ zf5-B<*w*SH__V~CFM#SD)|(D)yG>@tePwKVQCa0>F@9VQqOO`*nkJP z7bwp21b4S=yOKRFRV*PFik|l;V#ywk=w1Y->k0>S986lx1%Bk$*JoBRi3@Krmpf?I zn0M{Bma@qdeoY=I*V;ZWM&P$ZfCIl5lauXtaDPU>Rd268+*8`xZqVH4_nB2F}%b4Da=HI|NOp<%Ps*^e(cFwMW*94S6G|1Kq03OgBb z#39m>|HE+Xhk~EsRJfi(OLn@l!?Xo$yn^3CzHUVx#jO2yAmr% zt$23?lOG!rsFBlEJhoEA(>Ui4y5^XaOkep@Y9ejtd>Sh(;)sV$;bJ3D9Xj;Frh(Ws+b6n7J%>j4dN8<)&iYb zM<5pTWc!hL#)4hW8Pw%=yEKntH>aVY2__L-#2cEkYSJhcTt#MTXcl}tL4$$bBrGn@ z#ygtQ@-hI7#NgTE<5iQEY$Aw)PzM6Ei_(+KkhUbJ#U30jcUUe{5(%>>phOn|JR*(NN!1m zrE(hC9p|I%OnTuW_^h;=!OMSLF6%-}xFYqF%EmW?SIR2VwK;uLj&>g@W4Y5CwZOxC zG;&etX{eDte`1=EV;06ZP$A09I>!CGpZCV8wfgBr5Dn(kjzlw6e_Uq#+1d2TL>H!^ z!Q{1MT^R1bFt6da>lr6-kNUCja1lZf)Db*j-l_WSXJw85PW0{zz`#94 zvPLrtnmS(5M|hFpWY;Ca&^Z?2YjlD)>w=ku`b^8I6uSW9U7%t#&*4^eI) z5d_tq2SutvyAnHtMsb)PQ;nXGE7>Q*@GqsSkYrjar>@egX)Jz@4j3Ldj`Qii5t+yk z@*N?xKyrsNGurrUI4M70RFN^C>`ydj4te|2rFn|`fhY;4ZNs)gM@TQr*wDc zv#z=C=lQ)~-Y+xEj0~H7?R}o>TKRm0OT~?#w?!m zs_LvaZUSzsRdJ2C%AX`0#L98bZ*5B%S4r{9g?=Nuw+uw zA|YOw+~5#Pq4}LoXeIn`+~7ITqEjY=7u`g(aL^XKC+Y^~|I)Jx;yCH(zP1JuBDP4tMZl48>ETOdW#yIfag8Gun@{ue zx+@NA0^WqFhgzJ|nboeE;i`0M8uuuA^S62H)yT+E zo~LVeeC_ti0{5!g=eCCr@9{b&!%OqF4@E3uePcu2B00mD)Omy1Mpt+BBKbza*`mf_ z3#86u$yeu(uDma7p0p%{mK(B`D5JWh1q^G{c!=zok~S>fL*JsJn+i-h*7{PuBc3ZO zV^_Uj768`mVWAdiPAWMw!LO5&lJYk65tgq>;Uv7P454RdXHjuJDHMkkKHCY|yW!A$ z*wJ$LzgQD1_qbt>Hx!fmYjUBG%|~`cBiRfCt%+Edqjkll;;+}vKOncB zo#7EK>OJeotW5bd|M`+#J7n~>zyBhIuyoV7WF8-WLgAgjWLhqDWV0+ce;#j>_SUSH z)d^g}P|8&e_o9v3BEuS4w>RllrJtvjzVuvT4tu7cj1}Yk?l(PDR0+7tMo6IZjN!Mu z!l(4g2exv^(W$TUmR~Wo`V1c<4?WW8CzR~|^pRz(7 zBVQtBz|3t$dpCN%c1LVMqr1lu%Wr!McqT)I1lH6sEVbNX$)mYSw2dr?U$v9Jel< zP{#7Pu3azqOfK5J{gk&Z)VO}SNTD_j$XJ20{Srh7`UVCA;Pzx2aMj?f2Ek@wrV*gqYR46cP-_529vrxq5ynPH()L zXLd~t^sf+|I3hEo`ogh zpXq~&;%zHpoU2>@v+@Ti-=6^*gjMMKH@)$nq+OItPWSvOGIT0TSFsq7KhS)haOG`~ z^eB+>tp1j=ZDq+cQQ>H1w!M|tMbSw7flEo8Y07cgVGZ zJ>QgoR0wgyTL9EVl&;#c1D)!0>=9PJ#@<%OJnr|e(kof+W!c+!7j~&*xhSpV=JXEO z&6^Kj6tpG=Js#sDrY=nv1HP?d{4+XJ}$=a#vUV$cfSFQk>&b!DrY7nE>)(57Ngbe zbd^IRAd^W&$sv1CTf|kk;5)9I0(BlL-SNJ&5=XGhtkO7@6P;PT0zzA1G*)ljAItn-Yso0J*cmsT8AS4V}O z`NiKWDk@6vl(T{5CRj072|47*`yFmmNtqTWr%$xGd@Y!6z`F%wN(v~^l_$Sz9&3TG zu=m<)E(_aqI0qlj)0}MyQBg~hs3f*?Vx{3Fv&HkGJL*4f4*9Bn0zxGyR47$vLrI`B z@7kuG>SJh_UhfZ2Sx+=HbaswZgrB@4hWjv^4M#!I2hqvCW7AICk@(D;tczQ%hig!J zi8rEUftPeTuB||uR9M+U>&?gf53;T-pC_C@*qMfDKO&^2$_=ysgTm|aN=E(Uy#}{4 z9WwXy{hYU>AE=D*AGU=kc72^K8Q|r$ifL+DD+J9koghA??Sl82axk6lyzjOEcA1;s6~3ictQ z@4~ls-3&sNN9~lNET*gXULPN)BNP88*qcxf}N`xI&b^ z(+lAWxM$UqP)4k&LQ)`Dt!Fgk`#m<+1h(H$mHF4@MyGO?<~{=zc9H2NGI zyrrdL=e^O*AXWcA!k_$0lhe}-NIK&^8yz$M`8vFp%^*(USs&z;2| z9;qF9B;`HzJdEJ}njfil`lK_x5%FTOHRVC2@EI+qf+LEMocCVc8d{K`pSKtzk{K6& zoc~$KPs?}rvfC>n;=YAuc+F%z>>qjUSC1Ux8DqsFnV(bmhqJOW#nHM+EyGko5&Flg z!BV!Jf#IGG%zKA0hanE_@mSeEX@pcy-;_&@$e9utgv)^#_d>NvXfb|@%3RmS{M1}T7^nWGNKI&dD;Ig z?vZsix0^g~YHW}E4$Ni7r7M)Ct%mrk6%R4?3{CuA?B7Ucws*+7+_P*cD9aS5Q&oL! zsjxQ25;j9vS@N|eCj7V##b|bNKt{gQRR1Yqn1;M*tPPW&cS0Y}LmWafFY_)AdOz2N zHTA2-v6xPaisF@+VYAEacV>pqMJ(&RuW@OjsF_5_Oa)kykds4v)Em4~&A?^Ud2Mi5 zj@L-+xXN|MR{*t1kVWuu0)9z|V#F>Pn(dzy!bF_QCy!H}mv>};pH6%?GQqihjT04#B56_4^pPxN2|dkD2q+Y zcPJ_BvFs+lu!_`_sSpaTwtYw$j$?M|fTQYPLw6OohrQObo6XI+M*V;q$BxfolgM-= z51EwgTI5x)Jux#`?LO#cZFlEhA{>EBYAxxUW|1^f)mhhy@b>$gY<^6k1ehCeqloan{ zRH=Zwg?*(jll9rX6J!(y(ov4!t?bFFjFu{T>$|o+b^;pRa&^ArVtNW${sTib)<=n& z8+Q30L=|^U7reAd?pI^mUV7=%mxnvB`z`8){NC+PrvKf_^Jc;My!rv&wx|xQ(UYz? z{Uey(@1_rfd8-_`Hwe0^wid17Jk_$RzVmzNr1mKjf2fb^NaJWliJ|)-QC@d!RVg;-jQR3(-T@eZJ`v}1_wrO z-`)lDq;*JC}0K2rAFXzptAJ54swvQU~Wh@W9yg=Nj5RXB#{4_!> z?Cs5qb^&LHnm66F7qT4KvuyciMnh~CB!eL%GZu6?pL$$t{|GFru*BgjFFHpESGPIoI>^Z zQ!t&-qBhu5;(8YIR7FOVZyr02dfc5jZWA~&wsEHt=YKCbLpa_@J|&3;rR0#ST`ZNq z#fnev$Ezz(4X5t5q))m2Z!gLQ_4|E0<3Hs}@EU%!I?6rMjK17h3(YzIX-w?;uvGP7 zOh;%$oboiiIt! z{|3z>US#>bX65Idcnefy4!L;k}cto7e^ZvA_ zU~T2GTYUi5QEEWRNhb2)14I&F0EojZ03_jOAvF7n&WZ3aBz$P`l~Yj>x3lAb#e^yC zO>io7iD0XVc0O3Q~bRj-a3a3>sws^%Sy9MRy$CcWmVWzI7uo~R1+M61|9{xATNQcGFbn_t zS3&6N@I9D8V)^V%eAvO7JSRNdjjl`rgRv+^W%duvs9;U*u5~{6E}>4(!opGyo@tX& zo$bjA77(eBAv8-s4imUAYkeAycxpgb*(JqG^>!?;=+vTr(`x8rO785(-~U{bI|MV`o(tAyU7t4v&^ShcE$8WBWj zdb>k9ZvBOy9eRiJD9|zN^&pRf{c+&fwwipFHgi_Bzyd zqzmGQx2k#2Zm*ec?_`a0_GS=-xiR_u6vh=7ihWz&^Cja=$}eM?+{c8?HK=?KXRTP= zK2L857MDzNKI|ii2#anH|0@vkb16J5zCHYx8~Z_D4|DwXeBZ>UT-6QXyLE=GIjdd6 zMnLzfB}r(+-@00Tv>sej-0G&!VLa|b;4xwA3md_uH4`piw1A;=+HODnh+yEZI~Dfa z!=Cqbmxa<25-*h#(i4e05OWMbJ|u8kE`w4M5O|T1k=`&ZfjJ@;8Q-tLjG=?E zAl`UjqLBlFj6G$oL-;61KbU)U~II28xS|H=1$b0tW8O z9bBiw0Ws*~Y6g#10l{^w&XpTpQZ7d20)$(LDEJLj7adaE)4yRd5>(?ljqO&M_xl=M z`tsgTv^Ra_jOB_@iZGwBFm#I;s6S7>FMs~?=z$IUUDbnep=Q_e)SEHen``o??(H7D zvFlUHM#XzAA+Mu%B)^$Bx}*Zfbn~A) zD})^C?At=qt6b}7my!~oqPd#ber5dwgb&0kzLY-qd?FU$r!%ZEz$p5<(kvsi z-R2Uzoowl29-3ZHWSvR;o9l61ICy1PNbn|!O!$*_i-rh&-M;u{uY&W5F9$H;|Tlt3)9F!yD;cLOaMir}Lewomtv$uG?Zo(1F^ z#DBrRohx5VuckP6Wq+r(s;!t$Ouxt$*EF2;@LClL>9Kpks*vyuzy13zP>b(di{50p9gTg`3IcY ziT4UVTUz>Lt$Y|uJF*RZ`~9q4_|MIiQ+okFh?;0-sY zWgJgTer5g#%bMw`=HP69*BNPN@#Mdy2lti^7h*QWik0`d3j?ACW-N!sP0x#jXQx9&e8RB88)zu^N3G+4}2bAKRF;` zI%9mTg(*UjUFAl`9vr;9+3bTy!Sl)V&t(+9Jn6;?LxQ)2Ot)?)?p4=QVc;C9nLotP zDKm8|*(0)?nyQ(w32rjsDs^9yzg8)EP&Xj{*ZuyGo`OQvFkQetbFY77Wax4c|1n-G zBWapx9m+I@$&RR%gv}VkZ`?$!r-Fyl9^(SlgVYZiLz1*hC|V0A3r}+ylmdef-#hn8 z#J`tWZLjI?emSiiVC#>}DtH;9&(a_H6-nk&z~qL1Kj|NtO8xWfHeqr@EXz=> z%)$I%Lf`^gU*LzRt#01Jcy?Nmwuq-Hhqp>JCox;T644^%YtZPiuaUI2nZa^Zabbdh;dExWm(UjdyEN;(xun7a-F>B-9-2p2mpAd<(=_}GS zX_CtEF1`N83YM0zfPD9#JN~w%5l+|>E*KY7nUCqU)$9HM5SPMR+0M?qpFnuz#FT@3 zo%F17M9rpnRP6Z7?hG+Jx>mO3gPn3Rb&2&0jIH>)w z9o+bqHcoB!uGM0we@*e$gp2(5=g9o{G0}`&AxXo2Z6BPB86RaHkfN9!-i5YcbM+aU zjvN22mbzUIyvWi;^pcq?w0H6k+qCL-U61f37utR(4P;g_80IG8K051tUC1%c9}z9) zHI7p#S2)-->;3hGOu=e@4)yp!3alL#_N+dV6{-hAGnG}2QJft! z+h}j>?&-Y#*sc)?2+86gw~xUerv8*N&3F*kEU%XL^LMw0llqO^E8v@sBWqcQ8 z^3bqyWDTG1Cou|9IlO!1yltPZxCfR3bgH#g>qoLXOw#)0-Amr*!13fXH-y+#hEOnH zAo$do$av}BE5`e22W1VJ@2bqT9jV^9Pdl863wnIB#}u0Xdo5_U${j}EcTLj3^@B56 z<&_+s+pX!nJ9e2}_#xK`y~K5Tywnt3G-pQA`33e|L((zQ+jb-)@r}E-oB>EauE!Ba z#~SiV1*nat&8Tjc4cHY)oHDNy)%E|0t9eur*HdLXfA3&wREltOu3BFsT9p_bp()sy zj{k}zhOM1d=vwEwE3=OKD)R+yvY9|zj^Ia9lpriVnnSampnqE|StMRL3?a*_NHP|i zJExA_EafG%Y?E=M9u-F%JFR?5A|@LvS`kEiCiiN}k8=)^iG1^ zuFwV5v(6ts!#_`|TDPx!WLNeUP4kdpXLcYo&kZx~%y94^@K5*i$Z*SLowv^(i3R-W z=H@p|@7%W;9_kzlXFYc&N}M#nebX>Fy4}Vg#!RrNe{j*vGG6DvDU?5H)iQLG>OLEA zK%<3K_fpIX-SRWP(@=gT_MJ(2Q=vOAym2bt@X^+lC-msE+{ASk)~5oT^Uz#vLHOW< zn?)^7U7_XKd(Pm$Q}Z@bRq2!TyerXGrVCqdVeJLuT#8=YvWBOOUfR8Ky8K6OS8ZCG zV|9KWbuJ_0Uk&dQ3VQSZ(zWulEvxkZi23eeOX=^#&iPEiKe6TxK`v2Alru}`B<05i z9@(|aZ-+R_lRM`9DqkyY3yC=V@PYp-z$p~rUpM(cCt^Z=pa?Ys6+|N0VI(-cnU^6l@l>a|_|DtrSmtbkivG*hom z*l<~$tMp1u?X@n_xwBS-8I)}8F`Ht(aptUIGerNSE~!`V0G2?Jf#EzbM}OS7-tWVq zD*9pdr1TTjMT7+1kmHV#33*j(NPPfW;wvY{_7}kk=YG7Abx;{ddAtU(cIEo8OXA2I zIlNcy(|3;SSE^@1;EV$4pFjJ4q<=gT1(Zu}lf24&99RF2BPru*QsS$xtkcK<3u_8y5VYUZUUCxe zk#YvqHDrcuO-F4BDzWCaxGF|BgoWIc{j>PHu$@WUUAS!Q!y%Q{XvQc(5SVyJ-z9Eq ze&NE3w}?2OHPBsa`gHo^W6_IgotvFcX(SniH3O=XD&-CXss}3P6D_wbxkZBS1g0{a zik(N)@~5?(%uyIofw8^gYDpQ-(a}r}mq*Br6#dYHntC~W_xO#p{-RznZ&KkOQ5nAo zoT`OtbX=Udmq0*izML|xv&glw8rXPig48$sD`T0UxRjbLh(E4%vVkLeXw8)Upy#rZ(I57dO#yp?$iSpKg6g(c-yReg?TqTut`kTF0`}6Nbn?R*ifrs{ z$7d)a3)1bfIa!`~=%tjoN6$XHD&2f=%qF{G@d3ASzYaAOwH?exw zlNcK#k>NwvqAzNW7YWqg#s6e1H1F5<`8TL2P<1^Cfrj?*>BAc+AUai7;g$M3G255Ww&Ei!m;~HS)##mi$|T z4{yh7_-~U-+MPtyCv&-0t(kfVNAwb^lSYPJRFkZ}4;>oS=w=WUB_L@a6*rKWG9GEo zL}pF3McSDeiDA?9j{p6FnX(hu!N1HJ8nE|r=SFrKxoeBlkW*MkyDj;rcRNFAm%81~ zZwo0d@Y;{>-N@rFtrRa^So&X_i3wa?R&DQnT;(vzdhWb$!#THP@_4Gj0heb5PmS#A z(Ls;?B7US?1XHvW`TfkrDC%#mz0OC5mfDh|x;zhf^9S{1izioItdRG}lkyraRQYbZ z?&(UD5aP^vt+6NEFRU^NS~ESST|zLDFMrWiDdir*e(g!#rw>hTr7d0&i{hx64?>r- zWz&`A%BE_6=!^%xAi$pmdL(l(EB`vj`wcYo#87yIWOaqc{iZVpT7O|DdmHlIJ}Mlp zIvU?=;M#N`arM+}Y1^r9RMY4VBe6`oDI3*e)w=Xcfe*HZWY>ZF0gh|}5l0Co^Y`BF z7QXFA8s-E7`;ol(4xHJ@?!_A#vgWO*8Lc=D>&lX6{->*0Q>z12+)b*J-%28UA5bs&?Bl~a4GC%$bp5IDS6`sg*U-)s>#MG4W zPk`~-_06`eIK=8SigmrJEu_u(e;O6m(`oKw#2ar$?H_2(-Sa4Gcq3wWDLk8f<@z;I zIP@28`>Mkdo$o9cc4V@r_jJRz9EMXDA~xe^q~)qetV^_mTXTeVf~QX%hCi89q*!f> z%nTbgwVFWwiCKZkbN8MKb(uX2vs*}8YE>~LKS&>K#?~7Gz&c8ksgaHCVgb{!n48{@ zS&V%wGB!9SH_6nc?4Pd(C6>_&<22gqQou+XIhzrvxDjTd#qQrx81l=bOdLySDpzc; z($z(WqnOiDzbfCF;=b<4yv>PbFqu}m&7i#M%~B@mL`nEuNMhBI5AUxv(($nmKWrUa za=23})V^Qfao9Q7`jilOWAZsx_+rU$e43EdF3r(DCyt3&GldU_vtSU`UAN0gxm18Q z^=Dzc5k;F%wIps3`BF(F^#n)q-8(%1p=afEf;(b&Z_ju$?Dvw{R>Rz(Qf&QQ0n>q* zF{J-JSxy|8iQZUm!Cc#{Yg$Zt_Fk;6uF>%ChcDmB;dnmN?k-;vo||9$bBb_i?S|7G z{TeyF-5MSLc74OP^QqVHfVNK z0(sFT1ZbqeAq?=Y(9b|LuRu^FtDu1T39zr21WY;*z=DkvZ)AMT;@z{;T&bM0g&$0Y zjl>n0IDBxdYd8Gd(1jaMky1!7>6R%n^hfS$Us6Ob>SHxE1(Sic#oB6tkIPLkxp|5d zO@lw~<>>5}fwDc*zZ`)+uya3g->#v1Lv;=K_lb+0w6UBdGxedh)!jxxY@&3dx1G}3 z&xc9dpb#{%*9vcy4j-mr^!(cO%KP%sC1g~T>NMT@dvLvu=na8P8{y_NCI)LpOia6Z z#dI6Ml8B#h3`G2-Z5;GVxzMkiFAOFN9%^g#gVT-Pl)IqSkyVhwbaV+eczO~G>#(uV zfB|g2NJq*0@4@Wl!X2f$3p7M?wSar}Wgc8vOM$Pn0t|=@&jdWfW4H{x~&@Q-vqE z9^rBabCp>TeJRk15V7f^8kWW(1Z9-3aG8C0XW5K@(G$`1+IQ{{|cM)yrcj#01~7M`QDplX}dVzkeedClRLlcdvY|&f2{2) zrRU2MA2z7yVxsq|Z)A{(=@|*Oe4+bt_ajhuYt}d{9T!5@ji}sdpXap*gw`M-nkw$+ zhyOt3X8yJR^}7_~qItFszI!Lvcb`e=@n#176wqxD5MN>Zyy{^AUd9{g z+d!3ze|`gqkhQhdD-sLpf?+emiyVW?Vtqtc z7PmJd;36hv^iVnz1A}hBYs(@B_k~@UF8n#u2vXnfQdDzZU4a083?Y)$+HiB_;+c}-#a}sCURmq ztj>m=lGI;mlMww+-?Qb6OmrP9`eY3lUxsK64DqLMBe`g6PoZN|a~pEjzqiaD9UGJ( zr*&u&`#x0@xI1$dd$}lVj8Cjoc#_Bb&V(V`b~&u{Qf$iQgvM>))l{{kw<2DrGQG~a%mVC?t;6u3&- zAot?pH0z1dZH_yW?;p8Z-gon6d{$Zxz#2_;`_^eIi!CjnKSbOdJQ>MjI;^j^Cx8FJ z;$8xQN9#7H@IPGA?#0Y&iHmxa_}`0__z7M&-Y1KH?D8477 z_0C~EUr@*u3L|qVl|8!NWH56@ABQ2|addmzMO)zzHmY%28p_U)$ zc6|H#wu^e{Y54bK$(w@_!Vz@Txse76Ubfr~CLDo!Q*=bR7xer6VJ%<$zlzJ-j+V)M zRmbTi8R_Bs=NpSmH#nm+br{;eFe=Cgv4HMopAY#iFg1t9P@JGE7j$3S+S~oWGaU`w z?|cnjsiD)&(!PFG*h&-xfuaGnneqy9ehhWa+?H0qb=f^YTt9DV` zrWP{e_g>64*5ijbi-ta3IvOorT26hgD7dd$I$0dwW8~nP-jk{N@uBKTD=q2tHSG^g zSF83eOPs&;`@etv;7#yasSng;6@LzS41Y_}5(w(R=$oghe)Y4`p(at=!x|*>ckUQ} zE&9DgbHU-}8A^p*yYByAHPWf~oiDcax7fwpn!5e-BWSPK9j<*1&6V-d1Ei%q2;gh& zH+F>z-`#$(zL#dEUG+`G)2tclEEhsTK5e$3>ro9EkWvI--W}U-sn}F0BfYP!U66Rh zk%)fZ^x+i}@?C(EpPdmRKHKE%iU+5wY5(2BqdbZHP%y4AbaT?Z&R6XTX`*~{zw#fI z(UUT9+GB$v^I_|P$^yX;;U2@$)8W1Pw9nwUs%t*eDeigkg}6{Ypxnb;Wg! zTlxzQ`pwy0Ms)7{%!>{-((z;T<F?RbN=Jxr^C{ggH>3_hMT%@d_V3PLUO@t|g`5Ce*ZLa?b_ z_kyU}c&FA|P?%!4g>9ba=yU)GBdQJw!GaBW8Scr*ucuE~GnBBo>Fw?RTWlK~g3v}b zjIWXjck6#FpCLhf&fi3|vtSYmiaszv^&zCm|HfeaW(0m3NG40sZt#F8s-#)Zn>xzo zhdpuAA-c?VLHE$cN{Oz&qc3RrhFuRQPrfiC;LlyzYF$nJ*sVD&YeM8q6hn;uq9MgY zF&Zd}Zy=+sP=EZ*e~#8T)aa${t!e#;#?R)HJPs{*@>(9Z3pWbvCGWZ~1V^CWrF@NI z8a7*F6whgi41W_Ckg!F9Mur9v9W=5K0aYluxPPx z*9K!cCd4a7WG+Gd!?;NQ1_2RkS}~Q~#IIADUv<^avdxFv*2DX#k?Zhzbvs8}Wu^5oc#Bq>qHXYL7^a;N!%&SteP-r2Fz9I1g3>!1E(L zdD1B(hd{UEiT(rjg&}CwVF>dLqUI>15X?7w#ElC?+&GUS_1tF%3uz%X!A#HTlgC)@ z51s`)hCW*jzRiBO^Y4$XqYOBZ4il+YQF5I>dNv=YS{CwdXa4hb?Gh=;XATtLIt>j! z_7(-V9n`_}6&XdK{{{B(>e0DPZXor*-H|?ax?0*cSOF4>T7Pp!%k)U zD~mIloHJ=%bN{g8-BgDL#S@?VLBJ&BUIp&@U|MgCr!{Q@b2ilwI|3so=Pj7)s@y@& z9@}FG;E7LuVrNH6b#--rdU_Dmjjc{a%e6rnV~r=hq)VY(M#un1Fx-WR7{zX>KCH&M z)ZC*g7!@t7tc&p%?hnx#&?GugdnRy4c&wwo;dbP^M=EK_;;Er@DY>|EKO)I4zA(u> zZvvSrM_R1mPUN%mI!%mrqd7})*A=oy*sx+tX}}%=IzvD?Bcuw|4qJD5q9agXq^(j_ z0yS@BqzK@?5qAs4^k0>b7iTdZPbZ0>$usr#<2-(;=5mF$nMst{Im{YQdi8x>Kqu}5)0Cq5(!o2^$E%u zV%z@Feg|tuR@t)b?d{15ei|PkJB(y?3mU5trbieMHYTM4*9l$lIq)eVA|n8DANlRu zZ@@VKidHg~^@qmz>8TUgq|7J&7Fb3ZAs<@kSQTor8(BGiv()(`RyzKR$4g7uZ?M>N z?slTO8RPPp{}q;E+Sz=jn1rAQs&^nG4oZPeM^6RrOpUhBpJYuw$7UjO2=l~BqI%PB zKZc>^^QBmCn0>y&?6;am&`hh(GjG2k%jTahGPm;A)_&FtAwKk%N|0bvw!a&k+Z*P!)9!Xj2UTfdunTV8RM>kpe+CCzk!<*wnsW{u~$ z!V~Xw_;E!nS5-C+O5R8M&(?-l&g#b6F?@Zs;PLAGzTqx*#e4)&_l+x?&C* zQSMs-@mfLApgWe$4dkZyogR=ki4;W4nFA+=p4Kowoxap{^q?#kqJ5o~R#a$GmACtUy8d81<~AseE)f!ln)bPqmh)Vmqs7i^bV%5%Zn%4SIpl?-$R zvuqnub5?`fTx8mMEz#~d9m+vjcH|-hNKE_Ors&u}2!4Yo12C$B2ehD|0KXILoGX`* zk#Nr}3*L?gQ@AvqDo1$iIWyJ*l^?x*%gmS9q{%w;=c(Lx5A#o-V~0g1!DxdEr{Rpd zmo!Aol6A0t2kBg!KknWY+J1*+C{Bu9O$rQ&%3QgzC@Dcn^X(n#hI*CZT#{h=e;-~k znzm_W^~=X--d;d~;n3koRb6wYLbbD}X6PU}l)njRn(SZqR*xh1pNrLzIUd23DA z=IUteNgfyvwy49;cBTR(f68+rquEShTyp2nUp-LRs;f|RN+-wS$|GG}W^9{ISj@?L zwd%jm-CPLcX>N(pYhxLs5kRDmj5jSXtRv=zNd*g9R;Y(HN*|EFSc)a1!p zCj!=dP})Z~Rg7}tk|)YCiUoc+)b0pF9m+42q#Q<1vW$t}MKk?Nu&hU9!Trq0xb=XD zr~?S}Ra@ng2oGXD?LU0x*qqe0Y2v4MeyMK4I>~}YNY-Lu)Kb8i`*n7oB=i2Jh@$(MI;yw}p*2omFexBHnTb~HxD&!1Kc z!QA@*P)7;*S@aj;KzW?^sbQxV1SXQ+zh)m)baZY7qgNVX_S#!>-T#75Z$D-8JbsC% z_`|$UDClY<&5o3nNV#u4vY`Y)Oa1slCa5}4{ai{;QBqD0SaS~!yNB#YBy&~s_1zDc zjV&93Q-^RaFB=S0dEf?Maf&}N;!1eL@4y7nBrk_J(6EVLD<~lJ*GS)m+~Xmka382x zMUc}1BC$Rw2mG6KjK1!E$&!01&2>ke8~5aZIf3ZvG{;kSA zx4mU6F)AEw8`PaDd5*57anmSoadrN~bU5JqFk8$w47H&liNpi6@pm!N94MZC>V3Xs zpCG>=^#i9ke;?RS;m`$8g~CDVqQ3}{1E8y*V249^Ipr&qx$Mj&7*nl`LS2@_?72C{ zM((=F=5n~|^+zA1vff}W+k*&@5^!nr1)GDTZOUmO_FM>7=YG?b=ZBtJ$Kpw|pwljQRJ-q@vYGsG`-i{YNdqE@ zDUX4n4#ib_&>k=G-cT$Xe74^q-v7tfP?YA+~{ZgGeQ z&%px1N`y6K)5XjgUAGji9?PbOhJKIK=u?NzN^fHA*>XbJGhqPw!`1nZn?0)#hD8Vf zYC>m=xHC=**bvJ5?_B^RH+Kvuw-W(SS3GqMCkJ+Rc3`LpBlKaa^=?(RSBBQs0s99$ zC0qCBxo_J1r}>K~&A&Ko^=28L46FtGsC2z3T8?zbTQ;;BdM?OX`L~CInP1+af4Gp5 z-1nU};kap@UQ~GM)rIwj)`b`CZGMNa%bgXno<{EJ*Nu9m|7|X6VX(PiVq#i5I*Jt* zo;kSGkt3idn3x-a&uXT7-A|_dhE1Nbvi9=^R52jnVNhiWBhAdrAa+d%btEPvBm_Yd zf|v(lmbq{-a!N?&h4=m}b$*Z|7`_;8 zGdPHhKiYbs%^CoL*WlRL0}Y>&Yfociqs<Y>Yp67aZ+Sk1RlnWQyxp+4 zKf_k}&6G7^BHI0yMP;@)>Hj(berxvjbYvIkBdV8w&i+s@(Q4Yjn;FpbX(e_5LBqUR zrGozGTB&sin#T$mp5oKf*_*bNHu@u>M`Z|zb2b#yxdqh$2#|9-xoZ&E+mv}_QZkGM zfTl|qAiu*H^j*L?;^v~^1_fS0p~nz~IkBIsly5Ua1VNl>Q8bFMxF8;N@DYVaL^MMZ zFH4TU6F??%~(*j!7S`nXpI8=s2Q+u{MShT?JU;Uo2pw^x^v4F@o#&ei)8gDsH^=d%t z)?^%!i%2`4I|Wp*DE-`7mWi4}Wv1LE4L4pQSLbPPH2eSZI)A1;I)&qLNN5aVm3;65 z1)G3gY8zp2A6C}xf!px8Ro9xlLWL<$vnCqhi3S29959O8$#X|z$z4_{A!i6OMAY&l zdf~C*t$?g#ZG$T4-tvvgY1KOIiMA@a6oR~K5Mih5f(PZEl|TcOMB0Dr;v-QKMh*aP zg;1-*fd{#WfUp$4bUWJABOUuijs(r}y#((4g#?y^>pI7x{lw8fU7b3o%%1;d9EF$4 zZ)#t{ttsTX^J|iG#I2elx3zc7)iq^kbjvde_QSQgX=LHiYKfUrWrbzHiqay&HarfXr55A#{kCuw6rHTv>Pr-nWlB5Zm``-CJSAC-X8jn!0`3$)cH>v<{nl~8!luz&g#ro zmr=Lvw5w@I%KC+1RqZKNV?7FSob!>At^dDuShtYVdG$!EI^9RH&X7PYrEND+^!pKq zheJALN?MJEX;zb5YJ$5+$UqA~yx^4IiOmec5zjMX>sXAGu>tKpl<^;XztbycK$jAc zLZe~Z!+Au|4)1NE`<0ga(J(Q(>NkeTQ5JswnogVlPAMonG=tLO;*Z(c_dn|%9v&hX z_ro(QmplMD*EWZ#^#3pT$NuGBl>Pq;vpy{Any9xiM&vZ~SkNws-}1JMeGC4jy*n1} zawmMnEZ+IKAzDM1UByK@FsyHZu!yvBf#fv4WSjc*#b4*_Uo=g`l?Rapul57in!snjXZnbrFEOgSJ zii(Obg;rh}JMjBmk16DqDCNez#Ld(=lsBr16U{rbqcE>2(``K64Xl16HnU&`WHvuNDDJyoh}u1WUUenc=A zY`zsEg2mfjY48t<8;$vj4{qZiKPq^LhbL>;ady?jLeF;R0fxkVUk_-{x? zShT`odTx9B9xg6!t;ZFya)Cw@G?U?G`oh)g0rT+`N>4_2)du*+bXq}z<&}5msL^U% zEcfp}dD0m3yfK3#^_B0}G)v?pj1V$jfdHkg#W~%TSIfZKBBF$2Tfp$|q+b4bpzwD8iZ!)2n59#T*gMjU*54HHEg z@b~F$juq$WMFy`t@TvIt(aTypxiW z^qbfAyZv}Tg#5=I>?)tZngR=hI(z6Gpy^qGZ0UBoi(Fk@4SY&jr^FZ*?dIm@SB9<- z0?Z1HEYPT;pX|)G!{%ND@$t~o63tdg7WUMdzlO&y1!i{V<#j@-HaOm{>jC9&2=@&gfD zY@!|%kERpUKmdI7uUly7=!|5!X=!@?_xbsk z(2P4;_MEIX=2SCEg85vc7zg}o7+>hGV%lA&en_YB8oxdMRU-6d!i2ekjZjFtw`yOK z0fXsCu5z&SEeMh5karH$0U@xW4SC3d)!w{l)OSW2nm6pKc2-taRmubXqoeJx$rS0e z-@81Xv~=2?^IGJ}%+F_r>7qAuGTuqK>#6qA^8tqeqRB8Wf&GMV3!vWe($@wDIh@44 zdR(1CKxrMWv-EJ2&d;P-#*xL7FWsCp+(>x9s;4ma*$7CUw(rV;zzaqWqyV+aPCh{?dOxi!pP|#8zL!N=b^mpz9UfOPS#v2uzPegkd;O_aY&YB_ppOV zWOat9)-%D6W!d?Ka>IV6(jCGtX=Uc7QKMDPHy-_#a{-58njHd;_n2tWzyF}@b~*YS zbtC@vzo$u&>fuZKYPYiz{a331s8d=m1B4y*S=EzK2BESbu5vVjj~nt7bqxt2S__%; zFJHf|Lia_2r}f?M>35=i15zK1mFu@}b#}0Hi!COIOPW6~lke63%U(%z-0-Y9ZFiSg zm=zXw@imj*nXkpgF^Ke@3I)&>!TJzw2AmCGMG)y>+`W4XX?1;F7d9sb51JeQkdQVw zLm}bi^KULMD-|37ae5x|6w#0>tE*F`6Fax4G8sri(d(16s&Es(eZiXIA@w7u4>4Mm z+rRrPXP<5hXaDYj0+;M-oRD@DEG)V^)L$ORGo1gFeWj)rzsPma4ks8k<3Z}FN;!_b zJ(#h{7A9SK=s>dC9M3({cKXftXZuUA%+q$W; z?!xcg2E-&*voThHt)+oIx1*=0wZ-p#u|XGs#B8IG`+0{XQ+^&CIu>A2CK7OhL8XAs zhYwz02wi|QN1#pO0<^MeVXp|j!-p{jxWkVC0EYOJuw0?SfeYTJd5D(7z{YL`3)tRr z4++wzm>5EY)Bi_o?yc~z|C&RLFfd=Qa%McTJ6*qcM!ikZu`-ZM26gY&i)8V)4>3?x zY8;qH3N#r@Ll<~ZQBifERO@GK?<8ntYqMJEC7Y_U72Eb;WMl-M>W{zmUWHn95kUe< z`nz*YW98-~hmi7)XRBznBl$2%P`W)cQoZT7ygQ>AUcg;z;Ul42@wcU0?1k{+)6mdZ+1NCL`QkGocnTsm8T?fz z1zo@S)@0%i)O!l@a2CsNlr7A({&R0~{Z$N69bRy0U)kw!E=k5hS-bXZi$<=OQNPH?qU-rPXD=+@|c z+%GRn*0uE#5ZQ8H&;r9u3T5e<;dz}2x&LE5 zXl7EbLaOoR*4B^0!uw=oWIp$WlF>LK_df(t9-h#4xFq<^=q0@Ddr?}L&iayQngFgO zHR|vFow%47KiFO*Ms}b6WEa(R_J@l6{X?RwX5Q3Y{;cL(#z6*gXb+x< zFuS8d(bi;53Z0qkkgjlIacbSlA}ZqMTR1Mk#%N^q4nf|j|2-bR;?#tgrKF@jSXe-v zN6aaq;O$Rz7n3M9E30pbaDjl|WCu2YJ0S1|{y` zCE_*x6|eU2Wjz1?A?;0|v25G6;fo}M3>k`uNJ54vNtDQ3LNaDbi3m}YBAMrTEF@$o zQ-}s+%upy~szgGA3@MfPx8uIQ=U?x;-v9g7zt;DxXWi=_D%W+M$FUFFu}FVUPL#m(?s73W?U0bm-l-{SA6VPYxveN4fbc*T@<;eL47UjnxKS}sb8nT=L{~q z-z?dREBe@`!3P`RerScb#k`c{Ro0hYkX75gvXwkbMQ@e>PKmTLkB?Zn3T{=w`KUQF z7xC}g(8@_PYq&T){InZ#93INvT9JHZehAxVHb%MM=yRyLIQz8b?RRFGCO3 zVKcVAx_x%&s3)(x`<{DR)Kr_Nop{UU?&tYz##z~ZKtjR~%;+jx##gzz4F$&vg@zWs ze-|o@4Cj`nh86MvQb-A;aM&SRxJ6dQaJ!-$uQwn6^LuHI3V!Xy(qX6EKscaD$*;^BWNSSx_OzU!{hPVO0|e=oKE_KI>k1{&(g&z~Cx z229E#TE+x+?>?UUCG)`b%)-L3+v-uHApecjJ^k}&Y#HDCxiGqH%AC^E;E0BYucJeU zv^ALKi4cP<8ypt)%AMOZ=#!c>`l~j5Nd*N3sa?AQQ&KiCGBNe8Pw{rpq=^7L*vGs} zPEPIAsjYy8GLgsziV6$YZrQR$NJQkHulG@{Z|&n3Ub=r*Y32jio%z%&rW+&>&@$Go z!{ny-WZNN+EtV#q)V8e`#Oek_36c*nSTr>&E+fG*JJcM!ex4bwlIGiY$sbd+$QCsUX3$@snQL~?mI7jWINCwVG2si;pzC^ffvwigMC!78P7X9tWKX^gEYZ($PkY} zee6MAIcsm2jp6ROgq#zo#sCotdMRU>cbBnXUZPHwtWL-$8e0s6N}UN#y10M4@PwtP^-KXba+&YO`1G+MZ@= zO0#AiUpSZKiMppx50u@5TCV@WIewHE(dp@t0Dh>pIq2Vnh^S_1PWzv8^!UZqh|?yW zUAY%{bc0mNZ+KeKWpv&VijLl>qprTjTZtc+^7g9co>)3lW8=-pF{l3EM2&p?8Ue5V z2-+;Pkm{Z3`?@m^tn%F9{7hPiyAd#d1=m2Jt+n_D<04(c`ve{Sc3RN2CuQ?%AX6ZHGY271Z3cC zdHVM4i8r@c^>=LW+7Nu1C#X2h``#3GxB0W=#SbI5uu%h#X^Czdn0Pj|G2^BXuu0rwXk<-pm^8 zus`}=b(y#DupkqsGc%I{rXLJ}S#1f*45xFG_ zDqFJa>-8I~9PQVtv#a9)({)oK$8flAPf5}F0*M$y0h_GsQ`7S!Gjp>G@12>L_;{h8 z-UN%l;9VUg-czS&EiElclF7Z1kie0vlj7&`x$iw-yM)=E?GdKVOrV7}JvjF+u&_|9 z$h?|*&6+j+Lql8SeeOCB@EJW1Hpf#~`c!K>R5?ha?Ga}|9PBwIxPDXZuaft#a zVO#G{PbxAz8sV0nf@5pRD?mS2a^b6Ka>}uYW4S$Uj`A`xY`iVEaJh04dtbe}UR}Kh z(v=>T4FVkOzZBS1wq}Q9(;ppyihx_nigNefJrs9QSXM%?E=VF1<3pmNg7Wi4c{gpc zd;4entG1RFb&KoF&z~&_qg}<8%ErdVb&ZWQ`!4@bH8xHjHZChGBX|PfullYo7F6uy zBNkcK7L_c)-`tg@wicM#)8S!W)a=c0QDar$=BfK@C@AA&9`-J}@-O1{XX1XAl$ZNo zyGE5N=NO1L^X#UEJSO_%*#^LAo&5#hzukO-(uHzn##0diru~gFmVLYM2Gy=C^H4~L z0ulhB*;>d^fsX_M4N>~@WhcUBZO3bgsa@50yTg4|*kKO_l)-7R{90+LG#(|{Sq`3~ ztmE}+U#!Hb$EAg6_}C|TFEq*ih`83^fntSND0m{Ip+qZ5i}e9MLT%38oij0GQ z&)uUY5n^@W!Y=%YNSViT=a5QFOX>CsF%FPzhChu5bV$UyjHnx$e zsgN5tc%fCHA`@$OSk{E^uy{D~;^tm`JKWfA%)KTt9FMgT&U0zc87tIWPhY?00&kJD zJtH+W6cb%-yR+1~y1So(n3Zzq+15WWV2#BXOgSNIdnM#4#_Kg4rOWnrXWM2Oz zSE`vC!*DOATv55jf(gVy*RQVv^}97c19Qybo>;J?*pZ?LxA_G^7yFiE`%n>|vazWT4-YrSyX(iZ zG&VGh*RtK~@o7B|n)X72JIr_^wiOP&Hk%aOt=f|$Pk(z?D>?54hk1YahMmTk$&nlr z!+O8G{3Mo&ogFB%`vSmVd&DnW2z>Mx3fmMy!@~^+s@pyfoqt!R$+h*20^^23z1@Qv zJfFxG5;b-8`~CgK)qgCXTxtR;o6QGADqOmmlmb6c+Gs{bgoMNlBqb&`bK8m|KAy^u zr@f{3%z3y<;J&i5a)xxXvA4G(VxKLFwC(fr-rpx#$L4?CwQEoOf;g@J2YXXHC?&X< z8czHePqL~GlWXd@ZO=mB$w+}NH{Gxr%DmRgZNLq3ejv{#Qd!|QCJidtG}6)fI=y*# z%;C}g%~rUb9nH;w;~zd~RIcMwOs2BBf4Vc#%Navy?`CH1pYx$~3=Nq%@4KPwlTKxY zmlS*H9cPH@*`>uFfhyYTt4wo0o(DIj4}qonbs1hMl9q(rsb(!7<-CqgJ?RP|zl+lIUd3nv>R{<6pz>eGX zC)Q9LyE3W5A|rP!m;+rudFs?DhR(5%ADaP?Zs)x(*t>_dL$c%a*B_O(dj&7r%QAb( zTI?Rw;`x+QzWb^dzp>@jU&6NGrJyIOeOhdAOXCL~ARFOye12V=H1PWVY3xC>#YjN6 z&a~9jHg4P4pSR0|Hrt?#x2E*tUfKQN;N+A+e(bAsGRyz^?d=oW9Xob(bah1|&PTfP zwhTTvCz;?b{likw9=%C#-DX7a-L$^A%u&+K{rD*aPQ*0rLA=2LV&OdkP8MCn7(Fae`}n`249&g zMb03?Fw~~+UfiP&}7dj&mRB4EyAs# zvXU?@kG^~l>prBFG9-WQxuV0vcA#R|XA?HTfe8*=y_Pc*DU4xFIH5*CyRB|UzaW-V)m{;s9k51bdZ>gEdFVG&0p!q_1ro6%Y?TU*=VD%XRjOeJSE+Hgv+ z%1k3aWEo`|Q>OiICa(vr?j9a?w5wCo(#G(j)zMN)A&Ub~umKj%@Q9%T9SA<4%n*z( z;kd5&>4yXv`EAcJ}Lt^VHcXi;Lx;b65u&Ro$%yP2dd$4+aD*bv*8z zHg#21D+J-HtA7(kyTzCHI5(cC(ZG?EVDn4L-(t&JT3;C^K8~OK3A=xD zQ6TjaTJQlztCK2Ak1P)=W1kdw)Rfvsa|i|inj0To{3hh{Xix_g1D?4QGBd_J(ID^> za}`21g<@8D_5fM{2s@8JTyaf0P};UR6BAn#Hoii(bon`Lfvvx`U6}`rAA6S8mkkUI zV4%=;3MtG0BC7+)6#BDIQBlf$QV;uj1yB=`{u_^Yyyif{M~I|ig-X<;_!gmy&-rci zdvP%nnRW8bqusG_ajfVCO4c=@{KxrNrIZmhKhdduh0gu!AO|D@jo^t`czD9V@;SU| z%pBaI!$J#~W8-UwyXdIpY|fo4o@wZ-tK0AFx4AFx=$3##XV0FsvbEiEF$4FVRKy6* z)qgB3EVP4-YrcPXr_`ZLj8`av7sutog+nST)ZoqyMnUEjS&aUGC@S9=S?U^gGHp}L zkPqSHKaM1wW0NF;;W}v0oU`Ur zf=HtYYRZaGUTtmE6jG@HhC6`Gq1?9Ih!6mR9%x03AtsM5-0OIttY22rBUN7FOl5JR$&`^UKeCZO4}H6p+MDPPN=my>!9lQ{ ziJv6zIkOr1j@vUEsjp==ejQ!s;3_^!MIXvHdX0b7D2L?BZ>?Omr%nZ$RyZVhzCn!C z^g4h3yr#CXNk*|CdU6n9^0+iE@9S4n)H0eB`PM;Z9liaLeYYT!0yu;^V7?CV3QiT;5&P5_ULf~F;HA?j1q<3YGJHdx9@2onrg z+kT~S2H|{m`S0a$-aTv(v*je#Ui_B+VFKjLHt~tEu`SgV`fn4CHokV~%Dh(3wSn?| z`VG(i?mPvrgI~g;eAm*^MPFv-ixNpWH-(H=1!$_;rYJ;J$Nx|Mi&0fyjjpMuY^ zCN&`*mtOsQ3Dg0JR4B$(_wVVuo$fjx}XG6=5_1Vp~ZpV zxmw3E+DkEg_>7fr)+G&X?YK0(XRpx86TAuon21Io` z)4kXL$^hmDS6|bq6HOgYm|$XJq8s~UcDB&t%Rdi0n4t?ndmV^$daOzy3(_n~sPk^I zF{DsWRDR(R5jhV{Le5{u)oIWTp@ijVvDt%T>vg&{8aMjylFy@Z0E#0{?%$qmB;7A`g3Y_)kbF? zP(r^YJzxm)JRy$cQSMYIZz8&^vSTWdKIX^wHwGs^*dYn|Z<_%Lcdc{67QL8T5*&Zi zH+z=cQ8QxWqA$|YkLfpS5pq#DuLgzBy~izkxUT`dTkG&8&YzlR`|hTEc!CGPd@zvl zDdISR600X3o}Y-!R?9>2Mwqp9Y)$>ycfrA-py$scpbb!T2|VBB*euV zQG~9q)N6Z%H!UPAtf_ks{>UhJn4iUu&;Lr6vZhApm3HhCuWp5I&@lhX;V#}vgwK#Xst;ra>9iY1wpiZ!nL*LyE=mmV~ z*|%mwG)E*B<`x!M-xPrM$Q-*%fNKy&6Fu9j^Bd%?Bn=?SIBk77yk%UT6u3|46JrD;- z4);vIc@%_db_u$h*sB(Z6Z@gQOq4JSB=7(l`qj3KrKP3vKFf+=c0X{sA-lLj8HWAM zw@{vw7Whua)lg0e(@cDO5{_ZdTDf)LIxWeH=nP_@?Lkpx{^$Zz?b2LWcG?SM(b9A8 zlt>YVlJ^kq903}kBw7V*q!F6#{O{jL6lw-yPy(+KU=VABH5og=JK?xk4ejk~aUQQB zW~m%JI14s6sm10e_%_~zASWydfo&2d2viNX@i34Xq@hFD z%tA+^H2yO+E=3D^oSYY@&zuP%QXzcsLupunj0%FHrrnW~lk*-ltlJvnP?5mqKB2%E{?DW}h}- zeM38+^3@J>so?qEcW-w7zCU=d9tMX{Dce?)49dPogL4g zn?NAjk8)W^E};!auRV})Lp@No4N)z&lzw!sIWHDa_}-^lMJt8oDYvk&9WTNdeQG~p z=a9U1=9i(RwSp|)+T&A?HFmDuMPNCLvXtS@S<&a{mW5og*woy*8fW7^;tp`%E#xbc zpM)URMwSRuNbjOK5NopsvL6uZdkFl1JbM=LQ(R0;ds@*ioa4D|wb%Tqk5f~v*jJPc z{JqfZ!48az+&xs~YMV0g{K@$V=2dk7bGBFP+p^`lE_TVFDvKQG@0U`_=mgMZf`v1v zlH0Yszph}+!CiDZ9sT{uDapxFV9S5tdy0u$7N6J`@T%?EZKhW(hFXGH(|R{HXuHLe zO9|)^7rkpbf)1Ps86n?lo~bY2An3`}zozIhtp)Hw9`s1wT@<=yC!B82LE+hZ;qI^u z?r;abn*Iy?#lZ)``s6#r2kj@hfcsX}0Xxiff83OD&V;X5fOUO{>fO&zi_VT)G+8pp z>hiGhIb|~~=)Yon+NP(-diU(H{1ZL8JfEA}+r#7>dV~R39@qr}g2^r-GC%a zY7Qu`u*mK`0Ff>>S&Dac*t=Rxcl7xOvJaKcxB<>$ca5Kx7?fW8cH+yMN5^xA zK_Zu8?F2Xt(~k;GA^{vCIl`=+OgZ+VM|K#Gcd#pXWe6Mz+{7mkXCEbcq3 zu72mGZIRYOmh+(TZd7_i&}n*trzz*o9U$6#1O*3t)aLEP7qtdB%gitD>YV|GGAkU0u6X^Hxc6%!|8yg#;I5m(A4gLL9<`dojQ-voqP*G9Q1TzTf_|TPGxaoME zUVjb^te~JEQ4WscwCWp(lsmp=M&O@(U7T^!?`2f6fugiwdFBPz(N=}_om3ZQnXBjG zcTMJOXE?&7zN($pG>wK$MMKwUKrF7+*3M4YB>upVsiwApXowZk4#^cLzep*K$gRGA zKLsHmKQ?7Bq4d&%1Csk~5H!H{n^AM3**+Kf#C?hl6*`6Tf7aVY9hYT4GFzRM`oEXk z=|uk?ZCcyPiIL@OIY=g&X z>hU@xy5O!p+f%T*V=!ekp>+{DPrJjoghC$5+b4Sgs02U?l9<0@suptY@>U@sD`3(& zi7W3`mPLN;k(NGcy*3M#UWdd0Pywh|DU?rWd_PW|(Xu^#T4d+_%d-oIP*_Nw*TJ-P zm#>3zjV&z)x2@lPLnU`{W8~=6+F+Y=Zf`e>?xbfo)9rDGxmZOb;Mk!5OQfXay%%@j zRg>QZ@}~i;1~{n(4Co&j8Sw=Vx=qfuy7Cc`)75viO=n-4>=J10oGTJe-?WS?EWAVC z()%U$z8&E>WV|n6ZRm+&*%(>y7rhZq4YT>r)d#cELj)%)Jw-aRk7)1wOx z-_z~@$|taSGX)5M8g$~&lLbL#2H`s!UQY|^`Q8nY`rwd+9;7H6K`4N1q?u@sP{aok zN#wy@*s$aySGBk@oOX~ra|?w{1`$A`nF9->?&4B1?1rPDjz>sE!5c|>)cg@ci-ikA z2t5GIhM`zH)StfI{))A}U9c+Sz%P|x)!t%d3jj>=kq0$2g29(&YrX1cI}hNFbj_fW zOHVydWssD&7$BqvK94n2?=wGs970hPla>~ShTjIyGPdR#VaQOc8{cw_;8*4YRMU*k z1g#SlkZ!`MqGWC)!tIn4dJuKk=pJ9?{|4(p$%{c#Ltp~srI}U#1uMg!OQB%ac1liK z@ZGyh;)nO=-4B7uMmuPjM(pExjJmdH}o2%@WoVX+YGf8VXlO<6LLO+ z+Tnm(IXK{`tYsunv4fw6kl+3LI~{rpa!S@72JBcjF+YpYg$up~XP?5t!m@eFc}wvT zs{;q9{QUezMn|b}cQ8jCZ-B|Ic=mn68X8*K`ZsSj(bCdF&{Yp9fKUWy6KFoohl@lW zbI-H_#&-ee<)l%#ZQq^5n_s=XLTv^xC~1{(o>84KG;@0@@)4@f*B6#;Sq%w;XYpHs zlFD=)jKRUP#gK($IY*;_BH^N_SVW5gcbZ~+a3C`Qkiz7DxgmEHGM>Ty%3I8ns*X;N z(le##*RzLmS6UuvY!i^^UC-h2=ZBN{iO1Y%_?kbo#?4N4Z{gj0fe{T)176J0+N)Q> z`Sxv8{`;Lhl6Q|E>z3?CmWp0;H2Ciafkuu@PSSx80!qLva`;9aYW{9)%nf+W2UKVI z*91R7l~KbJmiTc}*tWPh%iuf3+LlZje5|(ee`nswB>bI!FBZPkxZ$yl zrGwl2oK>df@7VaFU0bDkULDpL`#Wnyyq!6IWe&YW4r@iUxl$?gmwr;w;Ox!+gK7G51C}2O0|Ddx4(?5cD0r38X)I1x0j6A82XP zpp&7E9J7L~Lb7I&8iI;g*1P_OYBA>ok8a-XtM0T8U3Wq0o#J=5eP$N4Y7eLD`5$@R z{&reCOj+deEt5^-iO1c~pN~t?cZAg1xY|wlaE4L@a%02Or)WAD>i~AL^7Bhhl>yc! zY)r%3w|qbi3>4nN0H__ipF%Xaiu?Atj<<1~w6oJ>dxY18U3Xl7E@K=P&S6s&%8L+$ zpHWo4i?9~tyioS|WT?qTxBlJ$H~|-N^C}jA4@8G|JpVx;v{De36u6|u#{%L4gI1ul zO{Go1oQ2uI!a%kpb2&bHu4*uOq_g$JxPnn5cTKxqzHFf2N zg;Ts`-0-Vc24#$QxT9Lg=ygzC1lo81_I4BCtcFtCmJ;mJ5jQELp}5R_(9F)w9mVcT zy($%b&B4lqo70-!$3NibgF;ZN-E({p$b6*Q%*KCPgWeJKslLk5-xVb--7Zb@(V+|H-urS!a_SGE zp|!HNH=cG($|l61bLX>X6beZt=pD)Wy_t5&T3=vU=qeGgV5xPgF0yzmr>Ap64`2p0 z1tgz#_$z3A3T~85h^VF=(-JiH&S6$5P`ITL9Na?}?j&sl0f~NA_lX5pnbBh*s}3zH zGQYdjnlV#TMn~hv_8={dOSqP|#TsXjP(2V+tp=zFN|g^863)m4F$pDCnLFEF#K*7C zck?$C!MoBA6`48`Ezyz7p%&cdIBFG${D5*Puyd@$O+&ll$o4B^%}l|ng84%YxR_90 z)3iVnIakZtfit=|bti*7d_~BY1YP?aTXcEhQvfPJ((~94mWvYE9B9j@_*v6hy0Ct=fMWxy zLa?mr`R719=)pi?cQVu4nk!q+Ca7MZ_GQON-KgrUS7Uf>+*!f(8b` zCx;_hqe4}}&p+N*dTWYCYIH$h%a~Pm%WHc!Itmd~;GzQTxdz-yKvs4=&pAeT+z}XWu;Jz>LH?$Zy&<-3H(Up@=`YNg|#HR^E)OGcrCN z(AA|^9jD2zzez7_vw*P1GmW}Ok1wKvh-P3DF|>nz&kr@?Erd{)ix-a@7lGA7Z&y5g zMc6{So8bsZw?+5{XMy`_SBh@bwRjn72<%Vzu$yl1u3MZ3RJ2%NtYN-$J#p73v&gXM zROjcZawrplefp6aZ}9d%zb1WSWV2C(b+#h}X>|F0P)-sz83aG%zSzIarU%ZEHB~~F z{{!ONY#IpYzPnB5KvS0g0}nY2@Aqk49R>I_K*zX~q1-AOeu=I_&5L3JzYOp+8Eh42rBxGMa%3wUEsM3@A*y>awWB8O8sX z)KnBdRFw(};pkA!f0R-B2KlHVu8+wBsyrjUL*J>Xl!+I4bs*BL>p z*XB;vM1&W`uN(+r=*b~8&P3VQlYe_zE{a~D?4O?m>HVkVo@+NtZ{i`U?uiMyW;;fS znW=SJJy3UD+4tGOy3FVM=R14ZLQy|=v~5O%Q}W=!@%9CJft=fB4gSv#K%kls&nB8i z!zseX`SnPMp|-r;)E1cJX+W${>Oj~$b-nT7z+XE0eD5AXjc4j_Cu-GoE-?mHbr;ZP zhgL77jSA`M2+=q@QD~hEkLcte?;X(BXG8E?4IGG|nm4JlV}^Y*Xkw-S3{Yb#hJm?%geXs>QsyABdSXUW^PAsETThN zi?=3g<kMoMw@e-f)`&Ai(Z`Gi`&T;D_0 zpM?oW;Gf^nRe8Y-T0>Bky0%}9;_VaGuv6{*vtHOM=RFUF%15(;?&HVtrT5JA9I59Z8t`o8GcU;mVzKPk0`p$e#-LR)gwm8s|j!KVgOk zE<6wWNN*U=IJcF3C%i^8t!`v^s zJyme)Z_m;MwWUx~>I!js8VU(_b?CwV{f)wY{!6tgM+F4+w@5wwWsk?C(bO*|nJVHk za?V$3%?J;*;@2lsA7Eq!sPW}pEkDpk7k76=c5FH?>zQ-+XXz!6dgbSbuk7C27Wa#V zMt{2Avg&)d+$ObrcXxL(>4!`jAyX@&6B1Ta7BMT3+{@TA-;S%Q^oS$N?@Q-PHQD_N zk=<}@b+wwoz$8~%B072+6n9ls8VO&!Zmj|U9)ljNIeA#-KR=RdE8W5KX&<{@b^rTY z;Z3AapblnICk7j5CU$CH>A;yD7e;4!W0DQWn~)gLR1wiHN^C&ic~jAJ0t_UUQDSA{ zqSMn3&#z(2qVDeQCe|mYI$S?IV=cGuR(U1BsmN@AU9TSm_|rzyQhmM4tcgGjf(u}%q4ULuNZl1k1f2&%Hs{akD`k(2|4Ew3 z`+AE+Fe7NZ>Rfptr57H;U*J5!zmVlj+S*#kzF%%3YjW5>-XHdzG055}6jT^}E<*l! ziNPV!7ST+s>}M3>*#ZIs{ov7By&Cdv6$jpp;wlc0$+b^;4WA$mYRo6}ME#|iFwm;dc;pF(E^j1aIFIXs5zLzm}Z zLBvk_(=%fW`~oLcS}S?2nGY-N3&FoCdFIIayYE|JqA}DP@297CR6Iw~h(O{{tt61` z?(Ue}V}I`ayU{bv2DsA&0VpIe0&mn`Cz!u@B^dwI!*;~vHy!Qj)kLR3A-V|{UJVrz-bJDwZ$Ruu_w*EPhVW-jt_N_ql8ynWk(88_FESc-4hNw5Y>$UD ztl&fC0*H%lh?UT(`i@n(-7HotI`JeFg>K#8;6|KgdjN=7suu-4bHa^`p0n|E)QcF- zk@MCYM^0NjBRM%34DD@``=?MA1_0yVxa;gcRtQJ{^v|4yn4k$gxE`7&(wgGKLBGZ= z@3I+!U`mXJ>pTA0G#3*-xr+0y=*lQv`&soRzC^ygM|v_DfeY&2j0{wB=FtYA`k*31 zQ|K5O;}yZmwRxwbowLS>J<=Tmf}p*8`7$U%TB5530&F+{2eQg$7Gj$Q*sSpT=eH=7 z2Dk8!@~)%)!}ISRd$A)LqJV@(y9ubGn0rmxV3q3@biOXA)JRzb&BwLdx3_@Q@<*kz zSy{POWkMvo`Q66I;NUt?Zf)jQ0cVh_-obAPiP7lTSSb|ecQGy(s9AxYIc5ed0xc%@ zB;^XRtDtcwr8O}fgT&9)KbQPL8N%v*o}q@f{?5l(pSQDq+$_DN)Vw7$nQkKXMMD0U z>g@B}(@MOG)3uepj~^>ep8lM4>FmDwOHvu%=b zdPPR%eUHss_$GZQx(;$jT~#@LKHvRLL&6S#5CPyxnMh>)tuI?NdGvZNg2a3ZgUlhQ zg@}If$AdGk4mq z4x23MvQ>KVnUI-2?e0EW_71!zkr$d)o(+NCfV@#)`PYMjMu*aHwPQk)D6qeK-dN_& zsJ@bm5J{!iGk76$<(k_jF&n|fj0N=*)+f;Yd3gx@DD!@Gt8TifZp zt82{EigTW|~_!8J70RG9hL<`K3CTrRf82Q84krq!&YE+GHd8*d+a6gH|xKl|4j zA6!|9lG1+7!5ZrT)1gb%-|JiNh_o9PrBr;sYz$ozBh#^q?Z=OSARvJ;-w9DdCd3NW z&Nv^;`c9}T1;oVGLOZO2D+*O*6vS$azkk~RIg{GC6J!qwpKw12#yv}LU!F@Z7JvEb z6%{3nQ)2t;S^s#o2wfT=Il&msU<;lTFzF6C*2n)%?6L~~`|$DOC`K8LYte-LR0bej zQ}2d)(Je~A4#u0HoSK|LGkLmv@prPnXiu}fh?lqW@0^|0jXT%FeXI!uaMBs6wEdg) zs&0ryDbvaDAx zp=Uge2>#CpMa6)L3hQg0vg`NCmO1#Vod~O&_~6qrao$^e&NRDEGpAhzdN7I}vc>dy zQ2Dy2%y4hgm3<-+fwi31hP~UZJiYTdcLN&8_?n`E&g14m%$q1n7sHaH+w{iRo+319 zI^RL}w7##e&rYETDhepn0>-&*pLKN5==ErEVGM_RIAPP_My93!_5>tq{{6l=6Q zm;%6riEt*Pd#+!0u}e^n8BQ)G2-iyS1N%9% zykGz8_j~WS{`~pYa;GRm>(I}Qb4;`OpYQa)^Qj%&8fO%^*glWKul-6SFpe=S7>-@p z*$gqWa%M@1UV+-t;p5)`!Rfb1A`U`Su4Q?=cR~y!sA^VabhZ$j5Y%(ZUr2Zw5Cg^B znN%Ex@4W{txmj3vHF!+|3AcNj185OewuGv~X{hbn@e3=jYka!Ruix@qye_@Tf=bhW79}($*-{SCjpvTOhs=7u^li5A$5ufx|aP3mhc0 z6_JgC7yu*355Vl6;g

OIN%xpuap)n1~|l&_jn@6aYyX7wS2m}E^a9Ga{mTTslk?BfQ8J$6pd?MSM3!XaRjh^lL;{i~+)n zSTNYmQ78jUtd85DwHjV}gXwd_cMJ|U_@1V`uT@daG5lioXjg&88^hC3PXM-t1t0%^ z*4mo?{j=*xw21hX5SwHn#O{#pMZ)w0tz49&H zn&Q-s+>mD_Ff(L4fdKaEU%q66nWvG+A3Ux=6G1e!kZ?2tkGOUF_H{UAMi6v~ZiRr7 zs0LCzVQ%@*7gaV9cU(lcw;dUOHGUtaGmhb~%ELbaNyYog$zZ5%#{ip&FAOK-$eh^O zdrf9RkS&C`et_Uqf72bWF3giPItYQGG=4v=?{icJry$YaysC~;Lh8kREie)a*$od5 z_X7bnIdq7&y|vXE;yW7@k~WlN9P#Yo^nI7xHq9fX3rn|O?zv}{Bw_I|K15Y8pz{}) zJ%&zx9-ej#lo8wW4%JzF#}li zXlOw>3dpHjC^>IQVwFMyPR*%p36~!)qtuih9 zauXaPk;`M9Ee&8Kl=}Mt@d1@$ZdD9Mc5lKZY+Ja2g{R?LbwfW&Jc8aL#F6Vbm+QCD z=ws1p%lDSciXvXO7#tKFs4aW<@<3^yBxdJ&Lej<6Hsb zR~O%}fz59t)I{hx_hu`oiroegNy3@4^A5132s;Kv^M)M2rzYpzyN7eDNlR%Oin%9* zU;Own5b&L*#NR`7-8IHd4BE{Go3?=t@~18+mTC`9)3uyT;#TUQ{}n}jTJS8C{vx!9Y5Y#mM$Q%I|7It zOqqECA(;h4K47l+7(;W=g2al8%3_FSKx@i>NM;Cl69$y6>L{(9pmE|JMV7!yfsLzB zkp287Y48zARQSaJvTzh;?P@Hq{5!kF0#H%iwS!_qMybpJ(GHTLqV&8in)kj4TwQ^` z@ujhOo5tb8iC)Y=!f{|S3!uH-fFDoN2eJF2P8I~qwT@q@5sE^gE35u|pW3psv|I-L zJgDf6idUDo5t4&~g4PgiAASufGk`PnqaP!ByiEJAV?^qC<1}KqJ&ZfVnTXl*e6aqJ zSx#tY!T_skZjGn)g`{)jey5Vy#g1cY$(tDo-q3q{^|0nbi>hGBu(=B@?MQi5g))F& zz`bZEvzM>>=WP)7``?Uo$$1fI$p&2u*+WAbSHj~0`^GFvBj*7$)9+EvGOWpgJi-<^ zTKL2{@V#V$diB^nExh%a3v+$$-2R3I!^zy)-xv>k{55a2XU_;DlXc&Hk-OAO)_Re` zlI?|H7yxCL_Q<#rY8Q$pZC*Ncx}*GBGznd()QJHP6}bxLap7(Ooq>A-6Uf34e%vR! z4hX+?yKtcyWlO2g%2lXCxsixH|NfTawgu6uf6wMGw8t`v}^26i%WlXwx8= zC6jN68XESeJj+@o5+I;Ky@doyCcw}u(anthT}v>Dig4v4W4*)G`%9mm0$jI2U$9ZT%()6JI?-I2q?V%>s!M=^7~hXR^~K|dV?tBry>e?& zxqrlDDcT+5idQ?b(stQ)M+|c)r|z=d6UE=oYqp_1Ko~w2%30Lhu}+{bPg0C+Yy@p} zE_roE@sG*~i`Fy_W8l#Xv`MXy&OjEhDNV*Mw0@!jVXv>|%H>mM&vrnF{g22FDao!a zB&k(wnYWR624NISM(y*ex7Ut{1YsYvX>DzFE6&&P0^&;ROWaHN!_y%cmPT>(aeDd% z9-7Gga^l4rLOe!ix`~*fKxW^?%e(8dvRuBDo_ef8_+y@0bPqSeR#kF!-JssD>P__d z3@R56E|4gyr_HzvoNA=pZ<}Cxelo%!2kSG%s%(c&t@~p~b&N zr`dKdz7n-J9a&N*%kME5FxrT1G~1+#j2iv}Q6%sr4b$QzIKT60o9? zz744h9(IH2r-J`yK9@p)^PB_1Y@)SA3=p2G1)}bcTwwz^gP6!+Jf2`HCZ#A*qCiiR z_^IKEbpx#qiYhWm7A#M@#R+jtt3$aSD~}%+i~@?dNw~qqBfn#Kmc}?FNszm=-IdNr zPe1YTl91dwVZZD{&z`mKUwY(8BfGW>xa+p~q-fvlry0kg=s3X_Tg$CqWNQ)08we(R zdt}~d?%|u;HL0oUAap{N(*nGom6LO;Ce20Q_nF&f#gu}ZP}o74MX(@NHa2~9>1Y;6 zkkn0;jY*Nb0COf8(t(URv-ImcCJl&M)Kr0A(r7w^xdEt>h@7|?k4`9Lvz~019$?(9 zCjeCkbOx|s0#bwvCPq=ZR9~tVPQ5N(m$W6Q-9wx`Wadj@@zeDk9;Uo^ilZK0{`st& z?o(2!n%+&c$}UTbuK7-Y1!d-cS2&3c4Ss`ef#L~Yz{#P%f7HIMo^wtB{HIl9VyZ(y z441gCDuPZKL5TRqpv?UDL&|&6=X<6tR#WN_>hXVCS;sy`6x!D@&x4HGI>=G^Huh5p z;MpxmA$mi3yFMj%#dD}$o@Hbb>lr-N_h`2aR1i6xA;D>mQA0U#0;diFE>qfU3Ksv@}MPboXGyA--j^W&2ia@u+h6@95F)QMb0l z75S}dL!iEdhA^Qk3}M84Y9(ZaR-$6nY9!1JoKl^SbjQ+y>&ZoLL6Wew>Zt& zN=RA~Jeg;g(I2;okF|0)Kq!;bCTdnwh2SJQy!Gl1{_`#_bpR!ZZba6;i$ZQ3@Yj&e zkREejSPtLbrvi(|WJMp56<>S?>YD2xUDdjSa*EgWY zKQZ-sXX3r8;leivcz4AG0dud->i-izeh7mBRH=d(1s22C)9LZ+Lvu^*rqKXBfJ7aIZCgb42_zJOE6 z$Q_K99mq{~fS`ofGhp``g*b+^fA9p7pbwj%{NBCC^B(s@_QQ%P62v_LM3D$3kTRq& zZb5Sc)c9n86_M(p!H!N%C9?%cJ5EXs+}So0gY2y%{Vkg~>5ksQgV4NZ$IHPHkh?wg zIz;^iJsz=Su2U<2hL!$jP40p6Pwvshd1XDix)6i2adEA=rAG&oBRUKR*~C$|?bbam zC{s4>b`D4XVFSc?`@RPc4G%qu4~U9dM_{&Bcl6Ti3!KYu$}H#){yAWGH8AujJAHm% z)~nkwX35%wW1=Et)pA;A6ie2X$v&z4K0H+5-StlrFGR!&Wh;b5L^L52l)yd$rxyqg zz5h^9`u76X)_1?m6?XS}NNUxMTND&F;ywhx!Xjn;$hK$1aI{J93X2-pyk0h2Mid05Mv*=CI*oeK$LY4dd|N%) zCI%9Zw?#lmNR|BfoNg1Ck?%PRBNP~~PVua%ee=Ti3{EPeCiIe%l=}W-i^B^;GE zh7wSqDRgmly#^it7l>qu>epmK2KA~{Aj6o^eqm&mH7a`;xC3qvP5D6*9X7 zGF5*F4GA)W8k%6!rf=KY3L58{&b`Z!ccq5Pk9dY~$H+(zh)Ppzu}WbU+6*#`lFUYl zh+sk!8iXO%3BUHRj{h?jkPLq7$+a8Tc+TefzPg?;`ZkzDR-G!i-3^LD_s@My#G8)j z1YMsi7B!HG(@-hHaL|ArA_m?kRJqT1S3b0|6PFZlp+JyNOG`^ag$abiLje)n(h|6i zA1D6;@f#CJk^DAbDgP*X#xbIyyTb7}nOcI0Tg~|1Qm7$G9rgC@TMV#`9-gQ~=a1fn zlK`fevtb3d68dOs%t_ID4TBz=!i6uvP*f8g>%L3hNezW(Bo-%Yfir;78+EwTU6@0F z(7Ecxix-3kR&bvrb0p(0?Q7;H7zkl~fPf{-y9yo(=e~xSQX?2K*aQ$kTU;4VWVZIO zO^C>r-m|MW%GY{@NXPWr3Qi#&e(cm|GC&1#evtcF5fTw$hh7qe zpwTJItLf1>TTdr`7SL$3;t{bp^|{4De4*6!rQKGIwrGXrfw&$S3lZfb#vdmx{hG6D zeYcEAoc#mSZeYDay?i=c8lx<%La%l7Tvn}$az%@@^j0#HMssf{?4`}#+Sl5lW091^s?5+@!Tm)$EViLQS5P=@ja z=|O)S4a0Lv3HrF!dr_khku*_=ohUIWNn{}X#*Gf*rpo9%eI!Han6VNDwl~g=zKeM* zj{>QkQbNS(mCuu<4}Sb9{sSGyuY@}RjSKpm!cX|6jH)wk*^unK*E-*tOp=V-K4GD? zi+TCdgO|ky#+&PJHT`V!_!7-O_%yf3ZPj61cBxYx-1$zhxRGMZ_4oHPq*P~SW+uG} z7>!6cWJqDMzx&=Bw6Fh7O4-oyrFMs4#6~$kBwpkVKTH=-PUYN}^k3wZ51WP|t|b;^ zaJx;!hQ9Fnr5J}U1gZFqu}km%TS<-)(?K#VrjT3{-qT@-=v7HQa`D^p&xeRTw9pra z!oW=Kmj1ZU?@+{tSts z@-~Uzp#e8p1DCpr%v)rdUEI~=8P=*|4psN~`}-zN*=*?mYr%NLiypGWf>5n1U8@j1 z{{KrkDH+8}>PADAWtMc9Ge?D`+)u7!R2B4+F~H97CAEKWOdupen~D}eWh<-r*CiVS zZ<%pIumeMDT`>a=X>erjg$I}mirV>ASK%fjlNX3FG#z7&K0fC-l80uP(EYand&~Sm zX-KvHO_9VouTpg3?Gg9ML_#JeH4G{s_aAVL6=(u(S$md1=1rj}lrvGp?Brnz|0JJP2Zt9(8v^I((Ns-{MIJ2dkYX!!0o%3~NdYUj&WDWvhx z*#o(9zG}(ci2{wsWFSsGK>m&iy~@YNCO#_&gZsf45;B=&DBO4&3h^W1Vw;gyi%Krw@mxuR0;_0eQ87vAQ+tXn z`N`z-UvoJf%gEalO!u!i005e5iR-v4%$Rk^Wl;2P>%Dli+pFyU{n<|Cm1ke#e%?rs zkVJfvOL0OqjgcY#+0)9W?Ct5Wzn5qzh;sxu`wV=LNsHbZzet)*xa@biM7sRi?fkRK z{3;IA4`8+!U9+z0V)-h|;z@~g6iJs`vc9G!>nMrob4`C@QcFcFc|@Hk5t07H+$(v=8x!>g~j zF===4p`uI9uuPE-xEF%nx?ou|fv|xM*JG}|m6KBhO8vHYeryK<=0S69zb}aRHeLIF zdh&w@iBJaW(*&V7d_>9P;V{dR5lW@7gcB^5h@3HdooIA!=@Fxh)*)`kjcEVj!65pf znk#=sVM_3YuL38P$X?+x(4rlR|3F|0kX2+w4}@XV$e1laSI8p6>^paC$J-M0?|JYi zeS=39LqFFia(#YRt4x+I;y~~MjHtTuXBR93N>ooWI`-kqb()l+zU9ndzq zb?aJCl@J>Sv46;MXks8ir9LMLOk&1k3Cso(IPz- zG)rK5$e4&$U0wvHqacGQdh*iu|A*8!I;B!|1Abf;tbUy0#=gKH2wefL;yUJppDBv!OBWV zaRlpGw30-iUk9)M_8#@P`2FKM+1d2N6-44|=07nza=r|2%5K^wpY^dTFeI)bW>=5) z8TMxmp)zqJi3y%6Q)nJ@A|c4;Aalxqo^OxRG)Xur*{gQO!(cG`UGK4DX?m%q=y+HY zH_{sHGmtGmn}-x7z)=Foo-RNI<5&)mzUAvtehkm{N88n0$>hmC8b*#ERO` z2_ys|{!27wH*Ho=K8VTHS!$3wW#`(6h7dbndu+i|5XeAgQkk#E`%T}9aUks+tpcsR zO)qJw(6b$*1)OJEB~lfXxJ%+z;ceo6f|qbRq^bJjA<1+<4ZcBU>TjO{r49NOkIP;7 z6Va22ifY=ro{4>|KxJqk8T!H^6|)g=-spgE6Zom5WZOl?UK5WiU-c1`9{XRU2V$5> zG_q1LbgQeYt@!WF7dqjXK&}Wklp%u0PDL{^ceQ%SQ}kE?)P5Io*D!b6w?*GBGd1MBL^P z6g?QDnsnCev8OZ)`(gNZc@oT71S`+FeOns!7lwMMy?W2W1c4@n5S8+gafu1Ia_ zJ}!A6IcW_A-$~&2C*h^#26x38S2d?n>^C3=F+Af~C;SB}`Jkd53lqJxP#{rL%|EvBEzpMqu^%>w#&{FUX3=9NEMYZ7cb?55x{G-Hi9UmY6f2#ZPa4gsM z-KSwmnhgy!nddPwR7fZ@Z%6}*NQ96wB_YcYl`$HP88d`J<|!o0Tv6&pN=l+Kgnizv z^?iH&e&6>Ud++1ef9$=Eb*yE@dOh#+KKFfJ*Lj`8TXYaaaYyzdBKC!m7w8it>;ieg zK@h1`*4Hn=$`l?ug6%;KoGcPI0DbmWOs*VXKduCJE(sn3BxQ5}S8QPi;mEs+60rMaCvKNF=Wn!lm6(@qlAx4xERDXNDyn)sNqu;knRMO_;?1X zdZ$4Jb9d6IXA(uvrP=+e1i_nVAU*VKCX+7hY86OUavah;-j1RhI+V+M|+^ zJ?PF!3;F2uu~-i4e4WrT84>0nQVd~lLHEujBU4cG^?%pbt%s>OnE06zu#Y+lQ@AP1 z4tN2;DhmD!!2<)wNlOi2nqmIf005#>IQRdcUqEFL3|ylc{9!;j@E9gXEx9#d;k?1T5e_knDOf60Bd`HMWbctt z4RFODeyUh3goQ>>Y#=6*@asf1L}Z3I?=UL1#O(G(w&Z4ZX{WyyrCN@ss0+ zf7YDy>cf&r=4n?t%~x8?*X_EdpeV19uHD_x(kwXcqNA;SoO%u(GjGp79Yz`oQLJyH zMBotnVH!isuPFc63Byx6K7#yr{luf7{Fg%cz+RLdKSd z7vI_CN&Fls3j2?tEz8_LsiA7H+dJNf`~P3rp#;57wk#ngQ$h037-QD&oGpWvo9Ioc z(_k{Xxw-9&l0Q3gJ!!*v5Vmj*Maj3oh3A)Q7EilLnU{Oijo%ctR|hbxU2*ijqnXDs zmHZ>qP3xZTa6FW3elKV1mhySI#3S|I1#T;ByB+V+1BE^#adUUb+W8gh`{h;=(h$mE zAD93E*V>uN!VJKyBSBz!;Dy2>csT+Fu<};@ zklI*QC;IeJE| zT_c%4<|x^SF)cgZw@fi5G2{1RyR|CD=05V>##s3L`B|yjR9(#ZXrorjt@brn`r5%g z5OK*wOL6n&O>&mQcSFk|o;X)PaY4#(Kwv?S=eHPge@7BP?7&^%Kune*EmMtjQ28hy z>@siv#z@{zmq(Ff#h_eh+sOopU$WU9$pBQ!T)^Bh4~C8Y)!`*Eu+*O_LX!bSS3RuA zi5zxfv~LUGQjDE*4KFn2*+Kwu`Et?{DmWq=!-FR`_dnL#IjNQ@MrLyHE&2{&=EUxRNnV z^USvuLLD!=QX|$SWSa>U+??URb*x)?dUPjzTpaAeQqY-* zA3K<$dKyXrlXCA}ixYA$JxNU;l?{Vk4NiUK$F>8%~>V19jz z=5!-Aw&4`Zh3M$~Y`7QaW#xIx@|u?CL@E})Os(VfML`zPt7{4`1E7{oXO4`e*pI#E zcmF$Gcoq1H$rhk-%9C*5Uhp=Zwfg(xXR-AY;iyl7aW!a(nx6nl?ZOmuC6#PeJ~@X+ zTbS)5CSaPq=076NSLDfUWAHNB5$ zbe}c1!&bhW5S@SXo9ph>IdZTQ$>1P(L{h2LJrv z$_l^7A6{0Rx^e*Ac*lf=1q4!$u<+c2%o<4K9vpRKPfP16!bmZ8fSCeOG6ee$B*QyN zr~xReWTfXrS2a0w$O7||L64P#MzQ5LhLh@aw!rIqBS0i1?6MF+bnF#7Jih}&;buEg z+r_XOn|mFPl{)*mHwgVZCq6_V+LhqcqP__R-NX_Nm(7bjUS<}SW55nj2%1`Vn2asf zG22p2$LGqU6cSON2P{Ttj8rSh&+a{mnBaGgP?qFmq1S&@qH9dEL><9xdeW7w=%IIW z!EN8x`JJ0KP285-lNF&EbIGmHH#k4#Ul`-BxogkS6gM|C{Ts%($t@_%E7tEpWn<;g z+L-Z?4&D>d{1dAuc#=>QT<2+d=4|DodHUbaCEkC88q#*n%+ zt-{`~+7yP_IXJYuqh)0yg=%YSFG{9NIB_t`3TQ8^g-Xj+w)>cGlmFL%1NOv^0ozO5 z$~_-#_LQ=+vij8bUqqe?*5TmLxs&ai?<^6k^mDmD|M043^}C^q+4oj;pWW1&ci@6a zx9c@e(|G;VuWlrMkM(>G2*h(&o12@XPO>)%a;oUhAk%ERxkN7SFZE{ONB@456L>7dK>|X zIL)LU{!tsc%uCUnX58Dh0kr+oTz1#?@r-ZO^zi5h3k@ z7H~xvfFaB+YUVZTmM!Kf1-6{v1#Sc-8UA~i;tfd)OVp5%esgtJZo*LChKi-&q_-#RN^P`YADV1-WWbWr4)+AKq?6ElI zznfyUO%KS+*e<`P9$Kl&#W+4*+1(z&zMf0ZYGRGFgaoDE(Z;3t@KI+iK$W~KAlz`I zs6gQlD)3^EbuiBa0b5H{kN=9BcLiz)qT?ep84MChi-6%}JY;BaB?=fgf4VJ6<2mea z$@C29IBC^Lv5paBD*_Kd_+_7-o|YOL9v*JY+G5p$!jH8x1k}lYm`Flr^>0li-=nt+ z8WIbdoSp9g!(C zbq5|l$jsZa7_}v@q9%J1&A6!QNJGWdHi$qWl@Kl6$|*zD_wVkmxZA;_-~N|kmss!+ z4u>~JL?STV0+cE`E^qzx`bC_obWAzO!9&UwV6k+hdeh7UfGLCmYfZ$SB|NcTutjNF>2a6LF#RRD&4IxyGgo$Rfj@UTCXON=M?bSe@MRIYX>a#~i)!DME zg*1R0+Q#EV+yBFCl!YcV@XN+67l&a|KK~qwxnN9*ZDG}do!r74?=jwq2&Ge z_zaA!Bg1~6%a7bRIy#!2(~H;V86<4U@td_XBvFz6&8*y8RB#6Z9h3V-gM|31MOfML z&U*IbT5~pQp3m>;2?HbEXnJEhm;H6QgB&OKltym9n3*E5ZK=b-puXSh!Zu}mbqNXT zE79`kyC2w?8Z+#R$l5slL(7m-#Ew0Ma91%`AoSN*soK$I^WrlaQZHSh@S>f6k7MKC z#i2$_#0L^)x?@{XP}`V8PvHt>gNQHnEVgTZK=kwL97n}KWRYa)erLPGn4f>GwAOLd zyLX8i#}~QH9&$e_phVLW?Wr!>8(J=^9ay;fhog{v1v{szi>)e`K-srg3|~^-ew?4_ zo99vD=i}4l^{tIX96;|h9Btv3ve+jTE(vy+M}tJz=+|Nm zG2>wcV+(U3_cWHUwSDGZXY#jCL6$5RaXO`D0k>D!6~{QQ#JW_36W07)zioD@>m{$h zp_r|LK`wesExtRO70%ccJ>$H6ohBgS9x3vrZy&FFgt4c)`vL*>9D_D5@7jCSV-pjG zLdLEqk9RVLJYIXTrD6Va)zGBLKtUj16rbuc?EGYsNfJ@OI!%i9=JvOVVZX*0;P3Av zX-rR?q{7MXDlB>QC~`{SvSdTeEu5rq+|@3kvt@@~2ML3|xCPCB_~DmdyY`DHx_H5# ztk(s&LqBR~h-NJ9#?!gZfBaE9H#bAXSrP;5R@h1oaM1U6>*bcud&gEw^5cQI5rQ@q+*NTC=fP8V4Btp10e~K2Hv*jv zLZ1|gj*;jCF=dl;9$@rI=y_5*bh_>A&afqmHZ5XbkL&U`r2aFjU6+33-?G{Vw6$Op zz+wBe4i(!} zI14tIP&#F+^j(6P3AG%zC=s_I^+5J!q7SjKSO{;G%N(*RG5@Nfk8Mgwqo=zdd?-t00~suoOAwFp_KdsuE1BHs5F9nvzMmjp{AxLSXy(F z>t)W7>xBu(1jq4@(*t!Eq-LSh2V_y)#4d~a`9Fj0wzM$OFk?<*tE>?k-)5*iKB|Ze zT|a`I!Yc|zSokU7CPRZLQ6d~SJ(Mo|SIBmu8Tg9>d>4mRV3FdV8jFZ2;I_n(23VF& z?Webx@@Lt^c5F8k4>ox9QVgs!$Y8cF9+We34@pkR4!~l}*2iVI19o3VElHiO&<}Wg= z@X+}4i~9AJaVvcd&C%0UU6&Ke_4~as!84Lh~yk65&uWU^-1n30p`(L>K<5t>|>`G+R#p53QfAodSGsw{-9eU-k z=O_bw|BHEe>|`%CZBoP$i!GF0q|%1nAc@rgFub?@?MZFiSyJ5qtwJ{70u+D94J5P^ z(oiB@Pv`ek8IoBQ)(@i&j6JhHoR)5c?=NlL79|Yqq&MBJ17&SF2xZFXF;La{5Jomy zSe$E+b+r?Z?MvC~#u8B_MLFAhC*O=(ExH~2Cb$+=W4M4>5cEY|XZ9W9l#^QzxQ3`m zJ-&}Dg&iUch~A>bCdfHjgwThWxB!9jOM-%P%O+ zO@9>s;wCfW=?b57FcG1+yG)j!!p5wl;M}7@XdvO+2A(1>eI)}hWwQiSPr{VJUnFA< zR9tU?jNrNgkgt|fZCHXjodoHAE+b_d_7vo}9Y{WM11Uk8^4mBM4MP_|+%!-h=N@lh zetJWeP)9K0Eyo>51>&E87l67v`lUB05ri(t$HzAb?gIkmvf~+L_V6(87GPCD<6~Q* zFQ5vbmo)E0?~QR{yS{(i0l0I48mI!RxxciBPQVjTs~WV&pS&#hf+)3YHommR34VRM zJv-6)WgdRG68ko7=8_8Mq?c_Xb5lzT(FB7z{{`lb$aFqD*q!>q{Fp{)2l{?+jqMbc zXN|u&ai@U?!*xviFqohNX$9G&L-}}IZT}dOGbyy&gwI25Ra7*4b?jsmc#O{sL_{>~nV*{#=3TlNOUpJA5o_fA5vxUv#}*;d zPor;%)!}~P^bdzH43S_YydH9Q;sFvZZXSlmw$XiI)V`jN>bMI&(|t(=MP?ZCz|(9Q z1-HT2w)zA9+dH+~+~kO<2bwkMlWj>iTlTr;r#XO;u$r0K7r{1cfJC}&%n#eA#-L{J z$NT#NCmU44guumVy`JaZqsg>BR+v|EFoG@*o0SMF%g@v!yBmX_{fVY;NL_#n77#iOCA$r4=85uAP& z7@r(RtiW;#ff=c99vI#(?9jquw1aor_?ItNA8-G2lz??(G;uOIq_89O!Gj0A{UE2- z)3KL-(T+-7@huM^@h?R$AroqBs_!3r4j|5G;uOB=%B=?!5K&rBTU&E!eV*VQ+wT9l zDgnHXObi({=W~h4J0fR(%~x{pN#n*IrzZ?C@u(6R5zK z797R-eZOLx$QJwb7!dc;+~mS60rOjcSR>?7XmwBYn-mbMlzaE;xwtVA$roJHar_mA zKDl^hsf)@Lie8fyFb!!bo13;{@R8rKBWB7`-zY!c3?NNCB?0;xgdID+qwUDS%bz8a z(RCSk>{BOWW8h}3ejA@H-t!%$@`Ww;&)~!?m;yHW91WR?rX~~CB-EkF^UqP0Jf#RZ z6Dd}L4=w;|2zSBuM&6Oe;(}ZUSV+AHT*JMdBHfwQ?XX50yHZ$e-?V?8a}m;V39QEG zYuDnRwx>(rVZoh|0$0;}Zt6tZr#Rik1@R7=T)GUfZAj~IVoP4}jY~HWc`7fk-zI-o zQ&%THjI4(!ZwGwSbvzdZlQ9@6bxs?#;LGstgFqSJ#a9wrWH z8)(2$YzobsG1TNR+lB|&l1LU_HIB1Js`#nxi*mxmuAzm@Kbim<6H*i914QjDW--Hz zI{k(RWr6+R+s_N^))4|TNNGYl_L^ChTa#U!0v%BF+~qj^Ru6aV+gK}@S}s5@nx^4M zG*lFj3l^{zij9r*Uu18-WMkeX592_@Tr@Q$H8QDDQj)IcQf?3Z!xNc5Hnocz$g~`no+=Hb0UH=wJAlhsd-35@!ja? z6);qAsAOyE3S@r%@;yI&?LXFTU_(Fr`O_3N+EfKquCj}3_(|lbV zh1ZDi@?+7v`WOVkhEKc1#l;Jx>obDWhu=ZKLNsfC)%nCWU#flvc_DzughEQC($dXV z!m$MZML1N%p=#TeuE4OS4wFdXPwuI4Li5q-97dhZa9}5lx-(E4fI9$^ zyE-@xh+FbQ6+%u_ObXKShvIG1y_!jW?;WqNOL4>e&}>zMSOP$(9txm0BO|00Ind~m zDiSsJBOhQ0HC!aRobU_bNiEXQf|EBndfj|(DZDwX`!F8noxNW3SBloYIrAvy-A0|E zZi1P3K@tG!e8tttDNPFM>)~XykZ#~qVLu7NuKX4wZIW^fa9;xO2Wa)_ngvHwzdEKB z8yLMJhbJnFM;GQ5ai0P(Gc`GUI1y;lBz#5EkDOyODznD^;57Pr*UyP|J&egkzz$u7 zDLc_Pl4B9ROGfOTR{Ov8wd17pLoYy7(ZGfe9K6Y!rZ8%jq}~L)^{0qqQTCOf8|{Ox z3M+qkDF-%M!1=#(MQ6xQkFhUbe4xFy^=sd1G$-1yKgxVBRtG5KMNKlsMtFvy^&|SZ z^rgDhhNiMO4wqPJ%Tz`gbZ%tYXS)$?S3?UxnB?e|rlv*u9WiOeiNA_>#XtLzL=S^Z zg^m^AVQE4_67};)^kGAK+J?q9L-S6wH+#Qv{ncHd)iB;P8~|n(FPa;Ids04tvm;GV z#XSsH+Ro2^PxFdSJM0}2J^t1lWUO>0_TBAD2>Nae%3jR?1V9jJ(?l^=>H? zG>Xm|nf+?8a0?RF|9XXBqi@A;uNU)Ya>{h!sUtqaQ}Z}gBtVd$)S3sj=+Q?;N5x&j zK#L(v4HQxml9H9HlzvjMnj9DyIEwP=d7jlWssb|&K!6eKt;x;*a>K@4s~HUTQX`3k+^pzDOy8>UE0ExX?H5na z62c|HRgsM?ZsmUNfBBv1u6rH^{MC#8zuiD3IDw!AUpVk&pdj<&`DJ!+@lS(Ng^dXo zUOG#Z896(fv2roMzKF-PvZX~23_F!T6{yM>IfbC-bs{FtfK&;+aW#$W-?rffEFe1n zDY25M%YlP3wERSgk5!_Eu|^I8KZ@#uci8?O5D@+0C-0^^h)@Dyw4$?<4X(Hd`>O*M zLu9BLQy@5zbUX|n{oqbZCWl~Ga0v@%By>{Bh2!pUX(Ia|28dMW17*`=PVg437JQ*)+kpAXW_l+^}PF3Iles62dqjev=pc13!+9s8ldgQ3ZBJC{n0e*W0^5GC@u(I00=ZnN%?6!@Gnr zm?crEo}bQt@qPHVBNiCBFGyEFHqAx+j>MkjkVN^S9#F|LCPy4*&O+!?Y@O#_l^juc zR^kzX-hNT6HUr3~fQSjU7#bF9oKcG})@<6e0tYtwxa9MWZ-OQkjw)~ zi_5#%0Ix0fK~ZxOHhhbHaQ17&>#wH9_>%Z4SpH3Mu3DEP(B}SBlu$(d#o(=rOLL z2{9q@y~Q}$Zppg@zz%&WCCJL;eC7=6M*xX2((F1BmSi^h*##4%BwAX{cl^Vo3j?n7 z`}b3j$#E4e{(`N^G!15?5Fu{ZvhWsMDT2Q7FfUCr6!M#eTtMI5y{Ppp>YK$rAS(hw zwc@$9ujbRY9wY$D2G*n2e}ZTte0~eI79G(AEXbgQWhG@JEH57m1g_>hz-ji4F}M%y zm>|9$xX!ZXq%`|9Jik^v!&WFu%jl%f(1fDYdp>lZb9Ln{IAs6j5J)?0Y;3Wo_NP7o zj}bj1bAKD8#%=RVZC8o}QNG9qmeSGyT=0+0 zi7k{yG7YcK(6f(+c^bKH+J$NJuaT6^NXg5|U8SW-+qi&smDFi_l3o);A6>;6rc$zG zt_yT6ucyHzXz6hIf@n5C=K;Sen8+YC@XtFL|9Zb8PosP<2zwOsj}nj$m*HB zNjr2=b0-5oVW!woC^u}s^u71ht29hy&tRgKo|VPRC1uk`;{riX?DGk%2FTlGxVUhC z6R=x_1nJn=*hI|h;~@;Wo(a;v+2s=BjO2s_u9qd}#6vgAx7m~c>!5*_4R4XarC0Dx zOjld?ZaJ^Y9ORFOzah!YZB#QkJc%YqT(dN_w1NUt(X7FUcOR9CXFu}lRb^Dk`9SKB ze}SV1_CvAwYBz<%DZR_t%JbtXhC+gJa@R2mt5w9Uybftg&8LrZPRG$++ep(#Z==&Zoxc{Qb}p&?l!ZU?W$VD2kmN7=QNO|Y@DUe)H~4pLP?YbPPJ zj-IM7AfTkwH{vbA>x&+OPgz#wlu&C=`GxZ5&roK^O?U&#VzVqimSM>^S$I-80Bj=a^_481{(`121-3wz?zjQ%Xk^U z3Xy|(Ng6Y4Loj8+t?&&bky>$C#6ty&b!oSGI7C#SL!v0?xvpv^tGi-__=2ynfWkzL zy*EHHO7k}g1D;cD-osGut)|{!QCWY)Q3V`!L+O2efiGzD7EyTci1ag20T~=zIA$pm zMSl1Yv?6>pu^X`GWfY$aDR>q;%!PJv_EyVU)-4x^(u{D0D=49O3=i8Lx3UV#R!TE@ z5b##@YVN&E;0e}EnAa_$ESN3rs$#56v7^(=(Yl|^eTFvc&Xgin7Da(<-x|MXNkork zG7Tfv^&QzDhA?8cx8 z1l;lQ7z1usrgtD6K-_hZKk=^a($cm@Y1Xb++q-vB&c;L(9LUCr6=8Yy4U)&}=bzNY zwWOYYc37wc)ZEfl#}+8t+h@U!11^{rV>_QUH~)6jZL=(I*VD6ZR%`HJL3kW1>T;&z zJWtjX@2RH3OJ}pv5?gI<7b$jzcH^n1-m7PbtWi((pYHmuQ~s&0ZqH;@MrNk8$Mo~a z;NW2O0`Ar7rm)}Q$T!7K4Nd#j6(CsbwgST2nMutJpz1zx`wUNCl_vGux zMGe<1cb~6sJCyzSD-$4C5=nuZMDj)HbFhIU38vRKw)Vk49P@VjFB5qx@jgeyeplt% z?dmE6Fwap^z3Zl<&g|^558F5+anwdeMy~%UX^mAKH0hl+yU1XEr^6{6R%3x%Eicb5 z@lUgZVV`pGOo8Z}v}s6Ku8Ej-8u=R!B7=A@JRezt^=$V8=IQqjWdYW9|U@szONq{Jy^8r zGZa(bqU9A7Kn+TKeIA=saN<=R`70dEcGjLZ8Ku5&)X(Uoe8Az47{o!i+A;M+@k}aZ z>P%Du5w5m&cC}5n-hJMEN@U5BSJ}o|+{deS;hxTc#^=~2`keAm>Rvj$?s-HDGe=<(y7RPpaz(7_0KD}q5S341uc0vRkI(jdXj zL3&>qCP`N#BYDL7`LvfTqCj^9+f7+RV=0I_!e$m(_wU!CJzB%YW;MonVV&Q2R?*3Fy6bccmd_FGk=GdK^Kt+9@Py@Sf|bo5m& zuExg3ycgkmg|?1Bf)@K=ztf5CHnq^rGUgD8UAK9&*(kHiJCk8^Tzdg>3`C&wlAoHH zA(ied%rzKXG3B$*NxF&p0*9yHVEa*P=C=WDD5YxZs;-ojl+^ORL#-z!wqnWqXqk3% z#Su6U+O-w&+q`FX5sGTu>Ht789stgEF$s?ee((BuU4PSa8z2JN%bxXG5))28g=sC~ zdmDxuZu{LU_np@R>u_h6`pPzDm#TCX6>YRfcKLnNirH3HR?-;BCO+yk4F?~fl`q%2 zu$J5R@~$O#*nct6U`&i^gv7MrR=@@Y-q0t{wpn^UL|QjVFmo*Zww8EofRjROy1}Q#UP*6~tpvBBsMLR|Tai4v?)}uv)bMKV1Fc7LpVPJ_Sm_HAA|QO@r%+ z+;xlMWo&rci?C|Jw?z>pf%!CGQC$5()VlB6@2$f2eHyZ-+zUDc`9)(z9DN7|x#lf; z5S#Xt6~s3Hw*N<={#TC?E}x_?Bc{HPM*9Ldx3#q;PDyBQ-=aU?{^5owNumdEhE{zc z8WU;u72w1ZSrgH8(|5(Lh}Rb&LDcZ2Mp!G6+@gt3O-=Oy?*Nze1r*5;m!(YX9Cp@+ znYot9rbyJSw;U-ti=C0U0Qh_k_XZ|D-?K9J1k=42mnHGtv%#pW*IQne+);~MEd0^+ zTl9i}4VIyZFzCFh0<-Z^fEV*F;w@2BXh zS0%dy5Rgjm_38?58q`ab{hk;v`S1WrBm2{t+B(Lw^Skl8MRiS{jc_Q*Ah`Lmr1d>g ziT<}=ju*loJ=JyMdh+Mb;5Z{!`d~kf4f4Y;1a%j0AXhrV%J2Ih-^2f%mzmyTM}0ka Tx41cz!e1I{x~lh8j{5!&I-SnL literal 0 HcmV?d00001 diff --git a/benchmark/plot_timing_results.ipynb b/benchmark/plot_timing_results.ipynb new file mode 100644 index 0000000..71c74d0 --- /dev/null +++ b/benchmark/plot_timing_results.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "2242b35b", + "metadata": {}, + "source": [ + "# Plotting notebook\n" + ] + }, + { + "cell_type": "markdown", + "id": "b316ec5b", + "metadata": {}, + "source": [ + "Notebook to plot timing results and study the performance of the code.\n", + "\n", + "by Marco Tazzari." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "12180de4", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from glob import glob\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "63783e85", + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " import matplotlib as mpl\n", + " import matplotlib.pyplot as plt\n", + "except ModuleNotFoundError:\n", + " print(\"matplotlib not found: I will now install it!\")\n", + " !pip install matplotlib\n", + "finally:\n", + " import matplotlib as mpl\n", + " import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0da8395e", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "# % mpl\n", + "mpl.rcParams['figure.figsize'] = (6, 6)\n", + "mpl.rcParams['font.size'] = 10\n", + "mpl.rcParams['font.weight'] = 'normal'\n", + "mpl.rcParams['axes.linewidth'] = 1.2\n", + "mpl.rcParams['xtick.major.pad'] = 8\n" + ] + }, + { + "cell_type": "markdown", + "id": "e3e6e93c", + "metadata": {}, + "source": [ + "## Read timing logs" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "465111c5", + "metadata": {}, + "outputs": [], + "source": [ + "fnames = glob(\"timings/*.txt\")\n", + "\n", + "fnames = sorted(glob(\"timings/*.txt\"))\n", + "data = {}\n", + "for fname in fnames:\n", + " simulator_id = os.path.splitext(fname)[0][-1]\n", + " data[simulator_id] = np.loadtxt(fname)\n", + "\n", + "# extrapolate timing for `python` (id=0) for N=1e7\n", + "# (just for the sake of speed in returning the test; the timing takes 30 mins)\n", + "d = data[\"0\"].copy()\n", + "new_entry = d[-1].copy()\n", + "new_entry[6] = 1e7\n", + "new_entry[8] = 0.1*0.001*1e7 # roughly linear extrapolation\n", + "data[\"0\"] = np.concatenate((d, new_entry[None, :]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e3d522d6", + "metadata": {}, + "outputs": [], + "source": [ + "# descriptions of simulators\n", + "desc = {\n", + " '0': 'python',\n", + " '1': 'jit',\n", + " '2': 'jit-parallel',\n", + " '3': 'jit-noloops',\n", + " '4': 'python-noloops',\n", + " '5': 'jit-parallel-fastmath',\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "062335e5", + "metadata": {}, + "source": [ + "## Plot the timing and convergence results" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "36f87c90", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAJOCAYAAADcVIF9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeVzM+R/A8ddM04nKrYQc5b7vLdKybot1LevIWpa1jmXXYh2xLHu4LbtYil03676PHLlLSCUkRySUontmvr8/2ubXqHSYmiaf5+PRg77fz3y+7/nO1Lz7nDJJkiQEQRAEQRAEgyTXdwCCIAiCIAhC7olkThAEQRAEwYCJZE4QBEEQBMGAiWROEARBEATBgIlkThAEQRAEwYCJZE4QBEEQBMGAiWROEARBEATBgIlkThAEQRAEwYCJZE4QBEEQBMGAiWROEARBEATBgIlkThAEQRAEwYCJZE4QBEEQBMGAiWROEARBEATBgIlkThAEQRAEwYCJZE4QBEEQBMGAiWROEARBEATBgCn0HYBQ8L18+ZJTp05pvq9QoQKmpqZ6jEgQBEEQDENiYiIPHz7UfO/i4oK1tbVOryGSOSFLp06dokePHvoOQxAEQRAM3q5du+jevbtO6xTdrIIgCIIgCAZMJHOCIAiCIAgGTHSzClmqUKGC1ve7du2iWrVqOqn79u3bODg46KSuwkbcm4yJ+5I5cW8yJu5LxsR9yZwu782dO3e0hiq9+ZmqCyKZE7L05mSHatWqUbt2bZ3ULUmSzuoqbMS9yZi4L5kT9yZj4r5kTNyXzOXlvcmLCYSim1UQBEEQBMGAiWROEARBEATBgIlkThAEQRAEwYCJZE4QBEEQBMGAiWROEARBEATBgInZrEKeiI+PJyYmhtjYWFQqVablkpOTuX37dj5GZjjEvcmYuC+Zy8t7Y2RkRJEiRbC0tMTc3DxPriEIQu6IZE7QuejoaB4/fpytsnK5HKVSmccRGSZxbzIm7kvm8vLeKJVKEhMTiYyMxNbWFisrqzy5jiAIOSeSOUGn4uPj0yVyCkXmbzO5XI5cLnr7MyLuTcbEfclcXt6btEni48ePMTU1xczMLE+uJQhCzohkTtCpmJgYzf8tLS0pV64cRkZGmZaPj48XXTaZEPcmY+K+ZC4v741KpSI8PFzzMx4dHS2SOUEoIMSft4JOxcbGav6fVSInCILhMDIyoly5cprv0/6sC4KgXyKZE3QqdbKDQqEQiZwgFDJGRkaaYRNvm9gkCEL+EsmcIAiCIAjCf9RqiQSlGrVa0nco2SbGzAmCIAiC8N4LeBzDmrMhHLwRTnyyCvMdj+lUtxxfOFehlq2lvsN7K5HMCYIgCILwXtvtF8bErddQpmmNi09WsdM3jD1+j1nQtz7dG5TXY4RvJ7pZBUEQBEF4bwU8jkmXyKWlVEtM3HqNgMcxGZ4vCEQyJwgZCA0NRSaT4ebmpnXczc0NmUxGaGioXuLKL7t27UImk3Hu3Lk8vU54eDhDhgyhQoUKGBkZIZPJePnyZZ5e09AMHDiQSpUqkZCQoO9QBKFQWnM2JNNELpVSLfHX2Xv5FFHOiWROEAQtycnJTJo0iQ4dOvDBBx/k6bXc3NzYsGEDrVu3Ztq0acycOVOsXfaGGTNmEBYWxuLFi/UdiiAUOmq1xMEb4dkqe+DGkwI7KUKMmROEHJg3bx6TJ0+mfPmCO3biXW3YsIHbt2/zxx9/5Ol1kpKSOHr0KO3ateOff/7J02sZMkdHR7p37878+fMZM2YMRYoU0XdIglBoJChVxCdnb5md+GQVCUoVFiYFL3USLXOCkAM2NjbUqFEDY2NjfYeSZ1auXEmFChVwdXXN0+uEh4ejVquxtbXN0+sUBgMHDiQ6OprNmzfrOxRBKFTMFEaYGWcvFTI3NsJMUTDXTxXJnCDkQEZj5ry8vJDJZLi7u3PlyhU++ugjihUrhpWVFT179sx0fN29e/f44osvqFixIqamptjY2ODm5sb9+/fTlf3333/p378/1apVw8LCAisrK1q1asWOHTvSlU073i8wMJCePXtSsmTJbI318/f358qVK/Tq1QuZTKZ1Lu3zPHfuHO3bt8fa2lqrnCRJrF27FicnJywtLbGwsKBJkyasXbtWq642bdpQqVIlADw9PZHJZOnGKGZWl6enZ7q43d3dkclkeHl54eHhQaNGjbCwsKBNmzaaMq9evWLmzJnUrl0bc3NzrK2t6dChA2fPnk1XX5s2bZDJZCQnJ+Pu7o69vT2mpqY4OjqyYsWKDO+dJEmsW7eOVq1aYW1tjYWFBQ4ODnz55Zc8ePBAq2xOYgHo0qULFhYWeHh4ZHheEITcOR4UgSqbXaed69ogl8uyLqgHBa+tUBAM1OXLl/nll19wdXXlyy+/5OrVq+zatYsbN27g7++vNRbs4sWLdOjQgdjYWLp27YqDgwOhoaH8888/HDx4kPPnz2NjY6MpP2XKFExMTHB2dsbGxoZnz56xZ88eevfuzdKlSxkzZky6eO7cuUOLFi2oW7cubm5uvHjxAhMTk7c+h+PHjwPQokWLTMucO3eOn376CVdXV0aMGKFJVCRJ4rPPPmPTpk04ODgwYMAATExMOHr0KMOGDSMgIIDffvsNSEmKGzRowJIlS6hfvz49evQAoEGDBlnWNWrUKO7cuaOpK61ff/2VkydP0r17d9q3b6/ZhSQyMpLWrVtz8+ZNnJycGDlyJDExMezevRtXV1e2bdumiSGt/v37c+nSJTp16oSRkRFbt25l9OjRGBsbM3z4cE05tVpNv3792L59O+XLl6d///5YWloSGhrK1q1b6dSpExUrVsx1LCYmJjRu3Jjz588TGxsruloF4R0lJKv46UAg68/fp3nlEvjcj3rrJAiFXMYw58r5GGEOSYKQBX9/fwnQfPn7+2daNjg4WAoICJCCg4MzLfP48WPJx8dH8vHxkby9vSUfHx8pJCREkiRJio+P15xL+5UqKCgo3bkXL15IkiRJERER6c6lxqFUKjOsNykpSZIkSbpz5470+PFjzXXu3bsnAdKQIUO0Yh8yZIgESPfu3dMcO3nypObebN68Wav8oEGDJEDatGmT5lhSUpJkb28vFStWTPL19dUqf+bMGcnIyEjq2rWrFBcXpzl+9+7ddPfx1atXUt26dSUrKyspNjY2XeyANGPGjExfh4z06dNHAqTbt2+nO5f2ea5duzbd+VWrVkmANHToUM19lSRJSkxMlLp16yYB0pUrV9LF+eY9zqquzp07p6tr5syZEiAVKVJEun79err6BgwYIAHS6tWrtY4/ffpUqlChglS6dGkpPj5ec9zFxUUCpObNm0vR0dGa40FBQZJCoZCqV6+uVc+yZcskQGrbtq3W6yZJkhQXF6d5j+YmllTffPONBEgnTpxIdy7ttfJadn7GC5obN27oO4QC6X29L8HhMVKHRackhx8OSOvP3ZPUarW06+ojqeqU/VKl7/el+6o6Zb+06+qjXF8vJ5+huSWSOSFLuk7mUj9403599tlnkiRJ0u3bt9OdS/s3R4sWLdKd27BhgyRJkrR8+fJ059q3by9JkiRFR0dnWG9ERIQkSZLUrVs3aebMmZrr5CaZa926dbrnmnpuwoQJmmM7d+6UAGn27NkZ3p9PPvlEksvlUnh4eKb3MNWCBQskQPLy8koXe7ly5aTExMQs60irZcuWEiDFxMRk+lwaNWqU4WPr1asnFSlSJMOE4vr16xIgTZw4MV2cGSVzb6vr0qVL6epKfU9988036co/e/ZMMjIykj788MMM4166dKkESHv37tUcS03mMkqcUs+lvUc1a9aUjIyMskxwchNLqvnz50uAtH79+kzrF8lcxt7XpCUr79t9UavV0t8XQiXHHw5I7RZ4SYFPorXO3wyLliZs8ZNqTDsoVfp+n1Rj2kFpwhY/6WZYdCY1Zk9+JHOim1XId19++SUff/wxAAkJCZiZmVG8eHEA7Ozs8PHxyfSxHh4exMbGah2zt7cHoG/fvrRs2VLrXLFixQAoUqRIhvVaW1sDsGjRIiwsLHL1fFI1btw43TE7OzsArbXTLly4AMCtW7dwd3dP95jUiQG3b9+mbNmyAERERDB//nwOHjzI/fv3iY+P13rM48eP09VTv379LLtV3/TixQuMjIw09y0jTZs2TXcsLi6OGzduYGtry88//5zufHJyMgBBQUFZxpBVXXFxcZnW1axZs3THLl++jEqlIjExMcP7ffv2bU19Xbt21TqX1WtarFgxXr9+TWBgINWqVcPBweGtz+1dYilRogQAz58/f+s1BEFI72VcEpN33ODQzXA+a16RaV1qYW6iPZmhlq0lC/rW59fe9fC9foNG9eoW2DFybxLJnJDvbGxsNOPB4uPjMTc315wzMzOjUaNGmT62evXqmZ4rXbo0pUuXzvCckZHRW+utWrVqVmFnydIy/d59CkXKj5hK9f+p75GRkQBZLseRmrRERkbStGlTHjx4gJOTE+3atcPa2hojIyP8/PzYvXs3iYmJ6R6fmgjmhLm5OSqViuTk5Exn7GZUb1RUFJIkERYWxqxZszKt/81EPCPvUldGsaXeb29vb7y9vXNUX3Ze0+joaIBsLVfzLrGkJvDv+keHILxvLoa8YPwWP2ITlfwxsBEd69i8tbxcLsNMITeYRA5EMicI+S41Qdi7d2+61pe0Uj+8//rrLx48eMCPP/7ItGnTtMrMnz+f3bt3Z/j4N2ejZkdqMhwZGZlpMphRvanPqXHjxly5ciXH181JXW/+AZDd2CZOnJjhpIl3ZWVlBUBYWFiWZd8lltREMLM/WARB0KZUqVl24g7LTtymSaUSLPq0AeWtM/7dYejE0iSCkM+aN28OwPnz57NV/u7duwB079493bkzZ87oLjCgbt26QEoXcE4UK1aMmjVrEhgY+M7bcemyLkjpFpbJZNm+3zlVtGhRatWqxb179zTdpHkRS+prkvoaCYKQubCX8fRffYFlJ24ztq0DG4c3L7SJHIhkThDyXffu3alYsSILFy7k9OnT6c4nJydrrTeWuh7bm2uQbdy4kQMHDug0NhcXFyBl6ZScGjt2LHFxcQwfPjzDbsJ79+5le09bXdZVrlw5+vbty7lz5/j111+RpPTLD1y8eFHTrZ0bo0ePRqVS8dVXX6Ubz5iQkKBpVXuXWC5evIiNjU2W4/IE4X138MYTOi0+TVhUPFu+bMn4do4ojAp3uiO6WQUhn5mamrJ9+3Y6deqEi4sLH374IXXr1kUmk3H//n3OnDlDyZIluXr1KgCDBg3i559/ZsyYMZw8eZJKlSpx7do1jh8/zieffMLOnTt1Flvbtm0pVqwYR48e5bvvvsvRY7/88ksuXLiAp6cn3t7etGvXDltbW54+fUpQUBAXL15k48aNmgkrua0rICCAy5cvZ7sugBUrVnDr1i0mTZrEhg0baNmyJdbW1jx8+JArV65w+/Ztnjx5kuvxaKNGjeLUqVNs3boVBwcHPv74YywtLXnw4AGHDx/mr7/+0qwdl5tY7t69y7179xg1alSu4hOE90F8korZ+wLYdOkBneqUY/4n9bCyKLy79aQlkjlB0IOmTZty7do1fv31Vw4cOIC3tzempqaUL1+eHj160L9/f01ZOzs7Tp06xaRJkzh27BhKpZJGjRpx5MgRHj58qNNkrmjRogwcOJBVq1bx5MkTrYWLsyKTyfDw8KBz586sXr2affv28fr1a8qUKYODgwO//fYb7dq1e+e6qlatmqO6IGUm6Llz51i+fDlbtmzhn3/+Qa1WU65cOerXr8/06dMpVapUtuvLKN7NmzfTvn171qxZw/r165EkifLly9O3b1+tWbG5ieXvv/8GUpJcQRDSC3wSw5hNV3kUFce8T+ryadMKuRo3bKhkUkbt/IKQxs2bN6lTp47me39/f2rXrp1h2du3b6NUKlEoFNnqDnrbYPb3nb7uza1bt6hTpw7u7u788MMP+X79rLxv7xmlUomDgwOVK1fmxIkTby2bH/cmpz/jBYG/v7/W7zAhRWG4L5Iksf78feYeCKRKqSIs698Qh7KZL62UXbq8Nzn5DM2twt2JLAhCjlWvXp0vvviCRYsW8erVK32H897z9PTk/v37eTITVxAMWWRsEsPXX2HmnpsMaFaRXaOddJLIGSLRzSoIQjqzZs2ibNmyhIaGitmTeiaTyVi9evVb10kUhPfNuTvP+WarH0lKNWsGN6FdrZyvq1mYiGROEIR0ypQpk+EOBUL++/zzz/UdgiAUGMkqNYuPBbPC6y4tKpdkUb8GlLMy03dYeieSOUEQBEEQCryHkXGM2XSVG2HRfNu+OiNdqmJkQLs05CWRzAmCIAiCUKDt9gtj2r/+WBcxZtvIljSqWFzfIRUoYgKEIBRAbdq0EXtwCoLw3otNVPLttmuM2+yHa40y7B/bSiRyGRDJnCDogYeHh2YtNUEQBCE9/7Boui47y4EbT/itT32WfNoAS7P3YxHgnBLdrILBUqslEpQqzBRGyMW4CUEQhEJBrZZY632Pnw8FUb1cMfaNcaZK6aL6DqtAE8mcYHACHsew5mwIB2+EE5+swtzYiE51y/GFcxVq2VrqOzxBEAQhl569SuTbbdc4FfyML5wr813H6pgqjPQdVoEnulkFg7LbL4yPl59lp28Y8ckqAOKTVez0TTm+2y9MZ9fy8vJCJpPh7u7O2bNnadOmDcWKFcPa2ppevXpx584dANRqNZUqVaJkyZIkJiZmWFfr1q1RKBQ8evQINzc3hg4dCsDQoUORyWSarzclJyfj7u6Ovb09pqamODo6smLFigyvERsby8yZM6lRowZmZmaUKFGCLl264O3tna6su7s7MpkMLy8vNm7cSIMGDTA3N8fGxoZx48al2yxeEAQhr50OfkanJWe4+Tgaj6FNmda1lkjkskkkc4LBCHgcw8St11CqM96BTqmWmLj1GgGPY3R63QsXLtC2bVusrKwYM2YMLi4u/Pvvv3zwwQeEhIQgl8v54osviIyMZMeOHekef+vWLc6cOUPHjh2xs7OjR48edO/eHYDu3bszc+ZMzdeb+vfvz9q1a+nQoQPDhg0jMjKS0aNHs3r1aq1yCQkJfPjhh8yePZsiRYowfvx4unfvzsmTJ3FxcWHbtm0ZPrfly5czYsQIateuzahRoyhevDhLly7liy++0MGdEwRByFqSUs1PBwIZvPYSNW2KcWBcK9pUL6PvsAyK6GYVDMaasyGZJnKplGqJv87eY0Hf+jq77uHDh/njjz+0Njn/888/GTlyJOPGjWPv3r0MGzaM2bNns3r1agYMGKAd95o1AAwfPhyAHj168PLlS3bv3k2PHj1wc3PL9NqPHj3C398fS8uU7uNx48ZRp04dFixYoKkP4JdffuHSpUt89tlnbNiwQdPKN3bsWFq0aMGIESPo2LEjxYppb3Vz7NgxfHx8qF69OgBz586lQYMGbN68mV9//RVbW9tc3jVBEISs3Xsey9hNVwkKj2Fq5xp84VxFjIHOBZHMCfkqPknF3WevNd8nJCZiZpqU5ePUksT+60+ydY191x8z5INKyDPotsxK1dJFMTfRbtZ3dHTUSpwgJTFbsGAB+/fv59mzZ9ja2tKtWzd27drFnTt3qFatGpDSTbp+/XpsbGzo0qVLjuOZN2+eJpGDlH1TnZycOHXqFK9evdIkZ56enhgbGzN//nyt7tqGDRsyZMgQVq9eza5duxg0aJBW/ePGjdMkcgDm5ub079+fWbNm4ePjI5I5QRDyzE7fR0zf5U/pYqbsGPUB9eys9R2SwRLJnJCv7j57TddlZ/P0GolKNR8vTz9OLDv2jXGmTnkrrWNOTk7I5dojEuRyOU5OTty+fZtr167Rrl07vvzyS/7991/WrFnD/PnzAdizZw8RERFMnToVhSLnP26NGzdOd8zOzg6Aly9fUqxYMWJiYggJCaFmzZqac2m5urqyevVq/Pz80iVzWdUvCIKga68Skpm+y59dfo/5pFF5ZnevQ1FTkY68C3H3hHxVtXRR9o1x1nyf0jJnmuXj1JJEnz/Ok6hUZ1nWVCFn28iWuW6Ze1PZshlv4Jx6PDo6GoD27dtTuXJlPD09mTNnDgqFgjVr1iCTyRg2bFiOYwG0WuVSpSaFKlXKBJCYmJi3xmljY6NVLqf1C4Ig6Irfw5eM3XSVyNgkFvdrQI+G5fUdUqEgkjkhX5mbGGm1fMXHx2Nubp6tx3apZ8NO36xnq3atZ6vT5vqnT5++9biVVcrzkclkjBgxgilTprB3716aNGnCkSNHaNu2LVWqVNFZPG9KTcgyizM8PFyrnCAIQn5TqyX+PB3CgiO3qF3eig3DmlGpZBF9h1VoiNmsgsH4wrkKiiwGxirkMoY5V9bpdb29vVGrtVsE1Wo1586dQyaTUb/+/ydbDB06FGNjY9asWcPatWtRq9XpxtsBGBmljMvTReuXpaUlVapU4c6dO4SFpU92vby8AGjQoME7X0sQBCGnImISGLz2Er8cDmJ46ypsH9lSJHI6JpI5wWDUsrVkQd/6mSZ0CrmMBX3r63zh4ODg4HRLgaxevZrg4GC6dOlC6dKlNcfLli1Ljx49OHToECtXrqRUqVL06NEjXZ0lSpQA4OHDhzqJcciQISQnJzNlyhQk6f8zfq9fv46HhwdWVlYZxiEIgpCXTgQ9peOSM9x6+ooNnzfn+441MDYSqYeuiW5WwaB0b1AehzLF+OvsPQ7ceKLZAaJzXRuGOVfOkx0gOnTowNixYzlw4AC1a9fm5s2b7N27l1KlSrFkyZJ05UeOHMm2bdt4+vQpEydOxMTEJF2Zli1bYm5uzuLFi4mKitIkhNOmTctVjJMmTWL//v1s2LCBwMBA2rZtS0REBFu2bEGpVLJ69ep0y5IIgiDklUSlivkHg1jnHcqHNcrwa+96lCya9fhoIXdEMicYnNQWul9718uXvVlbtGjBtGnTmDZtGkuXLsXIyIgePXrwyy+/ZDgWztXVlYoVK/LgwYNMF98tUaIE27dvx93dndWrV2t2XMhtMmdmZsaJEyf4+eef2bJlC4sWLcLCwgIXFxemTp2Ks7Nz1pUIgiDowJ2I14zZdJW7Ea+Z2a0Wbh/YZ7jDjaA7IpkTDJZcLsPCJH/ews7OzpqxZ1kJDw/n8ePHtGrViho1amRarnPnznTu3DnDc15eXpluqeXh4YGHh0e640WKFGH27NnMnj07yxjd3d1xd3fP8Jybm9tbFzIWBEHIiCRJbL3yEPc9Adham/Hv6A+obWuV9QOFdyaSOUHQscWLF6NUKhk1apS+QxEEQcgX0fHJTN15g/03nvBp0wrM6FYr3/7YFkQyJwg6ER0dzcqVK7l//z5r1qyhVq1a9O3bV99hCYIg5Dmf+5GM3eRHTEIyvw9oRJd6NvoO6b0jkjlB0IGoqCimTJmCmZkZzs7O/PHHH5rlRwRBEAojlVri95N3WHL8Ng0qWLPlyxbYFbfQd1jvJZHMCUIm2rRpo7XMx9vY29tnu6wgCIKhexIdz/jNflwKjWSMazXGtnVAIZYc0Rtx5w2QvX3KzKCMvtq0aaPv8ARBEIRC7PDNcDotOcP9F3Fs/KIFE9pXF4mcnomWOQNlZWXF+PHj0x23t7fP91gEQRCEwi8hWcWc/QH8feEB7WuV5ede9SheJP06mkL+E8mcgbK2ts50aQlBN0JDQ6lcuTJDhgzRLAXi5uaGp6cn9+7dE4mzIAjvjVvhrxizyZf7L+L4sUcdBjavKNaOK0BEu6ggvCMvLy9kMplIrgVBKHQkSWLDhft8vPwsAHu+dmZQi0oikStgRMtcDkRERHDp0iUuXbrE5cuXuXz5Mi9evADQar3Jjvv377N06VL279/Pw4cPMTU1pWrVqvTt25fRo0djYfH2GUGJiYl4eHjw+PFjLC0tadq0Kc2bN3+Xp2d41GpQxoPCHOS6/7ukfPnyBAYGYmX1/0Uv582bx+TJkylfvrzOrycIglCQvIxLYtL26xwJeMrAFhWZ1qUWZsZiln5BJJK5HChbtqxO6tm7dy8DBw4kJiZGcywuLo4rV65w5coV1qxZw/79+6lWrVqmdYSHhzN06FCtY02bNmXTpk1UrVpVJ3EWWOE34PzvELAbkuPA2AJqdYeWo6FcXZ1dxtjYON0ODjY2NtjYiDWUBEEo3C6EvOCbLX7EJan4c1BjOtQup++QhLcQ3ay5VLFiRdq3b5/jx129epV+/foRExND0aJFmTt3LufOneP48eMMHz4cgODgYLp06cKrV68yrGPo0KEcP36cp0+fEhsby9WrVxk0aBCXL1+mbdu2mT6uULixHVa1gWubUhI5SPn32qaU4ze26+xSoaGhyGQyra2t3NzckMlkhIaGAinbYrm6ugIwa9YsrZnFqWUEQRAKGrVaIkGpRq3WXlJJqVKz8MgtBqy+QIUSFhwc10okcgZAtMzlwIwZM2jatClNmzalbNmymgHyOTFu3Dji4+NRKBQcOXKEli1bas59+OGHODg4MGnSJIKDg1mwYEGG47Bmzpyp9X2DBg1Yv349ABs2bGD16tVMmDAh50+woAu/Af9+CWplxufVypTzpavrtIXubdq0aUNoaCienp64uLhoLQ1jbW2dLzEIgiBkV8DjGNacDeHgjXDik1WY73hMp7rl+MK5CpbmCsZt9sPv4Uu+aefIV67VMJKLsXGGQCRzOTBr1qx3evylS5c4c+YMAMOGDdNK5FJNnDiRdevWERgYyJIlS/jhhx8wNjbOVv1ffvklGzZswNvbu3Amc+d/zzyRS6VWwvkV0HNlvoSUmrx5enrSpk0bMQlCEIQCa7dfGBO3XkOZpjUuPlnFTt8wdl0Nw0Qhp2QRU7aMaEET+xJ6jFTIKZHM5aNdu3Zp/v/meLdUcrmcwYMHM2XKFF6+fMnJkyez3Z1bqlQpAGJjY9851jyTFAfPgzXfyhITwdQ068dJarj5b/aucXMnNBsOslyMIijlCCZiOxpBEAqXgMcx6RK5tNQSJCarWdSvgUjkDJBI5vLR2bMpU7uLFClC48aNMy3n4uKi+b+3t3e2k7mLFy8CBXzh4OfBsOr/z88sL66hTIDVrrl77IhTYNtAp+EIgiDo25qzIZkmcqkkYMvlhzSrLJI5QyOSuXwUGBgIQLVq1VAoMr/1aWdQpj4mVVBQEBUrVky3dElQUBDff/89AAMGDMhRXI8ePXrr+fDw8BzV91alHFMSpv8kJCZilt2WuXWdUhK1rCjMYOjB3LfMCYIgFCJqtcTBG9n7PX7gxhN+7V0PuRgrZ1BEMpdPEhISeP78OQB2dnZvLVu8eHGKFClCbGwsDx8+1Dq3efNmFi5cSOvWralUqRJFihQhODiYAwcOkJyczJQpU2jdunWOYqtQoULOnsy7MLHQavmS4uPB3Dx7j63dM2XWapblPoHyjXIXnyAIQiGToFQRn6zKVtn4ZBUJShUWJu9nevD8+XM2bNhAu3bt9B1Kjryfr5YepF0upGjRolmWT03mXr9+rXXc1dWVwMBArl69ypkzZ4iLi6NUqVJ07tyZr776KlfLpeTU7du3kaSMm+uTk5ORy+XI5XLi4+OzrEupVGarHICs0ReY3tiG7C2TICS5gsRGw1KSxHeUkJDSCqhSqTQxqlQqzbnUY0qlMt0xXcjJvXmfiPuSufy4N2q1mqSkJBISEvD398/Ta+nK8+fPDSbWvKCWJEyNZCSq3t7NCmBqJOPOrUDk7+EOD1euXOH7778nKSkJOzs7ne1ycefOHZ3U8zYimcsnqYkBgIlJ1hsTm/7X9fjmL2YXFxetMXW68Gbr35tu3bql9VeKg4MDtWvXzrDs7du3USqVyOVyzLPR4hYfH5+tcgBUagI9/8x8eRK5AlnPPzGr1CR79WXBzCxlRJ+RkZEmRiMjI8251GOpiwiHh4dn/7lkQ47uzXtE3JfM5ce9kcvlmJiYoFAocHBwyNNr6Yq/vz916tTRdxh6I0kStcvH4PvgZZZlu9YvT726+bO0U0ESEhLCF198gZOTExs3biQqKkpn75n82PpMJHP5JDUxAEhKSsqyfGJiIkC+fGhl1e0bHR2d5zFkW93eKevInV8BAbvS7ADRA1p+lW/ry6VVo0YNbG1t2bx5M6amppq/6MaMGaO1FZggCEJ+i0tSMu1ff3wfvEQmg0w6VQBQyGUMc87Z2qmG7sWLF5QoUYIqVaqwb98+2rVrh0KhICoqSt+h5YhI5vJJsWLFNP9/s+s0I6nLi2SnS/a9U65uyjpy3X/P071Zs8vIyIidO3fy/fffs2nTJk2X+sCBA0UyJwiC3gQ/fcVX//jy+GU8i/s1QCYj0+VJFHIZC/rWp5atpR4i1Y+jR48ycOBA3N3dGTVqFB07dtR3SLkmkrl8YmZmRsmSJXnx4kWWs0ejoqI0yVy+Tk4wNHI5mBTJs+pTu8ZN08y29fDwwMPDI13Z5s2b4+XllWexCIIg5MR2n0dM3+VPhRLm7PnamWplUhoGHMoU46+z9zhw40nKDhDGRnSua8Mw58rvTSKnVCqZOXMm8+bNo127dnzyySf6DumdiWQuH9WqVYszZ85w584dlEplpsuTBAUFaf5fs2bN/ApPeEPqoNWsuqEFQRAKivgkFTP3+LP1yiN6N7ZjdvfaWjNTa9lasqBvfX7tXQ/f6zdoVK/ue7UMSVRUFB9//DHnz59n7ty5fP/998j12LOjK4b/DAyIs7MzkNKF6uPjk2m5U6f+vw6bk5NTnsclaAsODmby5Ml89dVXyOVyunfvru+QBEEQsnT32Wt6rvBmz7XH/NK7Hr/1qZ/pEiNyuQwzhfy9SuQALC0tqVKlCqdOnWLKlCmFIpEDkczlqx49emj+v27dugzLqNVq1q9fD6Rs1O7qmsudDIRcCwgIYMmSJRQvXpwdO3ZQr149fYckCILwVrv9wvh42VmSVGp2jXaibxMxRCdVUlISEydO5NSpUxgZGeHp6VnoGkpEMpePmjVrRqtWrQD466+/OH/+fLoyCxYs0Oz6MG7cOIyNjfM1RiEl6Y6Pj+fatWtaCbggCEJBk5Cs4od/bzBusx/tapVlz9fO1Cj3fox9y46QkBCcnJxYtmxZvqz3pi9izFwOnD17VuvNkLqjA6SMr3pzYLybm1u6OpYsWYKTkxPx8fG0b9+eqVOn4urqSnx8PJs3b2bVqlUAODo6MnHixDx5HoIgCILhu/8ilq/+8eV2xGvm9qzDgGYV82VNM0OxdetWhg8fTqlSpTh37hxNmuhmDdKCSCRzObBmzRo8PT0zPOft7Y23t7fWsYySuYYNG7JlyxYGDhxITEwMU6dOTVfG0dGR/fv3ay1nIgiCIAipDt54wqTt1ylZ1ISdoz6gTnmxDFJa8fHxTJo0iY4dO7Jq1apCv0yU6GbVg27dunH9+nW++eYbHB0dsbCwwNramiZNmvDzzz9z9epVqlWrpu8w33uhoaHIZDKtpNzNzQ2ZTEZoaKje4tKnjO4J6Oa+ZFa3IAj/l6RUM2vvTUb940srx1LsGeMsErk0goKCePToEebm5ly8eJHNmzcX+kQORDKXIx4eHkiSlO2vt6lUqRILFy7k1q1bxMbGEhUVxeXLl5k0aRIWFhb59IwMm1pSE5cch1pS6zUOLy8vZDIZ7u7ueo1DEITC7WFkHH3+PM/fF+7j3q0Wvw9ohKWZGFedav369TRp0oRp06YBULZs2fem21l0swoG51bkLdYHrOfo/aPEK+MxV5jzUaWPGFxrMNVLVNfZdcqXL09gYKDWX3Xz5s1j8uTJlC9fXmfXEQRByMrRgKdM3OqHpbkx20d+QP0K1voOqcB4/fo1X3/9NZ6engwZMoTly5frO6R8J5I5waAcCDnAD2d/QCkpNcfilfHsubuHAyEHmOs8l85VOuvkWsbGxtSoUUPrmI2NDTY2NjqpXxAEISvJKjW/Hr7FqtMhfFSrLL/1ro+VhWiNS6VSqWjdujXBwcF4enoyePBgfYekF6KbVTAYtyJvpUvk0lJKSn44+wO3Im/p5HrZGTPn7u6uWQtw1qxZyGQyzVd2xo+5u7sjk8nw8vLir7/+om7dupiZmVG+fHkmTZqk2ec1rbVr19K9e3fs7e0xMzOjRIkSdOjQgZMnT6Yrm7YL+Ny5c7Rv3x5ra2utroec1Jcbp0+fplu3bpQqVQpTU1McHByYNm0acXFxOqlfEAqrJ9HxfLrqAmvP3mNal5qsGtRYJHL/kSQJpVKJkZERP/zwA1euXHlvEzkQLXOCAVkfsD7TRC6VUlKyPmA9c53n5ktMbdq0ITQ0FE9PT1xcXGjTpo3mnLW1dbbrWbhwIcePH6dfv3506dKFY8eOsXz5cq5cucLp06e11hscPXo09evXp127dpQuXZqwsDB27dpFu3bt2LlzZ4Y7Vpw7d46ffvoJV1dXRowYwYMHD96pvuxauXIlo0ePxtramm7dulGmTBmuXLnC3LlzOXnyJCdPnsTExCTX9QtCYeV1K4JvtvhhZmzEli9b0rhScX2HVGBER0czYsQISpcuzfLly+nVq5e+Q9I7kcwJ+SpeGc+96Hua7xMTEzGNM33LI1KoJTWHQw9n6xqHQw/Tv0Z/5LKcNzxXtqqMucI82+VTkzdPT0/atGmT60kQhw8f5vLly5rdJiRJon///mzZsoWlS5dqrTkYEBBA5cqVtR7/5MkTmjRpwnfffZdh8nX06FHWrl3L0KFD053LTX3ZERAQwNixY6lXrx7Hjx+nZMmSmnPz589nypQpLFu2TKynKAhpKFVqFh0L5veTd2lTvTQL+zagRBHxB0+qK1eu0K9fP54/f86aNWv0HU6BIZI5IV/di75Hv3398vQaiapE+u/vn6vHbum6hVola+k4oqwNHjxYa9swmUzGrFmz2L59Ox4eHloJz5uJF6SM5evVqxfLli3j/v37VKpUSet8o0aNMkzkcltfdvz5558olUqWLVumlcgBTJo0iYULF7Jp0yaRzAnCfyJiEhiz6SqXQyOZ1LE6I1tXfe/2Ts2MJEksXbqU7777jvr163P06FGqVKmi77AKDJHMCfmqslVltnTdovk+MTERU9Pstcy5HXIjUZWYZVlTI1M8OnrkumVOl/z8/Ni1a5fWMXt7+3RrqaVu85ZWxYoVqVChAjdv3iQpKUnTHRkSEsK8efM4ceIEYWFhJCZq35PHjx+nS76aNm2aaYy5qS87Lly4AKS0Oh4/fjzdeWNjY4KCgnJcryAURt53njNu81XkMhmbhregeZWSWT/oPSKTyQgMDOTrr79m/vz5YnjGG0QyJ+Qrc4W5VstXfHw85ubZ69bsYN+BPXf3ZKtcnVJ1ch2jLvn5+TFr1iytYy4uLumSubJly2b4+LJlyxIaGsqrV68oWbIkd+7coVmzZsTExODq6kq3bt2wtLRELpfj5eXFqVOn0iVjb6s/t/VlR2RkJABz5+bP+EVBMEQqtcSyE7dZcvw2TlVLsfjTBpQqmvUfuO8Lb29vwsLC6Nu3LytXrnxv1o3LKZHMCQZjcK3BHAg58NZJEAqZgsG1Cs6MJjc3t2ztaPD06dNMj8tkMs3WbosWLSIqKooNGzYwcOBArbIjR47k1KlTGdaT2S/A3NaXHZaWKZt9x8TEiK3pBCEDz18nMn6zH953nzO+rSNff1gNI9GtCoBarebnn39m+vTptG3blj59+ohE7i3E0iSCwaheojpzneeikGX8N4hCpmCu81ydLhycHUZGRkDKeke5debMmXTHHjx4wMOHD6ldu7amS+Hu3bsA6SYlSJKUbm/g7NB1fWk1b94c+H93qyAI/3cx5AWdl5whKDyGv4c1Z1w7B5HI/efp06d06tSJH374gcmTJ7N//36RyGVBJHOCQelcpTObu27m46ofa2admivM+bjqx2zuullnCwbnRIkSJQB4+PBhrutYv349169f13wvSRIzZ85EpVJpteyljl07e/as1uPnz5+Pv79/jq+r6/rS+uqrr1AoFIwZM0ZrKZRUL1++5OrVq+90DUEwNGq1xO8n79B/9QUqlyrCgbGtcKpWSt9hFSgjR47Ez8+Pw4cPM2fOHBQK0YmYFXGHBIOT2kL3o9OPJCgTMFOY5Wqyg67UqFEDW1tbNm/ejKmpKXZ2dshkMsaMGZPtDZ47dOhAy5Yt+fTTTyldujTHjx/nypUrtGjRgjFjxmjKjRw5knXr1tGrVy/69u1LyZIluXDhAr6+vnTp0oX9+/fnKHZd15dWnTp1WLFiBaNGjaJ69ep07tyZqlWr8urVK0JCQjh16hRubm788ccfub6GIBiSqNgkvtnqh9etZ3ztWo3x7RxQGIk2FQClUsnjx4+pWLEiS5cuxdjYmHLlyuk7LIMh3kWCwZLL5FgYW+g1kYOUbtadO3fSokULNm3axIwZM5g+fTpRUVHZrmPChAksWbKEixcvsnjxYsLCwhg9ejRHjhzRmrXVsGFDjhw5QqNGjdi5cydr167F2toab29vmjRpkuPYdV3fm4YPH8758+fp0aMHFy5cYPHixWzfvp3nz5/zzTffMH78+He+hiAYAp/7kXReeoZrD1/iMbQp33aoLhK5/4SFhdG2bVvatWuHUqmkQoUKIpHLIZkkSZK+gxAKtps3b1Knzv9nh/r7+1O7du0My96+fRulUolCocDBwSHLunMymzW/BQUFUbNmTUaMGMGff/6ZJ9dwd3dn1qxZnDx5Umv3CCjY90afxH3JXH7cm5z+jBcE/v7+Wr/D8pMkSaw5c4+fDwVRv4I1y/o3xNa6YLx/9XlfUh04cIDBgwdjZmbGxo0bad26tV7jSaXLe5OTz9DcEn8WCEIm7ty5A4CdnZ2eIxEEwRBFxyUzfL0Pcw8EMsy5MptHtCgwiVxBMG/ePLp06UKLFi3w8/MrMImcIRJj5gThDcHBwaxdu5aNGzcil8vfaW9SQRDeT9cevmT0Rl9eJShZM7gJ7WplvNbj+6xp06b89ttvfPPNN8jlom3pXYi7JwhvCAgIYMmSJRQvXpwdO3ZobbMlCILwNpIk4eF9j95/nKNkUVP2j3UWiVwaO3fu5NNPP0WtVtOuXTsmTpwoEjkdEHdQEN7Qo0cP4uPjuXbtGj169MjTa7m7uyNJUrrxcoIgGJ6YhGRGb/TFfW8AA1tUYtuXLbErbqHvsAqEhIQExowZQ69evVAqlSQkJOg7pEJFdLMKgiAIwjvyD4tm9EZfIl8nsfKzRnSqa6PvkAqM4OBg+vXrR2BgICtWrGDkyJFiEWAdE8mcIAiCIOSSJElsvPSAWXsDcCxblPWfN6NSySL6DqtA2bdvH3FxcVy4cIEGDRroO5xCSXSzCkImQkNDkclkWjswuLm5IZPJCA0N1VtcOZHRcxAEQTdiE5WM3+LHD//607eJHdtHfiASuf/Exsayc+dOAMaPH4+vr69I5PKQSOYEgyWp1ajj4pDUar3G4eXlhUwmw93dXa9xCIKQf4LCY+i2/CzHAp6ytH9D5vSoi5mxkb7DKhBu3rxJs2bNGDx4ME+fPkUul1OkiOEkuZJaQpUsIakNZxle0c0qGJyEoCAi13kQc+QIUnw8MnNzLNu3p8RQN8xq1NDZdcqXL09gYKDWllzz5s1j8uTJlC9fXmfXEQTBsGy98pAZu/2xL1mEPWOcqVq6qL5DKhAkSeKvv/5i7NixVK1alUuXLlG2rOHM5H3+6BV+xx5y1zcCZZKaCyanqNqoDA3aVaCUXTF9h/dWIpkTDEr0vv08njwZlErNMSk+nujdu4nevx/b+fOx6tpFJ9cyNjamxhvJoY2NDTY2YmCzILyP4pNUTN/tz3afR/RrUoFZ3WuL1rg0Vq5cyejRoxk+fDiLFy/GwsJwZvIGXw7n2LoApDQdPcokNbcuhBN8KZx2Q2vh2LTgbjEmulkFg5EQFJQukdOiVPJ48mQSgoJ0cr3sjJlzd3fH1dUVgFmzZiGTyTRf2RlX5+7ujkwmw8vLi40bN9KgQQPMzc2xsbHh22+/JT4+PsPHrVu3jubNm1O0aFGKFi1K8+bN8fDwyNHzu3//PsOGDaN8+fKYmJhgZ2fHsGHDePDgwTuXb9OmDTKZjISEBCZPnkzFihUxMzOjZs2aLFu2jDd3EVSr1axZs4ZmzZpRokQJzM3NsbOzo1u3bnh5eeXoeQlCXrgT8Yruv59l//UnLOhTn5971xOJ3H9iY2MBGDhwIDt37mTVqlUGlcg9f/SKY2tvaiVyaUlqOLb2Js8fvcrfwHJAtMwJBiNynUfmiVwqpZJID09s58/Ll5jatGlDaGgonp6euLi4aK0XZ21tne16li9fzqFDh+jevTsffvghhw4dYsWKFbx8+ZJ//vlHq+zYsWNZtmwZ5cuXZ9iwYQDs2LGDoUOHcvXqVZYsWZLl9YKDg3F2dubZs2d069aN2rVr4+/vz9q1a9m7dy9nz57F0dEx1+VT9e3bl6tXr9KrVy9NnGPHjiU0NJQFCxZoyk2ZMoVffvmFqlWrMmDAAIoVK0ZYWBhnz57l2LFjYh0+Qa92XQ1j6r83sLU2Z8/XTjiULdhdbvlFkiSWL1/OnDlzuHjxIvb29vTs2VPfYeWYzw5/JOntS6VIkgzfHf60H9cyn6LKGZHMCflKHR9PYkiI5vvExEQwNc3ycZJaTcyhQ9m6RszBg1h/NgBZLlYVN61SBXkONipPTTI8PT1p06ZNridBHDt2DB8fH6pXrw7A3LlzqV+/Pps3b+bXX3/F1tYWgNOnT7Ns2TJq1qzJ+fPnNeP53N3dadGiBUuXLqV37960atXqrdcbOXIkz549488//2TEiBGa4ytWrGD06NGMGjWK48eP57p8quDgYPz9/TVxzpo1i+bNm7No0SL69+9PkyZNAFizZg22trZcv3493V/0kZGR2b6PgqBLCckqZu0NYNOlB3zSsDxzetbBwkR8bAJERUXx+eefs2vXLsaOHWuww08ktcS9wNdA1q2sIYGvkdQSMnnBWyNPvCuFfJUYEkJor955eg0pMZH7ffrm6rH2O7ZjXru2jiPK2rhx4zSJHIC5uTl9+vThp59+wsfHR5PMeXp6AinJW9qJGcWLF2fmzJl89tlneHh4vDWZe/DgASdPnqRWrVoMHz5c69zIkSNZtmwZJ06c4OHDh1SoUCHH5dOaPn26VpxWVlZMmzaNQYMG4enpqUnmAExMTDAySv8LtUSJEpk+F0HIK/eex/LVP76EPHvNz73q0rdJBbHQ7X98fHzo1asX0dHR/Pvvv3m+U05eSk5UospGIgegwojkRCUm5sZ5HFXOiWROyFemVapgv2O75vvExERMs9ky92DgIKTExCzLykxNqfj3hly3zOmSn58fu3bt0jpmb2+fbt23xo0bp3ts6ozZly9fao5dvXoVIMNux9Sxe35+flnGBODi4pLuw0kul9O6dWuCgoLw8/OjQoUKOS6fVkZJZeqx1OcC8Omnn7JixQrq1KnDp59+iqurKy1btsQ8B62kgqAr+68/4fsd1yldzJRdo52oaWOp75AKlKJFi+Lo6Mjq1aupVKmSvsN5J0aqJOSqRNRGWX8OyVWJGKmSAJHMCe85ubm5dstXfHy2P7AtO3YkevfurMt16oRF3bq5DVGn/Pz8mDVrltYxFxeXdMmcpWX6DwuFIuXHU6VSaY7FxMQgl8spXbp0uvJly5ZFJpMRExPz1phSz2e2ZEBqd0lquZyWfzOmzI5FR0drji1ZsoTKlSuzbt065syZw5w5czAzM6Nv374sWLCAUqVKvfU5CYIuJCpV/LQ/EM/z9+lW35Z5n9SlqKn4mAR49uwZs2bN4pdffqF69eocOXJE3yHphNzMlBIvg3hesn6WZcs+90Vu9lE+RJVzYjarYDBKDHUDRRa/WBUKSrgNyZd4ssPNzQ1JkrS+3mV2pqWlJWq1mmfPnqU7FxERgSRJGSaGb9YB8PTp0wzPh4eHa5XLafm0MnpM6rG03a8KhYJvv/2WmzdvEhYWxsaNG2nVqhXr16/ns88+e+vzEQRdeBgZR58/zrPp0kN+7FGHpZ82EIncf06dOkWDBg3YsmULwcHB+g5Hp27svMwL61ogvX2BYJlaRU3lQWTqrHuH9EEkc4LBMKtRA9v58zNP6BQKbOfP1+nCwdmROs4rbQtaXmnYsCFAhglh6rGstsxJPX/69Ol0S4RIksTp06e1yuW0fFpnzpzJ9Fjqc3mTra0t/fv359ChQ1SrVo1jx45lukSLIOjCkZvhdF56hpdxyewY9QGDWlQS4+NI+Z02a9YsPvzwQxwdHbl27Vqh2ZIrKUHJgZn7OXMiHtuoi9S8tR6ZOuPf4TK1ippBnlR2vAeKgjn0QyRzgkGx6tqFytu3YdWjB7L/umdl5uZY9eiRclxHCwbnROoA/YcPH+b5tYYMSWl1nDVrlla3ZnR0tKY7N7VMZipWrIirqys3b95k7dq1WudWrVpFYGAgH374oWb8W07Lp/Xjjz9qdadGR0czZ84cZDKZJs7ExETOnTuX7rGxsbG8fv0aY2Nj5LkY/ygIWUlWqZmzL4ARG3z4oGpJ9o5xpq6dVdYPfE94e3vz448/MmPGDI4dO6aZiGXont2OYPM3+7n/WE4T62A+bneKxpUP08R3PuXCLyBXpbS+yVWJlAu/QBPf+TSqegwz54+hgP4uEm3IgsFJaaGbh81Pc5ESEpCZmeVqsoOu1KhRA1tbWzZv3oypqSl2dnbIZDLGjBmj1ZWoC61bt2bMmDEsW7aMOnXq0KtXLyRJYseOHTx69IixY8fSunXrLOtZuXIlzs7ODB8+nL1791KrVi1u3rzJnj17KF26NCtXrnyn8qkcHR01cQKaOCdMmKCZyRofH4+TkxOOjo40btyYihUr8vr1a/bt20d4eDjffvtttibJCEJG1GqJBKUatVpCnmZJibCX8Xy90Rf/sGhmdK3FUCd70Rr3H19fXxo2bEjr1q25desWVatW1XdIOiFJEjd2+OJ95DnmCa/p2rEoFUwugf8VrOxl1LP0w+7WHaLPmaOSTDGSJWJVIZ4STq8xKwm0/ErfTyFTIpkTDJZMLkdWAFYZNzIyYufOnXz//fds2rSJV69SVgkfOHCgzpM5gKVLl9KwYUNWrlzJqlWrAKhduzazZ89m6NCh2aqjevXqXLlyhVmzZnHo0CH2799P6dKlGTp0KDNnzkw3Qy2n5VNt3bqVmTNnsmnTJp4+fUrlypVZunQpX3/9taZMkSJF+Pnnnzl+/DhnzpwhIiKC4sWLU716debNm8enn36ayzslvM8CHsew5mwIB2+EE5+swnzHYzrVLccXzlUIj4lnwtZrFDFRsPXLljSsWFzf4RYIycnJzJgxg/nz52uWHCksiVxSfDJH5x8l9KkZdonBfDTKAYvLU+D1M+i9DiQ1Zv9+iW2Ll9g0f4mkkiEzkpDJALkCev4J5QrGxLqMyKQ3B8EIwhtu3rxJnTp1NN/7+/tTO5O12G7fvo1SqUShUODg4JBl3fE5mM2a34KCgqhZsyYjRozgzz//zPfrF+R7k5U2bdpw6tSpdGPsdMGQ70tey497k9OfcX3Y7RfGxK3XUKrTv//kMlBL0LZGGRb0rY+1hYkeIiwY/P39Nb/bHzx4QP/+/bl48SI//fQT3377baEZ3vDsdgQHFp4nXmlCo5L3adJFjdxrJpSpBX3WQYn/lqQKvwHnV0DALkiOA2MLqNUjpUXuHRK5nHyG5pZomROETNy5cwcAOzs7PUciCEJ2BTyOyTSRg5RETi6DCR85vteJXFqBgYE4OTlRrFgxzpw5Q8uWBXPLqpySJInr2305d/Q5Fgmv6dLRggpG3nB8DzQfCR/NBkWaIRzl6kLPldD9d25e96F2vcYFdozcm0QyJwhvCA4OZu3atWzcuBG5XE737t31HZIgCNm05mxIpolcKrUEa71DWdA367XFCrPUlnNHR0fGjh3LuHHjKF68cHQ5p+1WrZAYTLsvq2BxeTIkREO/v6Fmt8wfLJcjKcwNJpEDMZtVENIJCAhgyZIlFC9enB07dlCvXj19hyQIQjao1RIHb4Rnq+yBG09QZ5H0FWZ37tzhs88+4+zZsxgZGeHu7l5oErmI2xFsmnCQh2HQ1PoWXYepsTg+BIqUhi/PvD2RM1CiZU4Q3tCjRw+xrtk7epeFkQUhtxKUKuKTs7feY3yyigSlCguT9+9jcMuWLQwfPpzixYtTpEgRfYejM9rdqjF06WBBBdkpOHEQWn4NbWeConB2rb9/72JBEAShUDJTGGFubJSthM7c2AgzRfY2WC8s4uPjGT9+PKtWraJ///6MHTs208W7DU1ifDJH5x3lfoQZFRJv0W64fcps1eRY6L8FqnfUd4h5SnSzCoIgCIVCkkpNOSuzbJXtXNdGa92590FcXBxeXl6sWbOGf/75h6JFi+o7JJ2ICI5g84SDPHoMzayD6OqWiMUJN7Cyg5FnC30iB6JlThAKpLxc2sMQifshZCX46SvGbLzKo6g4zfIjmVHIZQxzrpx/wemRJEn8/ffffPjhh5QvXx5/f3+MjY31HZZOSJLEtW2+nD+W0q3atYM5dtJxOHUMnCeA6w9g9H6kOaJlTjBYkloiOVGFZICDmD08PJDJZHh4eOg7FEEwaJIksfHiAz5efhYJif1jW7GoXwMUmbS6KeQyFvStTy1by3yONP+9fv2aIUOGMHjwYLZs2QJQaBK5xPhk9s88iPeJaMonBNFnuAV24T/AYz8YuAPazXxvEjkQLXOCAXr+6BV+xx5y1zcCZZIahYmcqo3K0KBdBUrZFdN3eIIg5JPouGSm/HudAzfC+ax5RaZ3rYWZsRGOZYvhUKYYf529x4EbT1J2gDA2onNdG4Y5V34vErlr167Rt29fHj9+zN9//81nn32m75B05mlwBAcXXSAh2YhmpQJp3DsO+YlhUMkJPlkNljb6DjHfiWROMCjBl8M5vi5Qa0kBZZKaWxfCuX3pKW2H1sSxaTk9RigIQn7wuR/J2E1+vEpIZuVnjehUV/sDvJatJQv61ufX3vXwvX6DRvXqvjdj5KKjo3FxcaFy5cr4+Pjg6Oio75B0IqVb1YfzxyKxiI+ma3sz7NSH4expcJkELt+D/P2a1JJKdLMKBuP5o1fpErm01GqJ4+sCef7olU6u5+XlhUwmw93dnbNnz9KmTRuKFSuGtbU1vXr10uwQoVarqVSpEiVLliQxMTHDulq3bo1CoeDRo0e4ublp9lAdOnQoMplM8/Wm5ORk3N3dsbe3x9TUFEdHR1asWJHhNWJjY5k5cyY1atTAzMyMEiVK0KVLF7y9vdOVdXd3RyaT4eXlxcaNG2nQoAHm5ubY2Ngwbty4HC3NEhoaikwmw83NjTt37tCzZ0/Nkgft2rXj2rVrGT7O39+fvn37UqZMGUxNTalcuTLjx4/nxYsX2b62Uqlk4cKF1K9fH3Nzc6ysrHB1dWXv3r3vXD5tV/ju3btp1qwZFhYWlC5dms8//5ynT5+me4yvry+9e/emYsWKmJqaUrp0aZo2bcrcuXOz/ZyEt1OpJZafuE3fPy9gY2XGgXGt0iVyacnlMswU8vcikYuOjiYxMRErKyv27NnD+fPnC00ilxiXzL4ZB/E+EYNdQgB9vjDFLnwqPAuCwbvBdep7m8iBSOYEA+J37GGWi3yq1RLXjj3U6XUvXLhA27ZtsbKyYsyYMbi4uPDvv//ywQcfEBISglwu54svviAyMpIdO3ake/ytW7c4c+YMHTt2xM7Ojh49emh2lejevTszZ87UfL2pf//+rF27lg4dOjBs2DAiIyMZPXo0q1ev1iqXkJDAhx9+yOzZsylSpAjjx4+ne/funDx5EhcXF7Zt25bhc1u+fDkjRoygdu3ajBo1iuLFi7N06VK++OKLHN+n0NBQWrRoQWRkJJ9//jkfffQRx48fx9XVNV3ic/bsWZo3b86///5L27ZtmTBhApUqVWLJkiU0b96c58+fZ3k9SZLo3bs3EydOJCEhgdGjRzNgwACuXbvGxx9/zKJFi96pfKodO3bQp08fqlWrxvjx46lbty7r1q3D2dmZqKgoTTk/Pz8++OADDh48iLOzMxMmTKB3795YWFiwatWqHN9PIb2nMQkMXHORBUeDGd2mKptHtMCuuIW+wyoQLl++TMOGDZkxYwaQ8gekmVn2ZvYWdE9vRbBp4iHCnkg0twqgy2cxWJwcAWVrpcxWreKi7xD1TxKELPj7+0uA5svf3z/TssHBwVJAQIAUHByc4fmkRKUUcT9G8/XgVoTW95l9PQ2NllZ+fVJa/uXxLL9Wfn1Sehoana163/xKSlRqYj158qTmOf/xxx9az+OPP/6QAKlr166SJElSWFiYpFAopDZt2qR7zt9++60ESLt27dIcW7dunQRI69aty/A+ubi4SIDUvHlzKTo6WnM8KChIUigUUvXq1bXKz5o1SwKkzz77TFKr1Zrjvr6+komJiWRtbS3FxMRojs+cOVMCJCsrKykoKEhzPC4uTnJ0dJTkcrkUFhaWYWxvunfvnuY+zZ8/X+vctGnTJECaN2+e5phKpZKqVq0qAdKhQ4e0yn/33XcSIH3++ecZ3o/UGCVJkjw9PSVAcnFxkRITEzVl79+/L5UqVUpSKBTS3bt3NcdzWj71NcoozsmTJ0uA9PXXX2uOTZgwId3rnOr58+eZ3D3dSr03eSmrn/G8ciwgXGow67DUbO5R6dydnN3PGzdu5FFU+qdWq6UFCxZIxsbGUrNmzaSQkJBsP7ag3xe1Wi35br4irRh+WPIcuF56uH6LJK3tJEnu1pJ06hdJUqny7Nq6vDc5+QzNLTFmTshXL8Pj2PrT5Ty9hipZzbZ5V3L12L5Tm1K6ovYkCkdHR4YPH651bPjw4SxYsID9+/fz7NkzbG1t6datG7t27eLOnTtUq1YNSOkmXb9+PTY2NnTp0iXH8cybNw9Ly/8P1q5evTpOTk6cOnWKV69eUaxYSqyenp4YGxszf/58re7ahg0bMmTIEFavXs2uXbsYNGiQVv3jxo2jevXqmu/Nzc3p378/s2bNwsfHB1tb22zHWrlyZb777jutY8OGDWPOnDlcvvz/19zb25u7d+/SqVMnOnTooFV+xowZ/PXXX2zcuJGVK1diYpL5au2enp4A/PLLL1rlKlasyDfffMMPP/zAP//8w/Tp03NVPlW7du3SxfnDDz/wxx9/sH79epYsWYI8zR6O5ubm6WItWbJkps9DeLtEpYr5B4NY5x1K2xpl+LVPfUoUKZyr+OdUUlISvXr1Yt++fXz77bfMnTv3rT8zhiQxLpkj847y4JkZFRMCaDu0LBZXJoORCQzZB/ZO+g6xQBHJnJCvrMtZ0HdqU833CQkJ2eoKkCSJnb/5okpWZ1nWyFjOJ982ynAMWnbie5OTk5PWhzWAXC7HycmJ27dvc+3aNdq1a8eXX37Jv//+y5o1a5g/fz4Ae/bsISIigqlTp6JQ5PzHrXHjxumO2dnZAfDy5UuKFStGTEwMISEh1KxZU3MuLVdXV1avXo2fn1+6ZC6r+lO5u7unKzd+/Hisra013zdo0CDdfcqorqtXrwIpa8e9qWjRojRp0oQjR45w69Yt6tatm65M2nosLCxo1qxZunOurq5AStdnbsunatWqVYZxNmjQAC8vL0JCQqhWrRp9+/Zl8eLF9OzZk379+vHRRx/RunVrypcvn+lzEN4u5Nlrxmy6yu2nr5nZrRZuH9jn6ue6sDIxMaFGjRqMHDkyV38sFlRPb0VwcPFFEpLlNC8VQKPuL5CfngnVPoKef0CRUvoOscARyZyQr4xNjLRavuLjFRm2ZGSkWuMy3LqQ9SbaDo3LUKaS7pYeKFu27FuPR0dHA9C+fXsqV66Mp6cnc+bMQaFQsGbNGmQyGcOGDcvVtdO2yqVKTQpVqpQti2JiYt4ap42NjVa5nNYPMGvWrHTl3NzctJK57Nb1LvGmFRMTQ4UKFbJdR07Lp8ru69+8eXO8vLz46aef2LhxI+vWrQOgadOm/Pzzz5qEUciaJEls93nEzD03KWdpxs6vPqBOeSt9h1UgqFQq5s+fT8WKFRk0aBC//vqrvkPSGUmSuLrVlwsnXlA0Loqu7U2wS9oDl67AR7Oh5RiQi6H+GRF3RTAYDdpVyHJGmlwuo367jD+wcyujWYtpj1tZpXzIyGQyRowYQXh4OHv37uXhw4ccOXKEtm3bUqVKFZ3GlFZqEpVZnOHh4VrlckOSpHRf9vb2uapLV/FaWloSERGR7TpyWj5Vdl9/SGnFO3jwIFFRUZw8eZIJEyZw48YNunTpQkhIyFufj5DiVUIy47f48d3263Spa8PeMc4ikftPeHg4HTt2ZPr06Tx8qNuJXvqWEJfM3hmHOH8ymorxAfRxA7vHkyHmMXx+CJzGiUTuLcSdEQxGKbtitB1aM9OETi6X0XZoTZ0vHOzt7Y1ard29q1arOXfuHDKZjPr162uODx06FGNjY9asWcPatWtRq9XpxtsBGBmlTKFP22KVW5aWllSpUoU7d+4QFhaW7ryXlxeQ0g1aEKRu7J0aV1qxsbFcuXIFc3NzrbF8mdUTFxfHpUuX0p3L6DnntHyqM2fOpDv2+vVr/Pz8NPf+Tebm5rRp04YFCxYwdepU4uPjOXr06FufjwDXHr6k67KzHA+MYMmnDfi1T32KmIoOJIBjx45Rv359bty4wdGjR5k6daq+Q9KZ8KCU2aqPn6hpbh1A577hmJ8ZAxVbwpenoUL6oRGCNpHMCQbFsWk5+kxtQo0W5VCYpLx9FSZyarRIOZ4XCwYHBwenWwpk9erVBAcH06VLF0qXLq05XrZsWXr06MGhQ4dYuXIlpUqVokePHunqLFGiBIDO/roeMmQIycnJTJkyRWv/0uvXr+Ph4YGVlVWGceiDk5MTVatW5eDBgxw7dkzr3Jw5c3jx4gX9+/fPciD3kCFDAJgyZQrJycma4w8fPmThwoUoFAqtVe9zWj7VsWPHOHz4sNaxuXPn8vLlSwYPHqwZJ3j+/HkSEhLSPT61Ba+wLBORF9RqiVWn79Jr5TmszY3ZP9aZ7g3EWMNUkiQxffp06tevz7Vr12jbtq2+Q9IJSZLw3ezDzkV+GL2OolurlzSpuhO57xroOB8+3QgWJfQdpkEQf/IIBqeUXTHautXiw8E1USarURjLkeXhgqAdOnRg7NixHDhwgNq1a3Pz5k327t1LqVKlWLJkSbryI0eOZNu2bTx9+pSJEydmmJS0bNkSc3NzFi9eTFRUlCYhnDZtWq5inDRpEvv372fDhg0EBgbStm1bIiIi2LJlC0qlktWrV2tmvuqbXC7Hw8ODDh060LlzZ/r06UOlSpU4f/48Xl5eVK1aVTOB5G0GDRrEzp072b17N/Xq1aNr167ExsayZcsWIiMjWbBggVarWU7Lp+ratSvdunWjd+/e2Nvbc+HCBU6ePEnVqlWZPXu2ptzPP//MyZMnad26NZUrV8bMzAxfX1+OHz9OlSpV6Nmzp25uYCHz7FUiE7dd43TwM75sXYWJ7atjohDtDACPHj3i5cuX1KlTh3379lG8ePF0k4wMVUJcMkfmHePhM1Mqxd+k7SArzH2mgbk1DDsM5dNPzhIyVzjeFcJ7SSaXYWxqlKeJHECLFi04fvw40dHRLF26FC8vL3r06MH58+cz/PB3dXWlYsWKAJkuvluiRAm2b9+Oo6Mjq1evZvr06emWxMgJMzMzTpw4wfTp04mJiWHRokX8+++/uLi44OXlRZ8+fXJdd15wdnbmwoULdO/enSNHjvDbb79x7949xo0bx4ULF7RaOzMjk8nYvn07v/32G8bGxixbtoy///6bunXrsnv3biZMmPBO5VP16tWLbdu2cefOHRYvXsz169dxc3Pj7NmzFC9eXFNu1KhR9OjRg9u3b+Ph4cHKlSt58uQJU6dO5eLFi+80ZrGwOh38jE5LzhDwOJr1nzdjSueaIpH7z759+6hfvz5jx44FUpa3KSyJ3JPAp2yaeIgnT1Q0t/Knc6+HmJ/7JmXx3y9Pi0QuN3S+cp1Q6Ohy0eA35ccip7mVumjwzJkzc/S4x48fSwqFQmrVqtU7Xb8g3xt9yq/7ktXCzgWRoSwanKRUST8dCJAqfb9PGrjmghQRk6DDCNMr6IvjppWYmCh98803EiB169YtTxeczu/7olarpSubLku/jzgirR/oIT3yWC9Jf7SSpNmlJOniKklKs+C5volFgwXhPbd48WKUSiWjRo3SdyiCUOA8eBHHmM1XuRkWzZRONRjeqsp7sW9qdvXq1YvDhw+zaNEixo0bV2jW1UuITeLI/OMp3apxN2j7WVHMfWdD0dLwxTGwqZ91JUKmRDInCDoQHR3NypUruX//PmvWrKFWrVr07dtX32EJQoGy59pjfth5g+JFTNg+6gMaVLDWd0gFRnJyMsbGxkycOJEZM2bQtGnTrB9kIJ4EPOXQssskJUPzkv40ah+C/MIGqNMbui0G04IxnteQiWROEHQgKiqKKVOmYGZmhrOzM3/88Ydm+RFBeN/FJSmZufsm23we8XF9W+b2rEMxM2N9h1UgJCQkMGHCBO7fv8/evXsz3BnFUEn/zVa96BVFsdjntG8np3z8Fgi4A92WQqPBUABbHiW1GmVSEpJajcxAximKZE4QMtGmTRutZT7ext7ePttlBcPg5uaGm5ubvsMweDcfRzNm01WevEzg19716N3YrtB0Hb6roKAg+vXrx61bt1iyZEmhui8JsUkcnnecR89NsY+7wYcDzDC/OgesysPwE1C2tr5DTCciNASf/bsIvuiNMjGRU6amODZ3onGXHpSxz7uF33VBJHOCIAiCzkmShOe5UH46EES1MkXZN9aZqqWL6jusAuPvv/9m5MiR2NnZcfHiRa3Fxw3d44CnHF52maQkaFHqBg3bBiO/tAnq94fOv4FpwXsfBHqf4uDyBUhpFohXJiYScPoEgWe96PT1RGo6uegxwrcTyZwgCIKgU1GxSXy3/TrHAp8y1MmeyZ1qYKoQww7SCgsLo3fv3ixfvpyiRQtecpMbkiThs9mXS16RFIt9Toe2ErZxGyH4AfRYCQ0G6DvEDEWEhnBg+QJ4Y6efVJJazYHlCyhZvkKBbaEzjM5gQdCD0NBQZDKZVlebm5sbMpmM0NBQvcWlTxndE9DNfcms7qzcvn2bnj17YmNjg1wux9raOtcxFGb59d49f/cFnZacwed+JH8NacLMbrVFIvefGzdu8PvvvwMpC317eHgUmkQu/nUSe6Yf4uKpaCrFXad3vxhsw6aATA7DTxbYRA7g5M71mSZyGmo1J/9dnz8B5YJI5gSDJanVJCckaDWL64OXlxcymQx3d3e9xvE+UqlU9OjRgwMHDtClSxdmzJjB5MmT8/SaBTWh9/LywsLCQm/vQ6VKzcIjtxiw5gL2pSw4OK41bWuW1UssBY0kSaxatYpmzZqxevVqEhMTC9X4uMcBT9n03RHCnyhpYXWdTl0CMPeZDvX6wBfHoUwNfYeYKUmt5qGPb7bKPrziq/fPm8yIblbB4Lw5SFWRR4NUy5cvT2BgIFZWVppj8+bNY/LkyZQvL/aNLAju3btHQEAAw4cPZ9WqVfoO570V9jKecZuucvXhSya0c+Qr12oYibXjgJRli0aMGMHWrVsZOXIkCxcuxNTUVN9h6YR2t+ozOn6oxjZ2A4SEwydrUpK5Ai4pMQGZMnsJmkypJikxAVNzizyOKudEMicYlEDvUxz6fSFqlUpzLHWQapD3KTqOnqCzQarGxsbUqKH9F6WNjQ02NjY6qV94d48fPwbA1tZWz5G8vw75P2HS9usUMzNmy4gWNLEXG6OnNXPmTA4dOsSWLVsK1dqT8a+TODz/OGHPTakcdw3XvnLMr82HUo4w4hSUqqbvELNFKVeTbKTGWJV1R2WykRqlXE1BTMVFN6tgMCJCQ9IlcmmpVSoO/b6QiNAQnVwvO2Pm3N3dcXV1BWDWrFnIZDLNV3a64dzd3ZHJZHh5efHXX39Rt25dzMzMKF++PJMmTeLVq1fpHrN27Vq6d++Ovb09ZmZmlChRgg4dOnDy5Ml0ZdN2AZ87d4727dtjbW2t1cWTk/py4/Tp03Tr1o1SpUphamqKg4MD06ZNIy4u7p3qtbe3x8UlJXFPe+9TuxmDg4OZNGkSjRo1omTJkpiZmeHo6MjkyZN5/fp1uvqePHnCuHHjcHBwwNzcHGtra2rWrMnIkSOJjo7WXNPT0xOAypUra66Zdm2w1O/DwsIYMGAApUqVolixYnTp0oWQkJT3ZmBgID169KBEiRIUK1aM3r178/Tp03QxZfe1ycn7UJIkli5dSo0aNTA1NaVSpUrMmjULdQ67j9SSxLRdNxj5ty9O1UpxYGwrkcj9R5Ik7ty5A6S8Hr6+voUqkXt8M5xN3x3l6RMlLS2v0bHTdcx9Z0GjQSm7ORhIIgdgIjcmzjzjz5Q3PbJNxNyk4LXKgWiZEwyIz/5dmSZyqdQqFb4HdtPxq2/yJaY2bdoQGhqKp6cnLi4uWh/qORmIv3DhQo4fP06/fv3o0qULx44dY/ny5Vy5coXTp09jbPz/BVZHjx5N/fr1adeuHaVLlyYsLIxdu3bRrl07du7cSffu3dPVf+7cOX766SdcXV0ZMWIEDx48eKf6smvlypWMHj0aa2trunXrRpkyZbhy5Qpz587l5MmTnDx5EhMTk1zVPX78ePz8/NLd+9R/d+7cyV9//YWrqytt2rRBrVZz4cIFfv75Z06dOqV1X+Pi4nByciI0NJT27dvTs2dPkpKSuHfvHhs2bODbb7/FysqK8ePH4+HhwbVr1xg3bpzmNba3t9eKLSoqCmdnZ8qVK8eQIUMIDg5m3759BAUFsXv3blq1akXjxo35/PPP8fHxYceOHURGRnLixAmterL72uTkffjdd99x6tQpunbtSocOHdi1axfu7u4kJSUxd+7cbN37ZJUa/0cxbLsSydyedRjQrGKhGgP2LiIjIxk6dChnzpwhJCQEa2trraEahkySJK5s8uHyqSgsYyPo2CYJ21hPuP8C+nhA7Z76DjFHoiPC2bNoHsViFaiRkJP5e1gtkyjhVB+5rGC2gYlkTshXyYkJRIY90nyfmJiYrfEjklrNrfNns3WNoHNnaNC+S65W7i5R3g5jU7Nsl0/90PT09KRNmza5Hnx++PBhLl++TL169YCUX5r9+/dny5YtLF26lIkTJ2rKBgQEULlyZa3HP3nyhCZNmvDdd99lmHwdPXqUtWvXMnTo0HTnclNfdgQEBDB27Fjq1avH8ePHKVmypObc/PnzmTJlCsuWLdN6bjkxfvx4vLy8Mr33gwYNYsKECemSxdmzZzNz5ky2bt3KZ599BsDx48e5d+8e48ePZ9GiRVrlX79+rUn6UhPIa9euMX78+HRJXKrr16/zzTffsHDhQs2xr776ipUrV9KqVSvc3d0ZN24ckPJad+3alQMHDuDr60ujRo00j8nua5OT96Gvry/Xr1/XDBeYPn06Dg4OLFu2jJkzZ741uZYkiWSVmmevEgHY87Uz1cuJrZhSeXt7079/f16/fo2Hh0ehmlmt1a0a68eHvdSY+f+WsvjvoH+hROWsKylAbl8+z8EVC3kli+eU8wvMX8lwvlYCuZQ+oVPLJM7Vj2K+y5d6iDR7RDIn5KvIsEf8PWV8nl5DlZzEPz9MyNVjB85bTNkq+d9FMHjwYE0iBylddbNmzWL79u14eHhoJTxvfrhDyli+Xr16sWzZMu7fv0+lSpW0zjdq1CjDRC639WXHn3/+iVKpZNmyZVqJHKQsy7Bw4UI2bdqU62QuK5lNUvn666+ZOXMmx44d0yRzqczNzdOVz83SEUWLFmXOnDlax/r378/KlSspWbIkY8eO1RyXyWR8+umnHDhwgGvXrmklc3nx2kyfPl1r3GepUqXo3r07np6e3Lp1i7p162b4OKVKTdjLeBKS1ZibGNG4YlGRyKWxbt06hg8fTosWLdi4cSMVK1bUd0g6E+YfzuHffUhOUtGyZAANnHyRXzsALb6Cdu6gKIijyDKmUiZz+h8PfA/s5lG5REKdzFjZ/h9uRd7i12IzqRFShErhFhir5CQbqblfLo6gKrF813kW1UtU13f4mRLJnJCvSpS3Y+C8xZrvc9Iyt9l9MqrkpCzLGhmb8Kn7/Fy3zOmSn58fu3bt0jpmb2+fbi21Vq1apXtsxYoVqVChAjdv3iQpKUnTYhISEsK8efM4ceIEYWFhJCYmaj3u8ePH6T7g37Zpd27qy44LFy4AKa2Ox48fT3fe2NiYoKCgt9bh5eWFl5eX1rGaNWvSr1+/LK8vSRLr1q3Dw8MDf39/oqOjtcaFpU6eAGjdujU2NjbMnz+fa9eu0bVrV1xcXKhZs2auug8dHBywsNAeW5OaQNWrVy9dnann0sYEefPaNG7cON0xO7uU9/3Lly8zfExsopKHkXGoJAlzYznmChPkYraqlubNmzN16lRmzJiBQlE4Plol9X/dqqejsHz9lI6uidi+8oCwaPh0I9Toou8QcyQ64il7Fs3jaehdLtWKxL6NE/98MAsLYwuqWlel6oCqrA9Yz87QoyQnJmBsasZH9h/xR63BBTqRA5HMCfnM2NRMq+UrPj4+w9aQjFRv6UzA6RNZlqvxQSvKVXPMdYy65Ofnx6xZs7SOubi4pEvmypbNeD2usmXLEhoayqtXryhZsiR37tyhWbNmxMTE4OrqSrdu3bC0tEQul+Pl5cWpU6fSfeC/rf7c1pcdkZGRANkeh5URLy+vdPdv4MCB2Urmxo4dy/Lly6lQoQIff/wxNjY2mj8cZs2apfW8rKysuHDhAjNmzGDv3r0cOHAAgAoVKjB58mS++uqrHMVtaWmZ7ljqB/zbziUnJ2uO5dVr87brq94YkypJEs9eJfI0JhELEyOqlDDnfqwcZTaXcijsTpw4wfz589m9eze1atVi9uzZ+g5JZ+JfJXFo/gkevzChcuxVPvwkCbObi8C2IQzdD9aG1fKY0q26iNeyeE58EMHwjybQt3pfrT+sqpeozlznufzo9CO+131pVK9RgR0j9yaRzAkGo3GXHgR5n3rrJAi5kRGNOud+wL6uZXez9oxmMqYel8lkFCuW0p21aNEioqKi2LBhAwMHDtQqO3LkSE6dOpVhPZm1LuW2vuxITRpiYmI08eeUu7t7uvFf8fHxWT4uIiKC33//nXr16nH+/HmtVrLw8PB0CSKktIR6eHigVqu5fv06R44cYenSpYwePZrixYvTv3//XD2H3MrL1yY7klVqHkbG8TpRSZliZpS1NBWTHP6jUqmYPXs2P/74I66ursTGxmb7j9KCQlJLqJIlJLWE7I1W1tRuVWWSig9K3qT+B5eR3zgCH4yFtjPAyDiTWguetN2qYTZJBDeXs+SjtdQuVTvTx8hlcsyMzAwmkQOxNIlgQMrYV6Hj6AnIjTLeGkhuZETH0RPyfe88o//iebNVIyfOnDmT7tiDBw94+PAhtWvX1nSx3r17FyDdpARJkvD29s7xdXVdX1rNmzcH/t/dmp9CQkKQJIl27dql6+7M6F6nJZfLadCgAZMmTWLTpk0A7NmzR3NeF693duT0tdFlXDHxydx++opEpZoqpYpQzspMJHL/CQsLo23btsyZM4fZs2dz5MgRSpUqpe+wsu35o1cc8whg1fhTnP3zGavGn+KYRwDPH71CUktc+ucKu5f5YxITTtfmj2hY7i/kT67AgK3Q/keDSuSiI56yacYkfA/t4WKtSJK6OvDPJ1vemsgZKpHMCQalppMLn/20iNoubVH812WmMDWltktbPvtpkc4WDM6JEiVS1tZ6+PBhrutYv349169f13wvSRIzZ85EpVJpteyljo86e1Z7Zu/8+fPx9/fP8XV1XV9aX331FQqFgjFjxmgthZLq5cuXXL169Z2ukZnU53Xu3DmtcXKPHj1iypQp6crfvHkzw9bR1GNmZv+f4ayL1zs7cvra6CIutSTx+GU8oS9isTBR4FCmKEXNDOfDOz9cvnyZO3fucPLkSaZNm6ZJog1B8OVwtv50mVsXwlEmpfxcKJPU3LoQzta5l9k46SiXz8RQOdaX3t0fYPtkWkp36siz4NhBz9HnzO3L51n//RgePr3L/pbhdPhkGEvbLsPKtHAsE/Mm0c0qGJwy9lXo+NU3dBg5DmVSEgoTk1xNdtCVGjVqYGtry+bNmzE1NcXOzg6ZTMaYMWOyvb5Uhw4daNmyJZ9++imlS5fm+PHjXLlyhRYtWjBmzBhNuZEjR7Ju3Tp69epF3759KVmyJBcuXMDX15cuXbqwf//+HMWu6/rSqlOnDitWrGDUqFFUr16dzp07U7VqVV69ekVISAinTp3Czc2NP/74I9fXyEzqjM8dO3bQpEkT2rZty9OnT9m3bx9t27bVtHqlOnr0KN999x1OTk44OjpSsmRJQkJC2LNnD2ZmZowePVpT9sMPP+S3335jxIgR9OrViyJFilCpUiUGDRqk0+eQ09emRo0a2NjYvNP78HFUPKVjk7C1NqdkERPRGvef5ORktmzZwmeffUaPHj1o3759uhbfgu75o1ccW3sTKYOlNwAkCV6+MqJ+kUA+aO6NPOAUtJoIbaaAkeGkCiplMmc2euCzfzdPbJVca5zIz+1W0LRc5pPACgPRMmdgEhISmDBhAq1bt8bW1hYzMzPKlSuHk5MT69at0xpAXdjJ5HKMzcz0mshBSvfWzp07adGiBZs2bWLGjBlMnz6dqKiobNcxYcIElixZwsWLF1m8eDFhYWGMHj2aI0eOaK371bBhQ44cOUKjRo3YuXMna9euxdraGm9vb5o0aZLj2HVd35uGDx/O+fPn6dGjBxcuXGDx4sVs376d58+f88033zB+/Ph3vkZmUpd0iYqKYtmyZVy4cIEJEyawcePGdGU7dOjA6NGjiYmJYefOnSxatIgrV67Qr18/fHx8tO5Fp06d+OWXXwBYsGAB06dP56+//tJ5/Dl9bYyMjNi0aVOO34eSJBGflNI1qwaqlS5CqaJifFyq0NBQWrVqxdChQ7lx4waAwSVyAD47/DNN5DRkMuKUL5E/vwmDdkLb6QaVyEVHPGXzjO/xObiHS7WiiOxgw6Ze2wp9IgcgkyRJ0ncQQvY9f/6cChUq0KxZMxwdHSldujRRUVEcPHiQ+/fv0759ew4ePIhchwnOzZs3qVOnjuZ7f39/atfOeMzB7du3USqVKBQKHBwcsqw7J7NZ81tQUBA1a9ZkxIgR/Pnnn3lyDXd3d2bNmsXJkye1Vu2Hgn1v9Encl8zl9N6o1GrCXibwMi6J4hYm2FqbY5TFkiM5/RkvCPz9/bV+h2XXzp07GTZsGNbW1mzevFkzDtTQSGqJP786hoqsu4SNpCS+/KU+MivD2oP6zuULHFyxkFijJA7XfUjPVkP4qsFXKOS5S0Zz+57JSE4+Q3PLcFJuAUgZFxMdHZ1ulXalUslHH33EkSNHOHjwIF26GNb6PwVR6t6KqWtwCUJhEpek5EFkHCqVRMUSFlhb5G5btcJq37599OrVi169erFmzRqD3s0hOVGZrUQOQCUzIdmkFIbybkjbrRpRXs3F+jHMbruI1nat9R1avhLJnIGRy+UZbrejUCjo2bMnXl5emiREyJ3g4GDWrl3Lxo0bkcvl77Q3qSAUNJIk8fx1IuHRiZibyKlcqgimCsMZxJ/XXr16RbFixejYsSNbt26ld+/eBt/lbKRKQq5KRG2U9QLtclUiRqokoOBPfIl5FsHexT8Tfu82V2pFQ6Py/OO6mvJFM979pTATY+ZyICIign379jFjxgw6depEqVKlkMlkyGSybK0lltb9+/eZOHEiNWrUoEiRIpQoUYKmTZvy66+/EhcXl+PY1Go1hw4dAtBZ0/D7KiAggCVLllC8eHF27Nihtc2WIBiyZJWa0BdxPIlOoFQxE6qULioSuTQ2btxIpUqVuHjxIgqFgj59+hh8IgcgNzOl9IvrWRcEyj73RW5W8LfnunP5Ap6TxhD2NIR9zcOo06Ejnp3Xv5eJHIiWuRzJbBX9nNq7dy8DBw4kJiZGcywuLo4rV65w5coV1qxZw/79+6lWLfM9QpOSkvjpp5+QJIkXL15w/PhxgoKCGDp0KG3bttVJnO+rHj16ZGthWl3IaFFcQcgLrxKSeRiZ8r6uXKoIxcSSIxpxcXGMHTuWv/76iwEDBlCrVi19h6RTL0IjiLa0T5my+pbkVKZWUVN5EJl6PAU1PUjbrfrcDk7Xeca0NnPoVLmTvkPTq4L5ahmAihUrUqNGDY4cOZKjx129epV+/foRHx9P0aJFmTJlCq6ursTHx7N582ZWr15NcHAwXbp04cqVK5munJ+UlKS1ir1MJuPbb79l3rx57/S8BEEwTJIkoZYkJEnSak1SSxJPYxJ49iqRoqYKKpSwwNhIdMqkunPnDt27d+fevXusXbsWNze3QtEalyrgUACn/32ImSqZqnd3EFKlJ5I8fWusTK2iZpAnlZveA0XBnGAU8yyCfYt/5sm92/jWeUVc3eJscN1EFav8XSi+IBLJXA7MmDGDpk2b0rRpU82emZUrV85RHePGjSM+Ph6FQsGRI0do2bKl5tyHH36Ig4MDkyZNIjg4mAULFmTaalO0aNGUX95qNY8fP2bv3r1MnTqV8+fPc+DAgQz3XxQEofCJT1Lx/HUi0fHJqCUJuSwZK3NjShU1RS6Hh5HxxCepsLEyE0uOZMDKygo7Ozu2bdtWqFrkVMlqTiz2Ivgu2L4Ool3VLagVIZTwvcVDu7ZElG6I2sgUuSqRMs+uUuHRcarXvYmZc0/Q83JPGblz5SKHfl9IvFEyB5qH0bJRB6a1mIaFseEtE5MXRDKXAxnt55gTly5d0mwlNGzYMK1ELtXEiRNZt24dgYGBLFmyhB9++AFj48y7Q+RyOXZ2dowaNYpSpUrRt29f5s6dy88///xOsQqCUPC9jEviYWQ8Ev9fYUotSUTFJfEyLgmZTIbCSEbVMkWwMBG/7lO9evWKyZMnM23aNGxsbDh8+LC+Q9Kp6Kev2f/TSV7Gm1BP5kvLFsdQRAaBvUQ9Sz/sbt0h+pw5KskUI1kiVhXiKeH0GrOSQMuv9B2+lpRuVU989u8i0s6I47XC+LbVFHo59BJ/mKQhfrrz0a5duzT/Hzp0aIZl5HI5gwcPZsqUKbx8+ZKTJ0/Svn37bNWfWs7Ly+tdQ801IyMjlEolSqUSlUplUFvdCIIhiU9SpUvk0pJI6XqtUFx3iZxKpUKpVAIY7M+2r68v/fr1Izw8nJ49e2JjY1jrqWXl7pm7HP87GKPEBD6qcp1qxquQKYvB54fh5X3M/v0S2xYvsWn+EkklQ2YkpQyjkyug559Qrq6+n4KGpls15DbX6sQSUdOUta7rqVWy8LSg6krBa0stxFL3WCxSpAiNGzfOtJyLy//3F83JZuePHz8GeGtLXl4rUqSI5v/h4eF5vhm5ILyvnr9OzDSRSysyNkkn11OpVISHh2u+T/uzbggkSWL58uW0bNmSYsWK4evrS7t27fQdls6o1RJnfj/NoX/uY/U6lE8ancJB/Qsyeyf48jRUaAp1e8MIL6g/AJmJBXKFhMzEAuoPSDlet7e+n4bGXZ+LrP9+LE8i7rOvRRjWTnXZ+vFWkchlQrTM5aPAwEAAqlWrhkKR+a2vUaNGusekCggIwN7ePt12MnFxcUyYMAGAzp075yiuR48evfV82l/gWbG0tCQyMhKAmJgYYmJi3vpc1Wq1TnerKEzEvcmYuC8pXicos5HKwfMoSHjx7r/qU1vkUmV3v9eC4u7du0ycOJERI0bw22+/YWpa8JffyK7Y6AQO/HiUiFfm1Ei+QusmBzF+eRM6zofmI7VnsJarCz1XQvffuXndh9r1GheoMXJpu1WjK5pwqMY9vmo+jiG1h4hu1bcQyVw+SUhI4Pnz50DWOwoUL16cIkWKEBsby8OHD7XObd26lYULF+Ls7Iy9vT2WlpaEhYVx8OBBXrx4QatWrfjmm29yFFuFChVy9mTewtzcHFtbW00rIaT/EEgrKSkpw0WQBXFvMiPuS8q4uOevErJd3sTIDLkOPwhT94U2BFevXgVS1t+8desW9vb2+g1Ixx5efciRP66hTlbRpqw3tYr+hUxmDcMOQ/nMe4CQy5EU5gUqkUvtVg0PuY1/vUTuV4tjZZs1NC77luchACKZyzevXr3S/L9o0aJZlk9N5l6/fq11vGvXrjx+/Jhz585x/vx5Xr9+jZWVFfXq1ePTTz/l888/f2tLmC7cvn2brLb0VavVqNXqLMslJSWhVqt1GV6hIe5NxsR9SekyfBCVgDobTXNyGZQ0QyetGjKZDLlczsOHD9P9oVnQqNVq1q9fz5IlS/jyyy8ZOXIkkLIvZmEgSRKPjt7n3i1TLF8/5YOqJ6ki30t0GVfCmkxGHWUKUW9/rs+fPy8w9yMiOIAbu7eRpFBxsMVjylSoxuzKX2P6zBT/Z/kfoy7vTX7syiSSuXySkPD/v6Kz06qQ2gXw5uK1TZo0oUmTJjqNLatfyrdu3dIaW+Lg4KCzTYJ1uZlxYSPuTcbEfUn5IHc/5831R9FZlu3VyI5hjernQ1QFx7NnzxgyZAgHDx7k+++/p1+/foXqPZMQl8zhOYd5FGlBlQRfPqy/C9PEYOi4AKsmw7DKZuJeEH6WVEolZzZ5cnXfv8RWMme3w12GNhnOqPqjMMpgPbz8ost7kx/dwyKZyydpuySSkrIekJyYmAikdFvmtay6faOjs/7AEAQhf0THJfPd9mtcfxSNTJayqH9mFHIZw5xzthamoYuIiKBhw4YkJydz8OBBOnbsWGBan3Th6a2nHFx0kUSlnJZFT9PQbg0yszIw6BjYGNbWgzHPIti35GfC794mqL6SwMpPWNxqOa3sWuk7NIMjkrl8knYnhze7TjMSGxsLZK9LVhCE94Pfw5d8vdGXmPhkVg1qTHyyiolbr6HMoL9VIZexoG99atm+HwuIp06MKVOmDN988w0DBgzA1tZW32Hp1PUdPngffo5FQjTdqp3BVr0FavSGbovBNOPdggqquz4XOfj7IpQKNQdahlO2qgPbXNZhU7RwLRWTX0Qyl0/MzMwoWbIkL168yHL2aFRUlCaZ0+XkBEEQDJMkSazzDmXewUBq21qxaXgLKpRImdHuUKYYf529x4EbT4hPVmFubETnujYMc6783iRyT5484bPPPuOLL75gwIABfPvtt/oOSaeSE5Uc//kIdx+bYRcfyEfVt2HBHeiyFBoNfut+qwWNSqnk7Ob1XNm7kwT7ouysdou+9QcwofEEjI3EfsG5JZK5fFSrVi3OnDnDnTt3UCqVmU5UCAoK0vy/Zs2a+RWeIAgFUGq36pGAp3zhXJlJHWtgovj/DMRatpYs6FufX3vXw/f6DRrVq4tcbjgf7u/q8OHDDBo0CIVCUeha4gCiHkaxf/4pXiWZ0VhxmmYOq5Bbl4c+J6CsbsYu55eY5//NVr17mzsN4GrFUH5y+oUO9h30HZrBKzhzkt8Dzs7OQEoXqo+PT6blTp06pfm/k5NTnsclCELB5PfwJZ2XnuHivUhWD27CtK61tBK5tORyGWYK+XuTyCUnJzNlyhQ6duxI48aN8fPzo02bNvoOS6duHfZn648XSHqdSKfSO2lRdhHyuh/D8JMGl8jd9bnIhkljefYsjCMfPOdpbRM2d90sEjkdEclcPurRo4fm/+vWrcuwTOp0egBra2tcXV3zIzRBEAoQSZL46+w9+vxxjtLFTNk/1pmPapXVd1gFilqt5uTJk/z888/s37+fMmXK6DsknVGr1Jz89QjH/o2gZPw9+lRehn2RvdBjJfT8A0wNZyy1Sqnk1N9r2fXLj7wqq2B9k0CaNPyQfzr/g72Vvb7DKzREN2s+atasGa1ateLMmTP89ddfDBkyhJYtW2qVWbBggWbXh3Hjxul1ay5BEPJfdFwy326/xtGApwxvVZnvOtTItDXufbRnzx4qVqxIgwYNOHv2bJ6vq5nfXj17zYEfj/IisSh1VN44V/4do9L20OcklKmR5eMLEk23ashtQhspOG8bxLQW7vR06Knv0AqdwvVTkMfOnj2rtfhf6o4OkLIooIeHh1Z5Nze3dHUsWbIEJycn4uPjad++PVOnTsXV1ZX4+Hg2b97MqlWrAHB0dGTixIl58jwEQSiY/B6+ZPQ/vrxOVLJ6cBPRGpdGYmIi33//PUuWLGH8+PE0aNCg0CVy971vc8TzFrJkibYltuNYdDOyxoOh489gYpF1BQXIXZ9LHPp9ISpjGSc+iEJtW4y/2/xNjRKGlZAaisL1k5DH1qxZg6enZ4bnvL298fb21jqWUTLXsGFDtmzZwsCBA4mJiWHq1Knpyjg6OrJ//36t5UwEQSi8JElirXco8/+brbrlyxbYFTesD++8dPfuXfr168eNGzdYunQpX3/9tb5D0ilJLXH+Dy+uXlNRIj6cDhU9KFHkHnRdA/X66Du8HEk7W1WqWpJNlf1oXe1DZjvNppiJ+EzLKyKZ04Nu3bpx/fp1lixZwv79+3n06BEmJiZUq1aNPn368PXXX2NhIX6RC8L7QHSrvp1SqaRDh5RB8ufOnaNx48K1T2d8TDwHZx3iSawVjkmXaFNxKcZ21aDPKShVTd/h5UjM8wj2LfmF8Lu3CWtqzsnS1/mmyUQG1RqUL7sgvM9EMpcDHh4e6bpSc6tSpUosXLiQhQsX6qQ+QRAMz9UHUXy98SqvE5WsGdyEdqJbVSM+Pp7ExESsra3ZsmULDg4OWFoWrnXzHvvd59AKP5JVClqbb6NO2Y3Img6DDj+BsVnWFRQgd30ucWjFItQKGaedY3hVWs46l3U0KNNA36G9F0QyJwiCkM9SZ6vOPxhEXTsrtvQX3appBQYG0q9fP2rWrMmWLVsKXWucJElcXX+OC96xFEuIpmvZvyhTIgS6rYM6n+g7vBxJ260qr1aGf+x9aWzfnLWt5lHCrIS+w3tviGROEAQhH72MS+Lbbdc5FviUEa2r8F2H6hgbiW5VSElyPD09GT16NJUqVWL69On6DknnkuKTOTJ7P/ejLKmUcI2Pyi/C1N4hpVu1RBV9h5cjabtVnzWz4kDJK4xqMIoR9UZgJDfSd3jvFZHMCYIg5BPRrZo5SZIYNmwY69atY+jQoSxbtowiRYroOyydeh78hAMLLhCrNqO5/F8a269H1nIkfDQbFKb6Di9HUrtVJWM551rHEWEdxR+t/+AD2w/0Hdp7SefJ3Oeff67rKgGwsrJi0aJFeVK3IAhCXnqzW3XrgJaUtzbXd1gFikwmo06dOmzYsIGBAwfqOxydu7njEmcOv8AsKZFu1suxK3cbuv8DNbvqO7QcSdutauJoy9+VruBoW5utLr9Srkg5fYf33tJ5Mufh4YFMJkOSJJ3VKZPJKFu2rEjmBEEwOKJbNXOSJPHnn38SGRnJ1KlTmTBhgr5D0jllsoqTP+0n+ElRbONv08HmFywcqkPvM1C8kr7Dy5GY58/Yt+Rnnt69TXTLUvxrfZ7BtQczvvF4jOVigXt9ypNuVjMzM/r27auz+jJb200QBKEg830QxRjRrZqh6Ohohg8fzrZt2/j666+RJKnQLV8R/egF++ee5KXKkgbK/bSstAZ5q6+h7UxQmOg7vBwJ8b3Mwd8XgrERl11V3Ctyi0VOi2hXqZ2+QxPIo2TOysoq071Hc0Mkc4IgGBLRrfp2ly9fpl+/fkRGRrJ9+3Z69eql75B07s6Ra5zY9hC5UkYHi0VUrRoIPbZA9Y76Di1HVEol3ls2cHnPDiyqV2CD/RVsS1ViS5stVLSsqO/whP+ICRCCIAg6lNKteo1jgRF82boK34pu1XQWLFhA6dKlOX78OJUrV9Z3ODolqSXOLDjIjTsmlEoMo1Pp+VjWcoTeZ8HKTt/h5UjM82fsX/ILT+7cIt65PB7FzvKJ4ydMaTYFM4VhrYNX2Ok8mRs7dixWVlYFvk5BEARdS+1WjU1S8teQJrStKbpVU7148YJbt27xwQcfsHr1akxNTTExMayuxqzEPn/FgVmHiEgqTs2EE7hUWIGR6zfgOhWMDGtMWWq3qsxEwfV2Rtw09eXHFj/So1oPfYcmZEDnydzixYt1XWWe1CkIgqArkiSx5sw9fj4URD07K5aJblUtZ8+epX///pibmxMYGFgo951+6B3EEY9bqNSmfKhYTs3aN+CT7VCtYI4pk9RqlElJSGo1Mvn/W47TdqsWq2HP35V9sLQqyT9t/sGxuKMeIxbeRnSzCoIgvAPRrZo5tVrN/PnzmTFjBh988AEbN27EyKhwLSYrSRKXVxzjyjUJq8RIOpaYT8n61aDXWbC00Xd46USEhuCzfxfBF71RJiZyytQUx+ZONO7SA7OixTTdqqrWlVlWxIv29u2Z9cEsipoU1XfowluIZE4QBCGXfO5HMXZTSrfqWrcmfFhDdKumNWbMGFauXMm0adOYMWMGCkXh+shJjInj0Mx9PIovRdX4M3xYYTkmH30DrSeBUcF7roHepzj0+0LUKpXmmDIxkYDTJwg864XC2ATjIhYEdTDnstFZJjeZzIAaAwrdLOPCSO/vNpVKxcqVKzl69ChyuZyuXbsybNgwfYclCIKQqTe7VZcPaImt6FbVSExMxNTUlK+++opPPvmEtm3b6jsknXvqd4+Dv/uSIBXFSVpF/bo+yHpvgypt9B1ahiJCQ9IlcmlJajXJiQkcb/qcuKLGeLp4Uq90vXyOUsitfEnm1q5dy/Dhw+nduzdbtmzROte/f3927NgBpPyC3LNnD0ePHmXz5s35EZogCEKORMWmdKseD4rgS5cqfNtedKumUiqVuLu7s3//fs6fP0/t2rWpXbu2vsPSueueXnifTcAiKYEexWZRrlll+MQbipbRd2iZ8tm/K9NELq0GT8vwzfBVWJtZ531Qgs7kSzJ35MgRAAYMGKB13MvLi+3btwPg5OSEubk5x48fZ9u2bfTv35/u3bvnR3iCIAjZ4nM/ijEbfYlLVolu1Tc8evSI/v37c/78eX788cdCN1MVIDkhmWPuuwh5WRK7hOt0sFuIWceJ0GoCFOCN5SW1mlsXzmarbPH7yViZWOZxRIKu5cufk35+fkBKwpbW+vXrARg+fDhnzpzhyJEjzJo1C0mS8PDwyI/QBEEQsqRWS6w6fZd+f57HxtqcA2NbiUQujYMHD9KgQQNCQ0Px8vJiypQpyOWFq7UyKjiMLWP/JTTSkiYJG+hWby1mX24Hl+8KdCIHoExKQpWUlK2yqqRklNksKxQc+fLT9vz5c0xNTSlVqpTW8WPHjiGTyRg7dqzm2OjRowG4cuVKfoQmCILwVlGxSQxff4WfDgQxrFVlNo9oIcbHveH169e0bNkSPz8/nJ2d9R2Ozt3acZ6tv1wlKVlGZ/l0mreLQf7VWbA3jOcqN1agNMrefulKIwm5sd6H0ws5lC/JXExMDGZm2qtFP3nyhEePHlGmTBmtMRXFixfH0tKSZ8+e5UdogiAImfK5H0WXpWfweRDFOremTOlUU4yP+8+9e/f48ccfkSSJPn36sGfPHkqWLKnvsHRKpVRxwn0Hx47GUzIxhH6lv6XSwP4wYBsUKZV1BQVEojqJJyXis1U2tFwsiWrRMmdo8iX9trKyIjIykri4OCwsLAA4deoUAB988EGGj3kz+RMEQcgvarXE6jMh/Hr4FvUrWLOsf0PRGpfG9u3b+eKLLyhRogQjR46kdOnShW75ilcPn3Fg7jGeS6WpG78D53peyPtthYrN9R1ajkiSRLCXF7bPzZGQkJH566SWSdytliS26jJA+fInZp06dQDYunWr5tj69euRyWS4uLholY2OjiYmJoZy5crlR2iCIAhaomKT+GL9FeYdDOKLVlVEt2oaCQkJfPXVV/Tp04f27dtz9epVSpcure+wdO7eYR+2zDpHTJI5HaQ5tO74AvnoMwaXyCUnJnB45WKOr1nBkypwpt5z1LKMu1vVMokz9Z/TtJ4rcplofTY0+dIy179/f06dOsXo0aO5ePEi4eHhHDp0CFNTU/r27atV9vz58wA4ODjkR2iCIAgaPvcjGbPxKvHJKta5NcW1RsFdakIf/vjjD9auXcsff/zBiBEjCl1rnFqt5vxve7h2twjFk57SueyvWH0yHlp8BQb2XKPCH7N34TxePH5EQHO4VuYpyepkoiyfUPueJZXCLTBWyUk2UnO/XBw3K8fwykri11qD9R26kAv5kswNGzaM7du3c+zYMVatWoUkSchkMubMmZOuBW7btm0ZttgJgiDkldRu1V8O36KB6FZNJygoiBo1ajB69Gg6dOhAzZo19R2SzsU9i+aQ+36eqMrhGHeID+sfwujTzWDXWN+h5didKxc59PtCkk1hT4tHlLGvwvZW2wl4EcAPZ3/gbP0XnK33AoVKljIxQgYKmYK5znOpXqK6vsMXciFfkjkjIyMOHTrEpk2bOHfuHNbW1nTu3DndUiVJSUk8efKE1q1b06lTp/wITRCE91xUbBITt13jRFAEI12qMrG9o5jk8J/Y2Fi+/vpr/v77bwIDA6lWrVqhTOTCzvpzZN0tkmSWtJF+o3bXEvDxaTC31ndoOaJWqfDe+jeXdm0jpqIp+6rfYWBDN75u8DXGRsbYW9lT1boq6wPWc/T+UeJl8ZgrzPmo0kcMrjVYJHIGLN/mH8vlcj777DM+++yzTMuYmJhw4MCB/ApJEIT3nM/9SL7eeJUE0a2azo0bN+jXrx/3799nzZo1VKtWTd8h5Qmf5fu5dF1BEWUsn5Ryp3TfMdBsuMF1q8ZFv2T/0l94cPMGN2rH8bB6PCtar6K5jfY4v+olqjPXeS4/Ov2I73VfGtVrJMbIFQJiMRlBEN47arXEqv9mqzasYM2yAQ2xsRLdqqkOHjzIJ598goODAz4+PtSoUUPfIeWaWqlC9SoetVKFXPH/xX2TYmI5MuNf7ifYYh93mo/q7cNk4HqwbajHaHMn7FYgexf9xKuEVxxp9oTaDZ1Z3NL9rVtyyWVyzIzMRCJXSIhkThCE90pkbBITt/px8tYzRrWpyoSPRLfqmxo3bsyYMWOYNWsW5uaGmeSGnbmBz9ZrhCWUQm1kwrm1Rylv9pzGfetjUsycg8t8iJWXoqVyJY26F4VuJ8DMsLaxkiSJq4f24rV+DS9LqDnp/Iyxrb+nt0PvQjc5RXi7fE3m7ty5w9atW7l+/TpRUVEkJydnWlYmk3H8+PF8jE4QhMLuSmgkYzb91606tCmu1UW3aiofHx/Gjx/P9u3bKVu2LL/88ou+Q8o1vz8Pcc7HCEluC/81xqmNTHiYbMvDv58iUysxV0l0LzYD24EjofFQg+tWTUqI58ifS7l17gyBlV/zqmVpPNtsoopVFX2HJuhBviVzU6dO5ddff0WtViNJWW8rIv6qEARBV0S3auYkSWLp0qV899131KtXj4SEBH2H9E7Cztz4L5HLZL9UmRxJbkyb0puxnfgXlKubvwHqwIuwh/z722win4VzpuEz2rTry5iGYzAxMtF3aIKe5Esyt2LFCubPnw9A5cqVadu2LWXLlkWhEL28giDkrTe7VSd+5IhCdKsCEBkZydChQ9mzZw/jx49n/vz5mJqa6jusd+Kz6RKSvPLbC8lk+L/uSmUDTORunT/DgZULeWmSwNU2SUzpvIgPbDPeSUl4f+RLNrVy5UpkMhlubm6sXr0auVz8IhUEIe+JbtW3CwkJ4dKlS+zevZuPP/5Y3+G8M7VSRVjy/7tW3+aRsny6SREFmUqp5MSG1Vw/tJ97NrHIO9XC02UOxc2K6zs0oQDIl2Tuzp07ACxcuFAkcoIg5Dm1WuLP0yH8duQWjSpas7S/6FZNpVar8fT0ZODAgTRp0oSQkBCDneTwpuTo16iNsteyqDYyJTn6NaYlrfI4qnf3OvIFW3+byYuQUK7WjqF739H0rd5XDEcSNPIlmStevDgJCQlYWRX8HxpBEAxbZGwSE7b64XXrGV/9N1tVdKumiIiIYNCgQRw5cgQbGxs6duxYaBI5AGNzGXJVYrYSOrkqEWPzgp8M3fe/xo6Fs4lVxnH3I3Pm9PKgirWY5CBoy5ffcM2aNSMmJobnz5/nx+UEQXhPXQ6NpPOSM1x/FI3H0KZM6lhDJHL/OXHiBPXr18fPz4/Dhw/TsWNHfYekc3KzopSMv5OtsnbxPsjNiuZxRLknSRInd6xn25wfeGwWjennTqxy2ywSOSFD+fJb7rvvvkMmkzF37tz8uJwgCIWUWi2RoFSjVkvpjq/0usunqy5QoYQ5+8c600aMj9Pw8/OjXbt21KpVCz8/P9q3b6/vkHROnazklPtWnhWpCVmsmCBTq2jUMAIK6LCfxLhY1s75Bt+tW7njkETPye5MajNNzFYVMpUv3axOTk6sXLmS0aNHEx8fz+TJk7G3t8+PSwuCUAgEPI5hzdkQDt4IJz5ZhfmOx3SqW44vnKv8r737Do+iets4/t3d9N4gCan03nsvUqRJkapIR0FQmqgUKYoiKih2AaUIgoiIIkWK9N4TWiBCQgoBEtLrlnn/4EdeSgIJbLLZ5Plcl5dhd8qzJ7O7d87MnIOXs42cVs1FYmIizs7O1K5dm99//50XXngBjcY8LvjPj+SwGLZ+uIPbam+qpf+Ji0UUhy3G5Dg8icqgp5nhe3xenl34heZB5NVLrJk/A11KGvEdvfjo5c9ws3EzdVmiiCu0sUFGjhxJXFwcU6dOZcmSJbi5ueHo6Jjr8iqViv/++6+wyhNCFFF/noli8rqz6O7rjUvX6tlwKoo/z0TjYG2BRq1i+bCG0ht3n23btvHKK6/w/fff8+KLL9KrVy9Tl1Qg/vvrMLv/vIkBJzpafkbFycNAraH00mmciutOpG1DDBpr1PpMfNOPU899Ez4j3ymS48vt2rqakz+vIcleS+XXX+TdZqPkJgeRJ4US5vR6PYMHD2bt2rXA3WsB4uLiiIuLy3UdOYCFEBeikx4JcvfTGxSS0rWsHN6IlpVKFXJ1RZNWq2X69Ol8+umndOnShVatWpm6pAJh0Ok58OF6gqPdccu6QedqG3AZ+Q2UqgSAz9TK+Bz+FsO5EWgz9FjaaFDX6AFNfypyQU6blcWSL94m/WQocWXVDJv4OVU8q5m6LGFGCiXMffHFF6xZswaAli1b0qlTJxk0WAjxREsPXM01yN2jABvPREuYA2JjYxk1ahQnTpzgs88+Y+LEicVyOKjkiFts/WA7t1VeVE3bROteCpruf4HlfXfmetWEXt+h7vENoUEnqV6rfpG8Ri4sMoTVH7+LZVwWdKjInKEfY2NhY+qyhJkplDT1448/olKpmDp1KnPnzi2MXQohzJzBoLA1OCZPy24JvsGnfWqhVpfsHn1HR0e8vLw4cOAAjRs3NnU5BeLalmPs+j0KA460t15A5SnDoVbf3FdQq1EsbItkkNu0cwXBK37FYAE13xxK56b9TF2SMFOFEubCwsKyw5wQQuRFhk5Pulafp2XTtXoydHrsrEpeb39GRgZTp05l+PDhWFtb88cff5i6pAJh0Ok5NG8DQZEuuGbdpHO1P3AZ9Q14VDB1afmWoU1n0TeT0By+js7XjuHvfoZvqUBTlyXMWKENGpyeno69vX1h7E4IUQzYWGiwtdTkKdDZWmqwMZNpmYzpypUr9O/fn/Pnz9OoUSNq1ixa14IZS3LkbbZ9sI1bKh+qpP5Fm94Kmu4bHzytaibOR57hl8/ew/WGAcc2NZn06oeoi+EdxqJwFUq/c6tWrUhMTCQqKqowdieEKAbUahUNAvM272SXmt4l7hTrmjVrqFevHikpKRw5coSBAweauqQCEbb1OL/OOkC8zpn2qgU8904LNL0XmV2QUxSFFbu+Zv2Md3GMU2jyxqu8NuZjCXLCKAolzE2dOhVra2vefvvtwtidEMLM6Q0KX+y8zIErsTwpolmoVYxoUbZQ6ioq4uPjGTduHD169ODkyZPUrVvX1CUZnUFv4MCHv7NlYwJ2WbfpW+4bKs/9Emr2MXVp+RabFsvUb4dwc+lW7JycGf7Jd7Ro0cPUZYlipFBOs9aqVYsNGzbw0ksv0blzZ95++20aNWokp12FEI+4lZTB+LVnOHotjgntK+HvbseU33IensRCrWJBv9pUK+NkgkoL34ULF/Dy8sLNzY0zZ87g6+tbLIdxSo2OY+v7W7lJGSqn/k2bFxUsuv0JluZ3l+f+a3tY/908/MMtKdW0Di+NnY2FpaWpyxLFTKGEuftHHN++fTvbt29/4joqlQqdTleQZQkhipj9V24z8dczqFUqVo9sQtPy7gBU9nTkxwPX2BJ84+4MEJYautT0ZkSLsiUiyCmKwrJlyxg3bhyjR49m4cKF+Pn5mbqsAhG+4zQ714ahx4l2lp9T9d1hUKO3qcvKt0x9Jl/smkfSukP4plnRfORImnToaeqyRDFVKGFOecI8eUKIkk2nN/DFzit8syeUFhU8+Lx/HTwcrLOfr1bGiQX9avNpn1qcCgqmXq2aJeYaueTkZMaMGcPq1asZNWpUsR3eyWAwcPiTPzl71QGXrNs8X+UP3EZ/De7lTV1avv2X8B/zfplM+YNZlHJ0Y+BHH+IZaH6vQ5iPQglzu3fvLozdCCHM0I3EdMavOcPJ6/G81bEyY1qXzzWoqdUqbCzUJSbIZWZm0qhRIyIjI/nll1+K7U0OqTfj2TZ7MzFKGSqlbabti2DR7Q+zO62qKAq/XlzL9tU/UD3UAc9aNekz4T1s7B1MXZoo5golzLVu3bowdiOEMDO7L91i0rozWFtoWPtqExoGyoTicDcUKIqCtbU1U6ZMoWXLllSsWNHUZRWI6/+eYcfqq+hwpq3lIqpNHQbVe5q6rHy7k3GHObtmYLE5hGp3HGgy4GWa9eiPqggOViyKn5I3wqYQwuS0egOf/RPCD/uu0q5KaT7rWxs3eytTl1UkJCQkMGLECOrUqcN7773H8OHDTV1SgTAYDBxdsInTV+xwzrpD5yobcBvzNbiVM3Vp+XYo+hCf/vke9Y9Y42jhTq8ZM/CvUcvUZYkSRMKcEKJQRcan8caa0wRHJjK9S1VGtChbYk6bPsnRo0cZMGAACQkJDBo0yNTlFJi0W4lsnf03MQZvKqZupW0fBcvuf4CF9ZNXLkKy9Fl8eXIRR7f+QfOLbpQuX4Fek2fg6OZh6tJECWP0MJeUlIRarcbBwXjXCBTENoUQhW/7+RimrA/CwdqCdaObUs8/b4MCF3eKorBgwQKmTp1KgwYN2LNnDwEBAaYuq0BE7A1m+8or6FTOtFF/SfXpw6Ca+Y25djXxKlN3vU2p/XdoEu1G3c7daT1oBBoL6SMRhc/oR52Liwve3t5Gne2hILYphCg8WToD87ZeZNnBMDpW8+TTPrVxtpOxtu538OBBJk2axNy5c7EshuOQGQwGjn6+mdMh1jhlxdOj8h94vP4VuJnXgM+KovDb5d/4/t+FtDnlgVOmC8+Pn0CVZq1MXZoowQrkT4iCGIpEhjcRwjxdj0tj3JpTXLyRxKzu1RjaLLBYDnT7NPbt20dGRgYdO3Zk/fr1D4zJWZykxyWxdeYmbui9qZC6jXZ9wLL772Z3WjUhI4FZh2bx37EjdDnniWspb3rOmoG7b/Ec80+YjwIJc3q9noiICAlgQpRwW4Jv8M76IFztrfh9TDNq+bqYuqQiQa/X89FHHzF79mx69epFx44di22Qi9x/nu3LL6FVOdNa9TU1ZgyDqt1NXVa+HblxhBl7p1MhWEXb0FJUatqcTq+9gZWtnalLE6JgwlxsbCyBgYFG2578FS+EecnQ6vlw80V+PhJO15rezHuxJk42xe/U4dO4ceMGgwYNYvfu3cyaNYsZM2aYuqQCoSgKxxZt4eQFS5yyEnih0kY8xn0FroGmLi1ftHotX53+il9PrqTb+bLYxxpoM2Q4dTu/IN9Nosgwm9OsQgjzcC02lbGrTxF6O4UPetZgUGN/+dK7z4ABA7hy5Qq7du2ibdu2pi6nQKTfSWbbzL+I1nlTPmU7z/UzYNntd7Awr+FnriVe493975IQGkb/oPLYWdnTfea7+FSpZurShHiA0cPctWvXjL1JgGJ7CkKI4uTPM1FM2xBMaScb/ni9GdXLOJu6pCJBp9MRFxeHp6cnP/zwA25ubpQuXdrUZRWIqEMX+efHC2hVzrRUfUutmcOgSldTl5UviqKw4coG5h+bT4OI0jQO8sS3SiW6jn8bexe5A1sUPUYPc8X1dnohRO4ytHrmbDrPmmMR9KhThg971cTBWoZoAIiIiGDgwIFotVqOHDlClSpVTF1SgVAUheNfb+NEsAbHrCS6VdxI6Te+BFfz+k5IzExkzuE57AndSb+rtbD8L4EGPXrTov8rqKVTQRRR8mkrhHgmobeSGbv6NGFxqcx/sSb9GvjJadX/+euvvxg2bBgODg6sXbu22LZLenwK/8z6i6gsL8om76RDPwOW3X8zu9Oqx24cY+qBqVjFZTEsuBakZvH8W9Op2LCpqUsT4rEkzAkhntr6k5G8t/EcPq62/DWuBZW9HE1dUpHx3nvvMXfuXHr06MFPP/2Em1vxnHc2+kgI/yw5R6bKmRbKd9SaORRVVfM6rao1aPnm9Df8dO4nnkupQcCRDJy9XOg+Yyqu3j6mLk+IJ5IwJ4TIt7QsHe9tPM/vpyLpU9+X93tUx85KPk7uV6NGDRYtWsQbb7xRLHvkFEXh5HfbOX4GHLKS6FrxZ0q/+SW4+Ju6tHwJTwrnnX3vcOV2CKNutybr5DUqt2pH+5GvY2ltY+ryhMgT+fQVQuRLSEwyY385RVR8Ogv61ubF+r6mLqnIWLduHXv37uXrr7+mf//+pi6nwGQkpvHPzD+JzPSkbPIunuunYP3Cb6ApesPPGBQDGfoMDIoBtUqd/biiKGwM3ci8Y/PwNZRizMUmpERF0H7kWGq1f75YBnBRfEmYE0LkiaIo/Ho8gll/nSfQ3Z5Nb7SgQmmZLxkgPT2diRMn8sMPP9C/f3+0Wi1WVuZ1vVhe3TgeyrYfzpCJE82VH6g9exiqys+buqxHhNwJYeWFlewI30G6Lh3bc7Z0COjA4GqD8bL34v3D77M9fDt9rNrh8e8tDDYZDJjzCV4VKpm6dCHyTcKcEOKJUjJ1TP8jmD/PRDOwkR+zulfHxlLu7AO4ePEi/fv358qVKyxZsoQRI0YUy14dRVE4+cNOjp8yYJ+VQs/yv+A14UtwLno9s1uubmH6genoFB0oYKFXka6k89d/f7H56mYcrBwwGAy8revPra1H8apVly5vvIWto5OpSxfiqUiYE0I81vnoRMb9cppbSRksGlCHHnXkgvD7/fzzz+h0Oo4dO0bNmjVNXU6ByEy6e1o1IsOTwOS9tO+nYP3Cr0XytGrInRCmH5iOY6KK6tfcCYixw1KvRqsxEO6VxvmySaTaJPN6VBtuXTpK0xcH0OTFAajV8seJMF8S5oQQOVIUhVVHr/PB3xeoUMqBv99sSVkPe1OXVSSkpKRw6NAhOnbsyJw5c5g+fTr29sWzbW6c/I9/vjtNBs40MyyhzuyhqCp3MnVZuVp5YSV+UVa0POuBWvn/HlJLvZoKUQ6Ui7Yn08LAHU0Yfd6ZRdm6DUxYrRDGUShh7vr162g0Gnx88vYXfXR0NDqdDn9/87orSojiIilDy9Tfg9kcfIPBTQOY1qWqnFb9n7Nnz9K/f39u3bpFWFgYTk5OWFoWvR6qZ6UoCqeX7uLocR12WWn0LPsLXpO+Auei2zNrUAwcD9pNh4eC3P3UigobrZp99WKZXKdeIVcoRMEolDAXGBiIt7c3UVFReVq+efPmREREoNPpCrgyIcTDgiITGPfLaeJTs/j25Xp0qelt6pKKBEVRWLx4MePHj6dy5cocPnwYJ6fieY1VVkoG/8z8g+tpngQkH6JDPwXrF9aBpmifzMnQZVA+1CrXIHePChU+kZZk6DKws7QrpOqEKDiF9s5UFKVAlxdCPBtFUVh+KIyPtlykqrcTq0Y0xt9dvujumT9/PlOnTmXMmDEsXLgQG5viOQbZzbPX2PrVCTJULjTRLaXenGGoKnUwdVl5Yq22IjAmb6e7A2PssVYXzzuORclTJP/MysjIwMKiSJYmRLGUmKZlyvqzbL9wk+HNy/Ju5ypYWaifvGIJkJGRgY2NDUOHDqVSpUr07t3b1CUVCEVROPPTHo4cycQuK52eZX/Fa/KX4FTG1KXlmUGrw0KftzuJLfQqDFodmiLe2yhEXhS5ozg6Oprbt29TunRpU5ciRIlw6no8b/xymuQMLYtfqU/H6l6mLqlIUBSFL774gkWLFnH8+HG8vLyKbZDLSs1k+8w/CE8tjX/KEdr31WPbY22RP616P4Ni4KeQFWg1Biz1T/5DRGNlhUUxHQtQlDwF8k7dt28fe/bseeCxlJQU3n///VzXURSFhIQEtmzZgqIoNG7cuCBKE0L8j8GgsPTAVT7ZFkJNX2d+fa0Jvq5yWhUgLi6OoUOH8vfffzN58mScnZ1NXVKBuRkczrZFx0hTOdNE+xP15gxGVamjqcvKl8TMRKYfmM7eyL0Mr9AYQ0jME9ep0rQlKrX0PovioUDC3O7du5kzZ84DA2empqYyZ86cJ66rKAo2NjZMnTq1IEoTQgDxqVlM/u0s/166xWuty/FWx8pYauSLDeDw4cP069ePtLQ0Nm3aRLdu3UxdUoE5s3wvhw+lY5eVQY/A3yjz1iJwMq8bXi7ducTE3RNJykpint/bhO/bQsYT1lFrNNTr0qNQ6hOiMBRImAsMDKR169bZ/967dy+WlpY0bdo013XUajVOTk7UqFGDIUOGUKFChYIoTYgS73jYHd5cc5oMrZ5lQxvStopc0nA/lUpFpUqVWLFiBb6+RW92A2PISstix6w/CEsuhV/SUTr002Pb4xezOq0KsDF0I3OPzKWcU1kmZPXi/OLf8KtRi0qNm/Hvsh8w6PWPrKPWaHh+7CRKB5YzQcVCFIwCeecOGTKEIUOGZP9brVbj5ubG7t27C2J3Qog8MBgUvtv7Hwt3XKaevwtfDqyLt7OtqcsqEm7evMlnn33GvHnzaNKkCTt37iyWU3IB3D4fwZYvjpCGE42yltHggyGoKrY3dVn5kqnPZN7Refx+5Xde9H2BGkfVnAvaRJPeA2ja5+5sDt4Vq3Bqy5+EHDmALjMTC2trKjdpQb0uPSTIiWKnUP4MW7ZsGba28qUhhKnEpmQy8dczHAiNZWybCkxoXxELOa0KwM6dOxk0aBAAI0eOpHLlysU2yJ39eT+H9qVim5nJC/7r8Xn7C7M7rRqdEs3EPRMJjQ9lqt9YUtYf5WZWJi++O5vAOvWzlysdWI7nX59Ip9HjOXvmDLXr1JFr5ESxVShh7v5eOiFE4Tr8Xxzj157GoCisHN6IlhVLmbqkIkGn0zFnzhw+/PBDnnvuOX7++We8vIrnnbxZ6VnsnL2Ra4ke+CYfp2NfHba9fgEzm4/0YNRB3tn/Dg4WDrxv+xqXl27Bs3wFuo1/ByePnI9rlVqNhZWVBDlRrJnXBRJCiDzTGxS++vcKX+66QuOy7iwaUIfSTsVzoNunsWnTJubNm8fcuXN59913UZv5l71Bp0efnI5Bp0dt8f8h7falKLYuOEQqTjTMXEHDD4agqtjOhJXmn0Ex8EPQD3x35jtalmrGcxd9uHTsL+p16UGrl4eisSh+06kJkR8S5oQohm4lZTDh1zMcvhrH+Ocq8ka7imjUxfPUYX6dO3eOGjVq0LNnT4KDg6lataqpS3omUfuDObnuLFEZHhg0Vhz6aQc+NrHU71ebuIhEDu1OxiYzi+7+y/F9ZxE4epq65HxJzEzk3f3vcjDqIK+VeRmbv/8jKjGI7pOmUqlxc1OXJ0SRYN5/ipZQq1at4rXXXqNBgwZYW1ujUqlYvny5qcsSRcT+K7fp8uV+rtxKYfXIxkxoX0mCHJCVlcXkyZOpWbMm+/btQ6VSmX2QO/PDNv78OYYIbRkMmrsD4Bo0VkRoy7Bx1U3278vCK/kk/XqE4vv+arMLchfiLtD/7/4ExwYzx3kMupXHsLSyYtC8LyTICXEf6ZkzQzNmzCA8PBwPDw+8vb0JDw83dUmiCNDpDXyx8wrf7AmlRQUPPu9fBw8Ha1OXVSRcu3aNAQMGcPr0aRYuXEjLli1NXdIzi9ofzKGTGpTcrntTqUEx0KB3eexeHFi4xRnBhisb+PDIh1RyrMBrN9pwdf9marTtQLvho7G0kuNaiPtJmDNDS5cupWLFigQEBPDxxx/LAMuCG4npjF9zhpPX43mrY2XGtC6PWnrjADhx4gTt27fHzc2NAwcO0KhRI1OXZBQn1xxDUZd9/EIqNaf3pOHbr3BqMoYMXQYfHf2IP0L/oG+pbgTsSeZ69DE6jR5PjbYdTF2eEEWShDkz1L69eY0JJQrW7ku3mLTuDNYWGta+2oSGgW6mLqlIUBQFlUpF9erVee2115g2bVqxmZbLoNMTpS0DebgZNVJb5pGbIoqqyORIJu2ZxNXEq7zjMpz4dYfRu7jw0ocLKBXwhOAqRAkm18zlw61bt/j777+ZOXMmnTt3xsPDA5VKhUqlYujQofnaVnh4OJMnT6ZKlSrY29vj5uZGw4YN+fTTT0lLSyuYFyCKFa3ewLwtFxm2/Dh1/FzYMr6lBLn/CQkJoXnz5pw/fx5bW1vmz59fbIIcgDYxBYMmb6caDRprtIkpBVzRs9sXuY/+f/cnJSOZaWn9uPnLLgJr1eXlj76QICfEE0jPXD54ehrn4uFNmzYxaNAgkpKSsh9LS0vjxIkTnDhxgqVLl7J582aZ0kzkKiohnTd+OUVQZCLTulRhZItyclr1f37++WfGjBmDj48PBoPB1OUUCEtbFWp9Zp4CnVqfiaVt0T029AY93539jh+CfqCdS3MaHLcl/OpB2g59lbrPdy+2AzgLYUzSM/eU/P396dixY77XO336NP379ycpKQkHBwc+/PBDDh06xK5duxg1ahQAly9fpmvXriQnJxu7bFEM7Lhwky6L9nMzKZN1o5vyaiu5Pg4gNTWVYcOGMXjwYF588UVOnjxJzZo1TV1WgdCpbLDRJeRpWd/0k6htHAq2oKeUkJHA67teZ3HQYsY496fypiTS7sTTf/bH1Ov8ggQ5IfJIeubyYebMmTRs2JCGDRvi6elJWFgYZcvmr/t//PjxpKenY2Fhwfbt22natGn2c+3ataNixYq8/fbbXL58mQULFjB79mwjvwphDgwGhQydAYNByQ5qWToDH2+9xE8Hr9Gxmief9qmNs50MlnpPXFwcO3fuZPny5cV61pnYyzFs+Ww/6RZuoBju3rWaC5VBT726t6AIDoh8LvYck/ZMIl2bznT9S0SuPUhgrbp0HjcZO6fic0pciMIgYS4f5syZ80zrHzt2jP379wMwYsSIB4LcPZMnT2bZsmVcvHiRRYsWMX36dCwt5Qu7pLgQncTSA1fZGhxDulaP7e/RdK7pRfdaZfhi52Uu3EhiVvdqDG0WKL0W3L3JYdWqVXTv3h1/f39CQ0Oxti6+w1YErT3CoX8TsMnIorvXD8TdUXFIPTrH4UlUBj3NDN/j8/Lswi/0MRRFYf2V9cw7Oo8adpXodNmPyIsHad73ZRr36ifTbgnxFORdU4g2btyY/fOwYcNyXEatVjN48GAAEhIS2L17d2GUJoqAP89E8cLXB9hwKop0rR6AdK2eDaeiGLb8OJHx6fw+phnDmpeVIAckJSXx0ksvMXjwYNavXw9QbINcVoaOLdN+Z/+eNLwSjtOvRzh+H6+nzviB9LCdhn/KAdT6TODuNXL+KQfoYTuNOuMHglfROdWcrktnxsEZvH/4ffrYdaDZTisSI6PpM+0Dmrw4QIKcEE9JeuYK0YEDBwCwt7enfv36uS7XunXr7J8PHjz4VNfmCfNyITqJyevOojMouS6TmK7FQr7sADh58iT9+/fn1q1brF27lv79+5u6pAJz+/JNtnx2gDTFjoZpK2n48auoyjW7+2TNPvhMrYzP4W8xnBuBNkOPpY0GdY0e0PSnIhXkIpIimLhnIuGJ4UxhAHG/H8OlYmW6jn8bRzcPU5cnhFmTMFeILl68CECFChWwsMi96atUqfLIOgUpMjLysc/HxMQUeA0l3dIDVx8b5AB0BoUfD1xjQb/ahVRV0XT79m26dOlC9erV+eeffyhfvrypSyoQiqIQtPYoh3YnYJueRjf/DfhN/wrsHhp+xqsm9PoOdY9vCA06SfVa9YvcNXJ7IvYwbf80SqldmRDZnpgzh2nQvTctBgxG85jPQiFE3si7qJBkZGQQGxsLgK+v72OXdXV1xd7entTUVCIiIh55funSpdm9fMHBwdmP7dmzB4AWLVowcuTIPNfm5+eX52WF8RkMCluD8xaYtwTf4NM+tUrk3asJCQk4OTlRqlQpNmzYQLt27YrvadV0Ldvf30R4vAt+8Udp/5INdj1XweNOr6vVKBa2RSrI6Q16vjnzDUuCl9DRthlV9uuIT7lKj7dmUKFhE1OXJ0SxIWGukNw/zIiDw5OHCbgX5lJSHh3s88CBA6xYseKBxw4ePMjBgwez/52fMJdfV65cQVEe34uUV7GxsZw7d84o2zJXGTpD9jVyT5Ku1XMqKBgbi6LzhV0Yzpw5w9tvv81LL71Et27d8PPz48qVK6Yuq0CkRCRzcUMUmYodDVKX4T66C1c9a8L5809ctyi9n5K0SXx17SvOJ53n5ZS2WP9zHaVUaRoNf50MW4dCrbMotUtRIu2SO2O2TWhoqFG28zgS5gpJRkZG9s9WVlZPXP5ej0N6evojzy1fvpzly5cbrbacev/uFxIS8sAUYhUrVqR69epG2fe5c+eoUaOGUbZlrgwGBZvfo8jQPnmAW1tLDfVq1SwxPXMGg4FPP/2U6dOn07hxY958802SkpKK5TGjKApn1h7l9O4k7NJT6RawEd8ZX4OtS563UVTeT0G3g5i1dxb6zCymxHbj1vEgajz3PG2HvopFHj7/jK2otEtRI+2SO2O2TWHcsCZhrpDY2Nhk/5yVlfXE5TMz796ZZmtrW2A13fOk076JiYkFXkNJduRaHHnt6OxS07vEBLmUlBT69OnDP//8w7vvvsv777+PpaVlsexJyEzTsv2Dv7ke74x//CGee9kRux4/P/60ahGkKAq/hvzK/OPzqWtRmWYnnbkTG0LnsZOo1qqdqcsTotiSMFdIHB0ds3/O6dTpw1JTU4G8nZIV5slgUPh+33989k8ItXydCY5KQv+YmyAs1CpGtCg5c1Ta29tTpkwZtm3bRqdOnUxdToG5GXKTrQsPkaG3onHaMup9Nh51QANTl5Vv6bp03j/8Pn9f/ZuXVR2w23YdjZuKlz9ciIdfgKnLE6JYkzBXSGxsbHB3dycuLu6Jd4/Gx8dnhzm5OaF4SkzTMvm3M+y8eItxbSswsUMl/g6KznV4Egu1igX9alOtjJMJqi08er2eDz74gCZNmvD888/z008/mbqkAqMoCqfXHOPInkQc0hLpFrAL3/e+ARvz+x2HJ4Uzcc9EohMimRDflYTD5yjXrBUdX3sDK5uCP7sgREknYa4QVatWjf379xMaGopOp8t1eJJLly5l/1y1atXCKk8UknNRiYxZfZKkdB0/DW1AuyqeAPSo40PF0o78eOAaW4Jv3J0BwlJDl5rejGhRttgHuejoaF5++WX27dvHwoULef75501dUoHJ+N9p1Yh4ZwLu7Oe5wW7Ydl9pdqdVAf69/i/TD0zHx+DOqPMNSIq4xHPDx1C7YxcZ3FqIQiJhrhC1aNGC/fv3k5qaysmTJ2ncuHGOy+3duzf75+bNmxdWeaIQ/Hr8Ou/9eZ5Kng78MrIJfm52DzxfrYwTC/rV5tM+tTgVFFxibnbYtm0br7zyClZWVuzevZtWrVqZuqQCE3PpJls/P0yW3pLGqT9Rb8Ek1AH1TF1WvukMOr46/RU/nfuJrjTBd18yBtsMBr7/CV4VKpm6PCFKlJI1voGJ9ezZM/vnZcuW5biMwWBg5cqVALi4uNC2bdvCKE0UsAytnrfXn+Wd34N5sZ4v60c3eyTI3U+tVmFjoS4RQU6r1TJhwgQaNmzImTNnim2QUxSFE6uPsGHhWSxS7tDV8zcaLP/eLINcXHocr+14jRXnljM6qROlttzAp1JVBn28SIKcECYgPXOFqFGjRrRs2ZL9+/fz448/MmTIEJo2bfrAMgsWLMie9WH8+PFYWlqaolRhROFxqYxZdYr/bqfwWd/a9Kn/+LuHS4rw8HAMBgNly5Zl9+7deHp6oi5CA94aU3pKFts/3EJkvBOBsXtoO8wbu+4rnrxiEXTm1hkm752MJk3PuCstSQq9TIuBQ2j0wosyt6oQJiJhLh8OHDjwwOB/92Z0gLuDAj489tvQoUMf2caiRYto3rw56enpdOzYkWnTptG2bVvS09NZu3YtixcvBqBSpUpMnjy5QF6HKDzbz8cw+bezuNtbsXFsc6p6F+/r3vLqjz/+YPjw4bRr147ff/8db29vU5dUYG5cvMm2L46QpbOgSdpS6i56B7Wf+U3JpigKv1z6hc+Of0ZjXWVqHdGgJYG+783Fr3otU5cnRIkmYS4fli5d+sjMC/c8PAMD5Bzm6taty6+//sqgQYNISkpi2rRpjyxTqVIlNm/e/MBwJsK86PQGPtt+me/3/kfHap581q82TjbSy5qZmcmUKVP46quv6NWrF0uXLjV1SQVGURROrj7Ksf3JOCbH0rH8fnzeWwpWuZ9eL6rStGnMPjybrVe38kpKaywOXse9SjW6vvk2Dq5uT96AEKJASZgzge7duxMUFMSiRYvYvHkzkZGRWFlZUaFCBfr27cu4ceOwszO/D3xx1+3kTN5Yc4rjYfFM61KFUS3LyV193A03nTp14vDhw3z99de8/vrrxbZdMlK1bPtgM1EJTpS9/S9tRvhi13W5qct6KmGJYUzcM5Fbd6IZF96alIthNOzZl+b9BqHWaExdnhACCXP5YsxptAICAli4cCELFy40yvZE0XA87A5jV59CAX4Z2ZjG5dxNXVKRoNfr0Wg0TJw4kc8//5y6deuauqQCE30uhm1fHUWrU9MkdQl1v5yO2tc8p0zaGb6TGQdnUDbdg0EnK6PLiKXn2zMpX7+RqUsTQtxHwpwQRqAoCj8euMa8rZeoH+DK1wPrUtrJ5skrFnNpaWmMHz8enU7HsmXL6NGjh6lLKjCKQeH4qiOcOJiCU9ItOlU4hM/Mn8DS/AbN1Rl0LDq1iOXnltMzpSFuh+/gFOBOtwnv4lza09TlCSEeImFOiGeUnKHl7fVBbD0Xw2utyjGlU2UsNHJX34ULF+jXrx9Xr17lq6++MnU5BSo9JYttc7cSneBI2Vs7aDuyHLZdcx5+qKiLTY9lyt4pBEef4bWolmSeu06tTl1p/cpILOTueiGKJAlzQjyDSzFJjFl1itjkTL4fVJ/na3iZuqQi4aeffmLcuHGULVuW48ePU716dVOXVGAiz8Xwz1fH0Guhaepi6nz1Hmpf83y9p2+dZvKeydgnwYigOmgTbtH1zSlUad7a1KUJIR5DwpwQT2nDqUim/RFMoLs9f73RgrIe9qYuqcg4d+4cL7/8MosWLSq2N/MoBoVjPx/h5KEUnJNu0LbCUcrMWgEW1qYuLd8URWHVxVUsPLGQVsmVKXckC9vStvT76H3cfWV+aCGKOglzQuRTpk7P+5susProdV6s58vcnjWwtZK7+s6cOcP58+d5+eWX+eyzz4rtAMAAaUlZbPtoGzfi7Sh3czutR1XErutPpi7rqaRqU5l1aBY7//uHQTFNUJ29QaWWbWk/ciyWNnLdpxDmQMKcEPkQcSeNsb+c4lJMMvN612RAQ79iO7xGXimKwrfffsukSZOoV68eAwcOLNZBLiI4hu1fH0evVWiWuoTa38xG7VPV1GU9lasJV5m4ZyLJt24x6lIDtLdiaffqOGq261Tij2shzImEOSHyaHfILSb+egYHawt+H92Mmr7Opi7J5BISEhgxYgQbNmzgjTfe4NNPPy22Qc5gUDi68ginDqfikhhF24rH8Z65EpWl+Z1WBfgn7B9mHpxJtXhPnjvpi7WDmj7vf4pnuQqmLk0IkU8S5oR4Ar1BYdHOy3y1O5S2lUuzsF9tXOysTF1WkfDmm2/y77//smHDBnr16mXqcgpMamIm2z76h5gEO8rHbKHVmOrYPf+jqct6KlqDls9Pfs6qcz/z4s16OJyOw79BbZ5/fQI29g6mLk8I8RQkzAnxGHdSsxi/9jQHQ2N5q2NlxrQuj1pdsk8/GQwGIiMj8ff3Z/78+XzwwQcEBASYuqwCc/1sDNu/PYGiNdA8ZTE1v/0AjU9lU5f1VG6n3eatvW9xJeIcI0MboIuIo+Wg4TTo1ktOqwphxiTMCZGLU9fjGbv6FFk6Az+PaEzzCh6mLsnkYmNjGTJkCEFBQVy5cgVvb29Tl1RgDAaFoysOc+pIGq4J12lT8TTes1ehsjDPXtkTMSeYsm8KpW5ZMOBMBawt9PSe+RG+Vc1zdgohxP+TMCfEQxRFYeXhcOZuvkBNH2e+ebke3s7mN4q/se3bt4+BAweSlZXFypUrsSnGdzqmJmSy9aN/uJloR4Ubf9NyTG3sOi8xdVlPRVEUVl5YyecnPqdjTCW8TqfjXb0CXd+cgp2zi6nLE0IYgYQ5Ie6Tmqnj3Q3BbDobzbDmgUztXBUri+J5QX9+fPvtt7zxxhu0bNmS1atX4+PjY+qSCkzY6Rvs/OEkSqbu7mnV7z9EU6aiqct6IoNiIEOfgUExoFbdPWZTtam8d/A99l3ZxSv/1YGwOzTu3Z+mfQaiVstwOkIUFxLmhPif0FvJjF51ihsJ6Xz9Ul261Spj6pKKjDp16vDee+/x3nvvodEUzxBg0Bs4vPwIZ45n4HYnjNaVg/CetRqVRdGewirkTggrL6xkR9gOtJkZWAbb0CGwA2392rLo1CL0UfEMDq6GRq+ly7uzKVunvqlLFkIYmYQ5IYBNZ6N55/cgfFxs+XNcCyqUlrv6duzYweLFi1mzZg3NmjWjWbNmpi6pwKTEZ7B13g5uJ9pQMWoTLcbWx67zYlOX9URbrm7h0y2zqHLVnt4xHljq1Wg1BsK9DvJ+4FYqpJaiRrA7HuXK0G3Cuzh5lDJ1yUKIAiBhTpRoWToDH225yPJDYbxQuwzzetfE3rpkvy10Oh2zZs1i3rx5dOjQgdTUVJydi++YemGnbrBj8SlUGVk0T1lBjSXz0XiXN3VZTxRyJ4Qlv86ly9nSqJX/vxPVUq+mQpQD5aPsUaEisF1zeoyYiKaI9zAKIZ5eyf7WEiXajcR0Xl99inNRibzfozqvNAko8cMzREREMHDgQI4cOcK8efOYMmVKsR0EWK83cOinwwSdzMQ9LpTWVS7gNXstKo15fCyu3vsDzc66PhDk7qdChQGFM6Vj6C1BTohizTw+tYQwsgNXYnlz7WlsLNSse60pdf1dTV1SkbBt2zYiIiLYt29fsT6tmnzn7mnV2EQbKkX/SfOxjbHr/IOpy8ozg2LgzoGzOCuPv8tajYo7B89i6Pn/N0UIIYofCXOiRDEYFL7ZHcrCnZdpUcGDRQPq4mZvnuOGGUtWVhabN2+mV69ejBw5kgEDBuDo6GjqsgrMteNR7PjxLOqMTFqkrKD6kk/QeJczdVn5kp6Vhu+NvE0j5httTXpWGvbWch2oEMWVhDlRYiSkZTHx1zPsuXybN9pVZPxzFdGU8Nkc/vvvPwYMGEBQUBAhISEEBgYW2yCn1xk4+NNhgk9l4hEbQquqIXjN/hWVGd6da2FQY6nPW0+bpV6NhUF65YQoziTMiRIhKDKBMatOkZqlY9nQhrSpXNrUJZncunXrGDVqFB4eHhw8eJDAwEBTl1RgkmLT2Tp/J3GJ1lSO2kizN5pj9/xEU5f1VHQGHT+FrECrMeQp0CkWaqysi+8Az0IICXOimFMUhV+OXWfOXxeo4u3Iry83wdfVztRlmdzq1asZNGgQ/fv354cffijWd6v+dyySXT8FoUlPp0XKcqovXYDGO9DUZT2ViKQIph6YyrXwC/S08od03RPX8WtQD1UxvYlFCHGXhDlRbKVn6Zm+MZgNp6IY1MSf97pVw9rC/E6pGVN6ejq2trb06tWL1atXM3DgwGJ7B69ea+DAj4c4dyaLUrcv0bLaZbzm/GaWwUZRFDZc2cD8Y/OpecODvsGB2No7kpJ5BwxK7iuq1bTtNbjwChVCmIT5faoJkQfXYlPp9e1BtgTf4PP+tZnbs2aJD3IrVqwgMDCQS5cuYWdnx0svvVRsg1zi7XR+m7qZ86dSqXJ9HV1HeeH9wfdmGeTuZNxh/O7xzNvzPr3PV6TaCTVVm7Vm2MLv6DLurVxfk0qtpsu4yZQONK+bO4QQ+Sc9c6LY2XbuBlN+C6KUozV/jm1BZa/ieUF/XqWkpDB27FhWrlzJsGHD8PPzM3VJBSr0yHV2LT+PRXoaLZN/ouqPn2NhpqdV90XuY+bBmXjcUPNKcGUsVQod3ppOxYZNAajavDXuPn6c2vInIUcOoMvMxMLamspNWlCvSw8JckKUEBLmRLGh1Rv4ZNslluy/RucaXnzSpxaONiV7sNQLFy7Qu3dvIiMjWblyJa+88oqpSyowOq2e/UsPceGsltK3ztGi2jW85qw3y7tV07RpLDixgA0XfqN7RFWcL6biV6cqncZMwN7lwTERSweW4/nXJ9Jp9HjOnjlD7Tp1zLIHUgjx9CTMiWLhVlIG4345zcnr8czoWpURLcoW21OI+WFra4uXlxd//vknlStXNnU5z8yQpcUQH48hS4va6v+DesLNNLZ+souEZCuqXv+dxhPaYv/8FBNW+vSCbwcz9cBUtJFxDL1YA5IzaD3idWp36PzYY1qlVmNhZSVBTogSSMKcMHtHrsYx7pfTqFWw9tUmNAx0M3VJJpWYmMisWbOYM2cOZcuWZc+ePaYu6ZlFbdrMyT8uE6WpgkFjzcGVO/HRX6J+r0qkutVg988XsExLoUXyOqou+wIL7wBTl5xvOoOOJcFLWHz6B9pGl8M3uBTugZ50mTEZtzK+pi5PCFGESZgTZktRFH7Yd5VP/wmhUaAbXw6sSynHvI2KX1wdP36cAQMGEBsbS79+/YrFlFxnPvqaQ2GVUaxqZz9m0FgToalNxN8GUP2H580gmlcPN9vTqteTrjP1wFTCwy/xyuXqcCOZxr370aT3ADQW8jEthHg86Y8XZikxXcurP5/k462XeLVVOX4e0ahEBzlFUfj8889p3rw57u7unD59ulgEuahNm+8GOXUuAU2lBsVAvSYGvOd+a3ZBTlEU1l9eT5+/+mB7Pp4+hwJw1tsx4P35NO83SIKcECJP5JNCmJ0L0UmMWX2SO6lZLBncgA7VPE1dksmdOnWKt956iwkTJjBv3jysrIrHfLMn/7j8QI9cjlRqzodYY273bcalxzH78GyOhO7jxWs1sbyaQLV2bWgzZBRWNramLk8IYUYkzAmz8tuJCGZsPEf5Ug6sHN6IAHd7U5dkUkFBQdSoUYP69etz8eJFKlWqZOqSjMaQpSVKUyVPy0Zqqj5yU0RRtjdiLzMPzaR0tIZB5ypjqTLQ8a0ZVGjYxNSlCSHMkJxmFWYhQ6vn3d+DmLI+iJ51fNjwerMSHeQMBgPz5s2jXr16rF69GqBYBTkAbUI8Bk3eTp0bNNZoE+ILuKJnl6ZNY87hOUzY/gZtLnjT5Igd/pWqM+SzbyTICSGemvTMiSLvelwaY1afJPRWCp+8WIt+DYv3oLdPcvPmTV555RV27tzJtGnTGDhwoKlLKhCWLq6o9Zl5CnRqfSaWD42/VtQE3Q5i6v6p6KPjGXq+OqRm0WbkWGq1f16G0RFCPBMJc6JI23XxJhN/PYOLnRW/j2lGDZ/iOyF8XoSFhdGkSRMUReGff/6hQ4cOpi6pwNy5lYlGZcCQh2V99RdRW3Uu8Jqehs6gY3HQYpacWUy7qHL4nPPAo6wXnd97C7cyPqYuTwhRDEiYE0WS3qCwcEcI3+z+j/ZVPVnQrzbOtuZxPVRBUBQFlUqFv78/r732GmPGjMHLy8vUZRUIg0HhzM7rHP3jCtaZSeisrXK/mxVQGfTU61U0B0QOTwpn6v6pRFy/zCsh1eFmMk1696dxr/5yp6oQwmjkmjlhMgaDQobOgMGgPPB4bEomr/x4lO/2/Mc7z1dh8Sv1S3SQi4yMpG3btuzYsQO1Ws2cOXOKbZBLik1n42cnOLwhFN/wXbRL+IamXmdQGfQ5Lq8y6GkWGIJP966FXOnjKYrCb5d/o+9ffbG7kEDvQ344K3YMfP9TmvV9WYKcEMKo5BNFFLoL0UksPXCVrcExpGv12P4eTeeaXoxsUY60LB1jfzmF3qCwamRjmpX3MHW5JrV582aGDBmCjY0NdnZ2pi6nwCiKwqXDMexfcxGLtDvUvbCCKp3L4DpjH4FqNaU3bebUHyF371rVWKPWZ+Krv0i9XpXx6T7O1OU/IDY9ltmHZnP0v/30uVoDi2uJ1HjuOVoPHiFDjgghCoSEOVGo/jwTxeR1Z9Hd1xuXrtWz4VQUG09HAVDP35VvXq6Hp5ONqco0uaysLD777DNWrFhB165dWb58OR4exTPYpidnsXvVJa6djcX75mGqRa8n4MOp2Lbvl72MT/eu+HTviiFLy7mjR6jRuGWRvEZuT8QeZh2ahecNDYOCKmGpgU5vv0f5+o1NXZoQohiTMCcKzYXopEeC3P0MCqhUMLN7tRId5AAyMjLYv38/CxYsYOLEicX2bsewoFj+XXkBfXISNc+volypMLz/+hONp3+Oy6utLFG7uha58eTStGl8cvwT/ry4gReuV8PpUgr+9WvS6bU3sXN2MXV5QohiTsKcKDRLD1zNNcjdoyiw4lA4C/q5FE5RRcyGDRuoW7cuZcuWZf369dStW9fUJRWIrAwdB9eHcuFANKWSz1P53M/4962Dy7RDqNTmdSnv2dtnmbZ/GoaoeIZeuDvkSNtXx1GzXadiG8KFEEWLeX1qCrNlMChsDY7J07Jbgm88clNEcZeRkcHYsWN58cUXWb58OQCWlkWr98lYboQm8OvcY1w+FEGVK6upF/oNlT+fjOuMxWYV5LQGLd+c+Yahm4dQ9aINHQ55UMqtDIPnf0mt52TsOCFE4ZGeOVEoMnR60rU535H4sHStngydHjurknF4Xr58mX79+nHp0iW+/fZbRo8ebeqSCoReZ+DY39c4/U84rvpoGhxfjFf5TLzWbEdTOufTqkVVWGIYU/dPJfL6FQZfro5yM5kmvQfQpHd/1Jrch1ERQoiCUDK+LYXJ2VhosLXU5CnQ2VpqsLEoGV+I6enptGrVCmdnZ44ePUrt2k+YVN5MxUWnsHPZBeKiUqgQsxnfy1sp83JznN/5DpXGfD6G7g058tnxz6gdXYrewX44u9vT+f2ZeFcsmmPdCSGKP/P5FBVmTa1W0bmmFxtORT1x2S41vVGri/cpqtTUVFQqFXZ2dqxbt4569erh4OBg6rKMTjEonP03giMbr2JvkUqDE1/goY7A55tZWLcxr2nIYtNjmXVoFsf+O/D/Q460f442r4zE0qZk37AjhDAtCXOi0IxsUY6/zkQ/9iYIC7WKES3KFmJVhS84OJj+/fvTtm1bvvnmG1q1amXqkgpE8p0Mdq24QFRIAuW1J/E9/DPuNWzw/GYb6lKBpi4vX/69/i+zD83G+4Ylg4IrYWWhouPbMylfv5GpSxNCCLkBQhSeamWcWNCvNha59LpZqFUs6FebamWcCrmywqEoCkuXLqVRo0ZoNBrGjStag90ai6IohByNYe37R0mITKTh1W8pe3QpfoMb4L3mkFkFuTRtGrMOzWLyjgm0u1CGRkdsCahaiyGffi1BTghRZEjPnChUPer4ULG0Iz8euMaW4Bt3Z4Cw1NClpjcjWpQttkFOr9fzyiuvsGbNGl599VW++OILbG2L32wAGSla9vxyif9O3SbAOZaALR9j75iK7zczsWr9sqnLy5czt84w7cA0lKgEhl6ojipVS5tX36Bmu45yp6oQokiRMCcK3b0euk/71OJUUDD1atUs9tfIaTQaAgMDWbt2Lf379zd1OQUi/Hwc/668iD5LT4P0v3HasxXXug6U/nIr6lLlTF1enmkNWn44+wNLzy6hfWQFvM9pKFWhDJ1nTcbVq4ypyxNCiEdImBMmo1arsLFQF9sgpygKX331Fba2towaNYqPPvrI1CUVCG2mnkO/h3JuXxQ+Pioq/DMTy8RbeA9vitPkJaAxn/HyriVeY9r+aURdv8KQyzVQbibTtO9LNO7ZT4YcEUIUWRLmhCgAd+7cYfjw4fz555+88847pi6nwMRcS2TnsgukxmdS3/MqTmsWYOumx+fr6Vi1HmLq8vJMURTWhazjs+OfUfeGJ72C/HD2cKDLB7PwqlDJ1OUJIcRjSZgTwsgOHz7MgAEDSE5OZuPGjfTo0cPUJRmdXm/gxJYwTm4Nx6OMLfXjlsKOk7jVt6X057+iKl3R1CXmWWx6LDMPzuTE1YP0/a8GmrBEanboQOtBw2XIESGEWZAwJ4QRKYrCjBkz8PX1Zc2aNfj7m9fMBnkRH5PKzmUXuB2RQu2aKjyWjUGVkUqZkY1xGL8ELM0nAO26vos5h+bgHW3Jy8GVsLJU0endWZSr29DUpQkhRJ5JmBPCCG7fvk10dDS1a9dm3bp1ODk5Fbu5VRWDQvDeKA5tCMXR1ZrnypzG8OUSrEvp8PnkXSzbjDB1iXmWqk1l/rH5bLq0kZ7h1XAISSGgQW06vvYGdk7Opi5PCCHyRcKcEM9oz549vPTSS/j4+HDs2DHc3d1NXZLRpcRn8u/KC0RcjKd6E3f8/36PzHOX8Whki8cna1B5VTF1iXl25tYZpu6fiioqiaEXqqFK09H2tTep0baDDDkihDBLEuaEeEp6vZ65c+fy/vvv07p1a1avXl0sw8CV4zfZuyYEjaWaDm1U8NlgdLp0/EfVx/6NH8HKztQl5onWoOW7M9/xU9CPdIisgPc5C0pV9KXL2Mm4eHmbujwhhHhqEuaEeEpDhgxhzZo1zJo1i+nTp6MpZkNXZKRq2bcmhCsnblG+Xilq3P6T5NmrsffSUmbWFCzavmbqEvPsauJVpu6fyo3r/zEkpAbcTqFp35dp1LOvDDkihDB7EuaEyCedToeFhQVjxoxh5MiRtGnTxtQlGV3EhTvsWnkRbaaedi/6YPvtBJIvXaNUYyvcP/4NlXcNU5eYJ4qisDZkLQuPL6TeDU+aBPnhXMqRLh/Mxqu8+dxxK4QQjyNhTog80mq1vPfeexw/fpzt27fTvHlzU5dkdNosPYf/+I/g3ZH4VnGlSflYEt/pi1bJIGBEbezeWAbWDqYuM09up93mvUPvceq/I/S9Wv3ukCMdO9J60DAsrc3njlshhHgSCXNC5EF4eDgDBw7k+PHjfPTRR8Xy2rhb4UnsXHaBpLgMmr9YDq9DS7kz5XccymTh/d5ELNqMBTN53bvCdzH78Gx8oq14Obgi1lZqOr07m7J1G5i6NCGEMDoJc0I8wZ9//snQoUNxcnJi3759NG3a1NQlGZVBb+DktnBObA7D3deBXiP8SZv5GvFXwind1AK3D35D5VvP1GXmSao2lY+Pfczmi3/SI7w6DpeTKduoLu1HjZUhR4QQxZaEOSGeICIigrZt2/Ljjz/i6upq6nKMKuFmGjuXX+BWWBL1OwdSySKEW8NGoFGnEziyBrZjl4NN0QlBBsVAhj4Dg2JArVI/8NzpW6eZun8qmqhkhpyvhipDR7sxE6je+rli2ZMqhBD3SJgTIgehoaFs2bKFN998k7FjxzJ27NhiFQgUReH8/mgOrr+CvbM1PcfXRL1qATHr/8TRLwPvd8ejaTe+yJxWDbkTwsoLK9kRvoN0XTq252zpENCBwdUGU865HN+d/Y5lQT/SIbIiXucsKV3Jn85jJ+Hi6WXq0oUQosBJmBPiIWvXruXVV1/Fy8uL4cOH4+BgHhf851VqYib/rrzE9fNxVG9ZhoYNrbg54SWywiLwbK7GddavqPwbmbrMbFuubmH6genoFB0oYKFXka6k89d/f7H56mY87TzJuHmHwZfvDjnSrP8rNOzxImq1DDkihCgZJMwJ8T9paWlMmDCBJUuW8NJLL/H9998XuyD336lb7FkdgkqjouvYWrheO0Rk3+lYWGUQOLwyNq+vBDs3U5eZLeROCNMPTMcxUUX1a+4ExNhhqVej1RgI90rjfGASTteS6XS5DC6lHekydw6e5SqYumwhhChUEuaE+J+PP/6YVatW8eOPPzJs2LBidVo1M13H/rWXCTkaQ7m6pWjVO4Ckz94n+s/NOAWk4zVlDJp2U0CtfvLGCtHKCyvxi7Ki5VkP1Mr//z4s9WoqRDlQPsoeFSrSa7nwxltfyJAjQogSScKcKNEUReHatWuUK1eOd955hwEDBlCtWjVTl2VUUSHx7Fxxgcw0Hc8NrUqgewrRg3qRFRmFd0sF52mrUJVtYeoyH2FQDBwP2k2Hh4Lc/VSoMKgU9rpeYaqVVSFXKIQQRUPR+jNciEKUnJzMK6+8Qq1atbh58yb29vbFKsjptHoOrL/Cxi9O4+Ruy4AZjfCKPEhY714o8eGUHRaAy+cHimSQA8jQZVA+1CrXIHePWlFRPtSKDF1GIVUmhBBFi/TMiRLpzJkz9OvXjxs3brB48WI8PT1NXZJR3Y5IZueyCyTcSqNZ7wrUbOzGzdnvkrRlO87l0vAaPxJ1h2lQhG8SUCsqAmPs8rRsYIw91mrpmRNClEwS5kSJs379egYNGkTVqlU5deoUFSsWnzk6DQaF09vDObbpGq7e9vSb2hD7pAjCew9Gd/MmZVrrcH57GZRvZ+pSc5Wlz2Jj6EaWnV5Ke33eApqFXoVBq0OjkY80IUTJI598osSpW7cu48aNY+7cudjYFJ8L5hNvp7Nr+QVuXE2kXkd/GnYtS/L6Xwn76COsHDIIHBKI9as/g5O3qUvNUaY+kz+u/MGP534kKS6WrrE1gPg8rauxssJCrpkTQpRQEuZEiXDs2DHee+891q9fT/ny5fnss89MXZLRKIrCxYM32P/bFewcLek1uR6enhpuTH6T5B3/4loxldKvD0HdcRYUwZ6rTH0m6y+v56dzP5EeF0/n29VxuGSPpVUWjv6BxF4Pe+I2qjRtiaqI3YkrhBCFpeh9sgthRAaDgc8//5x3332X+vXrk5ycjKOjo6nLMpq0pCx2r7pEWFAsVZt706JvRfRXLnKt+1j0d27j0yYTp0lLoFInU5f6iHRdOusvr2fZuWVkxSXS+WY1bEPssbbX06DPS9Tp1JXEWzdZPW0iBr0+1+2oNRrqdelRiJULIUTRImFOFFuxsbEMHTqUzZs3M2XKFD788EMsLS1NXZbRXD1zmz2rLwHQZUxNAmt5cGf5Cm599ik2Lpn4Dy6D1chV4OJv4koflKZN47fLv7Hs3DKU2BQ6xVTF+oo99s7Q4OVh1G7fGcv/nf4uHViO58dOYts3C3MMdGqNhufHTqJ0YLnCfhlCCFFkSJgTxdbp06c5duwYW7ZsoXPnzqYux2iy0nUc+O0KFw/dILCWB20HVcFKn0rk6FdJ2XsAt8oplB71EqrnPwCLonMdWZo2jV9DfmX5+eVY3Ern+RuVsPwvAUd3CxoNG02Nth1yvO6tavPWuPv4cWrLn4QcOYAuMxMLa2sqN2lBvS49JMgJIUo8CXOiWNHr9axbt44BAwbQoUMHrl69apZTcikGBb1WQTEoqNT/P85a9JUEdi6/QEaKlravVKFqM2/ST5/m2vg3UZLi8G2XjuO4r6Fa0TntmKpNZc2lNaw8vxLrW5l0iaqARVgiLp62NBo9mGot26KxeHyPaenAcjz/+kQ6jR7P2TNnqF2njlwjJ4QQ/yNhThQbMTExDBo0iH///ZeAgACaNWtmdkEuNjKZMzsj+O/ULXRZBo5Y7aV8vdLUbO3Lf6dvcXrHdbzLO9NjQl2c3K2JW7yY24sWYeuehc+g0liO2AxuRaOnKjkrOTvEOcbo6BZVDk1EEu6+zjQeN5LKzVqh1uRvnDuVWo2FlZUEOSGEuI+EOVEs7Nixg0GDBqFWq9mxYwfNmjUzdUn5dvl4DLuWXcRgULIf02UZCDkSQ8iRGFQqaNqzPHU6+GO4E0fEiNdJPXIE96rJlBrcG1XXT8DS9EOtJGUlsfrian4+/zOuNxR6RAaijk6mdGApmkwaR4WGTSSMCSGEEUmYE2Zv7969dOrUiQ4dOrBy5UqznM0hNjL5kSD3CJUK/+pupB87StSkSZCegF+7VBxeWwi1+hVesblIzExk1cVVrD6/mlLRKnpF+KO+mYJ3hTI0eWcAZes2QKV6/NRcQggh8k/CnBlatWoV+/fv5+TJkwQHB5OVlcWyZcsYOnSoqUsrVCkpKTg4ONCyZUtWrVrFgAEDUJtpj8+ZnRGPD3LcvY7u6FfbKffXDOw8tfj0dMNi2EYoValwisxFQkYCKy+s5JeLv+ATaUHv676oYtPwq1aWxqP641+jtoQ4IYQoQBLmzNCMGTMIDw/Hw8MDb29vwsPDTV1Sodu0aRPDhw/nt99+o02bNrz00kumLumpKQaF/07dytOy1+/Y0ahGMh4DuqHqvgCs7Au4utzFZ8Sz4vwK1l5Yg3+kNX3D/SA+ncA6VWn8Rj98q1Q3WW1CCFGSSJgzQ0uXLqVixYoEBATw8ccfM3XqVFOXVGiysrJ49913+fzzz3nhhReoVauWqUt6ZjqtAV2WIU/LGjTWuLz1MarGgwq4qtzFpcex4sIK1p1fS9kIG/qG+UFSBuUb1KZJ7/54lS8+c90KIYQ5kDBnhtq3b2/qEkwiIiKC3r17c/bsWb744gvefPNNsz59pygKkRfjObU9LM/rWGgULBq+XHBFPUZseizLzy3n9wvrqHDd7m6IS82ictNGNO7Vj1L+gSapSwghSroSFeZu3brFsWPHOHbsGMePH+f48ePExcUBMGTIEJYvX57nbYWHh/Pll1+yefNmIiIisLa2pnz58vTr14+xY8diZ2dXQK+i5HJ0dMTFxYVDhw7RoEEDU5fz1PR6A/+dvDvMSGxECh5+DrirbhGnlH7iumWUsAfGnSsMt9Nu89O5n/jj/HqqXHegT5gvqgwd1Vq2oFHPvriV8S3UeoQQQjyoRIU5Y93luGnTJgYNGkRSUlL2Y2lpaZw4cYITJ06wdOlSNm/eTIUKFYyyv5IsPT2d6dOnM378eAICAtixY4epS3pqWRk6Lh68wZld10m5k4l/NTdemFAHn4rOnGw2gzu1p6Cocx93TWXQ43X6VxTDsEIZ2uNm6k1+OvcTf577nerhTvQN90WtU6jRph2NevTBubRXgdcghBDiyUpUmLufv78/VapUYfv27fla7/Tp0/Tv35/09HQcHByYOnUqbdu2JT09nbVr17JkyRIuX75M165dOXHiRLGa1L2wXbp0if79+3P58mVat25NQECAqUt6KqmJmQTvjuTcvii0GXoqNCxN3Q7+ePjePTYMKSk4JEZQ9dIKLlYZkmOgUxn0VL20AofECJS0NFQFOBhyTGoMS4OXsvncRmqGOdM33BeNoqJ2+8406N4bR3ePAtu3EEKI/CtRYW7mzJk0bNiQhg0b4unpSVhYGGXLls3XNsaPH096ejoWFhZs376dpk2bZj/Xrl07KlasyNtvv83ly5dZsGABs2fPfmQbkydPJjMzM1/7rFixZF1UvnLlSl5//XX8/Pw4evSoWd7oEB+Typkd17l0NAaNRk21lmWo3c4PR7cHB/ZVWSioNApet05inxpDhF87bpWqi0FjjVqfSenbp/GL+BfH1ChUGgMqi8cPYfK0olOi+TH4R7YGb6R2mCt9wn2wtLCkTudu1O/SA3sX1wLZrxBCiGdTosLcnDlznmn9Y8eOsX//fgBGjBjxQJC7Z/LkySxbtoyLFy+yaNEipk+fjqXlg/NO/vDDD6SmpuZ5v3369ClRYS4qKorRo0fTv39/vv76a+ztTTf8xtO4EZrA6R3XuRYUi52jFY26laVGKx+s7XKefzTpn90o/7uZ1TE1imqXfqbqpVUY1JaoDVpU/H94cwrQoTLycCSRyZEsDV7KzuC/qXPNjRev+2BlbUu9Hi9Qr8sL2DpI77IQQhRlJSrMPauNGzdm/zxs2LAcl1Gr1QwePJipU6eSkJDA7t276dix4wPLpKSkFGSZZuv8+fOUK1cOHx8fzp07R7lyRWOO0bxQDArXgmI5vf06MVcTcfWyo+2gKlRu5IXGMufr2wxpacTM/ZDEDRtwKJNFyg0rUO7e3KBCQWPIenAFlYJbt2ZgpOvlIpIiWBK8hD1nt1L3mhu9Ir2xsXegQd9e1OnUFWs78wrRQghRUkmYy4cDBw4AYG9vT/369XNdrnXr1tk/Hzx48JEwJx6kKAqLFy9mwoQJTJs2jffee89sgpxOqyfkSAxndkaQcDMN7wrOdHm9FoE13B9712lGyGWiJk5EGxmOd+N4XNo1JHHvSaIPO2UHugeoFMo0TcKm99vPXHN4UjiLgxZz8Ow/1LvmQY9IL+ycXWg06EVqPfc8ljamn99VCCFE3kmYy4eLFy8CUKFCBSwscm+6KlWqPLJOURYZGfnY52NiYgps38nJyQwYMIB169YxZswY3nrrrQLblzFlpGo5tzeKoD2RpCdnUa5OKZ4bUhWvcs6PXU9RFBJ+XcfNjz7CyslA2Q63se73PjR6Fed6v2PtPJY7F21IirBB0atRaQw4+WXgVjUDm+HfgFfNp675WuI1Fgct5siZHTS46kH3aC8c3D1oPLwfNdq0x8LK6qm3LYQQwnQkzOVRRkYGsbGxAPj6Pn5cLVdXV+zt7UlNTSUiIsLotSxdujS7lzA4ODj7sT179gDQokULRo4cmeft+fn5Gb3GvEhMTKRfv34kJSWxbt06+vbta5I68iMpNp2zuyK4cOgGil6hSjNv6jznh4vnk8cV1Ccnc2PmTJK3bsOlkhbPVraoB24Fn3p3F6jZB5t3KlPm8Ld4n9+IkpGOysYWVfWe0PT1pw5yVxOu8n3Q95w89S8NrpWiW4wXzp5eNBndn6ot26J5zB8mQgghij75FM+j5OTk7J8d8jAsxL0wVxDXxx04cIAVK1Y88NjBgwc5ePBg9r/zE+by68qVKyiKce6o7N69O927d8fPz49z584ZZZsFIfm2lshTadwKzcTCSkWZWrb41LTDyk5L5O2rRN5+wgZCQ1F//jnqhDh8mt1BadqES/XfxRBvBfH3v24VVBwLFcZw51Y0bqXLgEoNsUBs/tonIj2CP6I3EBZ6hvpX3ekS64V9qdKU79UOz2o1Qa3h4qVL+W0Kk4uNjS3Sx4opSdvkTNolZ9IuuTNm24SGhhplO48jYS6PMjIysn+2ysPpKGtra+DuoLfGtnz58nzNVvEkT+o9DAkJeWAKsYoVK1K9unEmUX/99depUaOGUbZlbIqiEHHxDqe3XyfyUjyO7ja07FeJqs28sbTOfXDfh7dxZ/kKbi1YgI0H+Dx/G6sX50LDkTg/YSqyc+fUT9U2IXdC+OHs91w4cYCG10pROc6TUoFlaTp4IBUaNimUAYcL0rlz54rsMWNq0jY5k3bJmbRL7ozZNoUx7aSEuTyyue+i8KysrMcsede9ceRsbW0LrCZjedJp48TExEKqpGjQ6w2Enrg73VZcZAql/B3pOLI65euWQq3JexDSxcdz492ppOzdi1u1LEq3sEc1YBuUqVsgdV+Mu8gPZ7/nyvHDNLhaig4JnnhVrEzTUQMoW6eBWc9jK4QQIncS5vLo/pkc8nLq9N44cnk5JSuKhqwMHRcORHN2VwQp8Zn4V3ejRd+6+FRyyXcQSjt+nKi33kJJice3VRyO7TvDC1+CzeNvkHga5+PO8/3p7wg/fpz6Vz1ol1Qa32o1aPrGQPyq15IQJ4QQxZyEuTyysbHB3d2duLi4J979GR8fnx3mTHVzgci71MRMgv6N5Pz+u9NtVWzoSZ0O/nj45j+IK3o9sT/8QOzX32DnraFMx5tY9voQGo6EfIQqg2IgQ5+BQTGgVuXcGxh8O5jvz3xH9NFT1AvzIDC5FAF16tG01wB8qlTLd+1CCCHMk4S5fKhWrRr79+8nNDQUnU6X6/Akl+67qLxq1aqFVZ7Ip/iYVE7vuE7I0Rg0FmqqtyhDrRym28or7a1bRL/9DmlHj+JRKxOPJg6o+v8DZerkeRshd0JYeWElO8J2oM3MwDLYhg6BHRhcbTCV3SoDcPb2Wb4/+S23jwVRN8ydcqkelG/YhKa9B+BZrsJT1S6EEMJ8SZjLhxYtWrB//35SU1M5efIkjRs3znG5vXv3Zv/cvHnzwipP5IGiKNz4L5HT268TFhSLnbMVjbuXo3rLMrlOt5UXKfsPEP3O26h0afi3uY19u67Q/UuwccrzNrZc3cKnW2ZR5ao9vWM8sNSr0WoMhHsdZPSZ7fRtMYyzUadIOH6B2mFuVMjwoHLTljTp1Q8P/8Cnrl0IIYR5kzCXDz179mTevHkALFu2LMcwZzAYWLlyJQAuLi60bdu2UGsUOTMYFK6dvc3p7de5eS0JV2972g2uQqWGuU+3lReKVsvtRYuIW/oj9gGWlGlwE4ueH0OD4fk6rRpyJ4Qlv86ly9nSqO+bAcJSr6ZClAPlou05H7qOwDv2WGndqdayHY179sOtjM9T1y6EEKJ4kDCXD40aNaJly5bs37+fH3/8kSFDhtC0adMHllmwYEH2rA/jx4/H0vLpe3vEs9Nl6bl0JIYzO6+TeCudMhVd6Dq2FgHVHz/dVl5kRUYRPXky6eeCKV0vA7fG1qj6bQfv2vne1uq9P9DsrOsDQe5+akVF2Rv2ZJV3YeSEhTiX9nym2oUQQhQfJSrMHThw4IHB++7N6AB3B/V7eOy2oUOHPrKNRYsW0bx5c9LT0+nYsSPTpk2jbdu2pKens3btWhYvXgxApUqVmDx5coG8DvFkGSlagvdGErwnkowULeXqlqLDsOp4ls37ac/HSdq+nRvTZ6Cx0BHY9ia2rbtD90X5Oq16T5o2jTsHzuKsPH4YGxUqorNicCxV6mnLFkIIUQyVqDC3dOnSR2ZOuOfhGRQg5zBXt25dfv31VwYNGkRSUhLTpk17ZJlKlSqxefPmB4YzEYUjKTadM7siuHgwGkWBqk29qd3eD5fST55uKy8MmZncmv8J8b/8gmMFK7zrxqDp8QnUH/bY06pp2jQikiO4nnyd60nXiUiOIDIujDs3osiKS6JVlEee9u8bbU16Vhr21jLkjRBCiLtKVJgzlu7duxMUFMSiRYvYvHkzkZGRWFlZUaFCBfr27cu4ceOwszNOeBB5cys8idM7rvPfyVtY21lSp4M/tdr4YutovMnjM69dI2rSZLJCr+DVOB2Xejao+u0A71oAJGUlEZEcQUTS/0JbYjg3bl8n/mY0+vhUnFItcEyzwCXdGqc0S6pmAlgDee9ps9SrsTCY9wwOQgghjKtEhTljToMVEBDAwoULWbhwoVG2J/JPURSuX7g73VZUSDxOHja07F+JKs28sbTK23RbeZX455/cmD0Htb2KrOdvc7B+YyIqtuX65V+I2T+PxJsxkJCBU9rdwOaaboNTqgZXHYAtYIuVkyOuXt64V/DF1asMzl7euHp641Tak2/HvIJKZ3jya7ZQY2X9dEOnCCGEKJ5KVJgTxYNebyD0+M27021FpVI64Omm28qJoijEZcRxPek615OvE3XrP3wWb8Pn9E1OVLRkf1UrbLMq4XggGdcd23FLU+NhALAHlQO2bq64epXBw9sXF68yuHh63f1/aS8sbXIPYX716xF59MQT6/NrUM/s51YVQghhXBLmhMno9TpS05PQ63VoNE8+FB+ebiughjst+1WiTD6n2zIoBm6l3bp7Ddv/QlvknXBuR18n+dZtbJINOKZZUCrBAq94S/7TWPFfFX8AGvynxr5UKdx9fXD39rsb1jy9cfHyxqlUaTQWT3f3ctveg/n5+CkwPKZ3Tq2mba/BT7V9IYQQxZeEOVHojgftZsfvP6G5cgcLvYo9GgV9RTc6vDichrUeHZcvNSGToN0RnNsXjS5LT6X/Tbfl7pP7TQB6g56YtJjsmw2uJ4YTeTuMuJhI0m7HYZsCjmkWOKVZ4pxuRZkMFWUAcEZtbYWDlTV2UTdx0mTi43ODUnUa4tzjAxy9/AukZ6x0YDm6jJvM1q8XoOQQ6FRqNZ3HTaZ0YDmj71sIIYR5kzAnCtWaDYuIXLcda0UF3O1Ns9CrsLgUz56PPiO0XxADe48H4E50Kqd3Xufy0RgsLNVUb+lDrXZ+OLhaA6A1aLmRcuP/7xBNuk5UzDXuxESRERuPfaoax9S7gc0p3RI/rYq7M+W6YOFgh1NpT0qV9cfNywcXL29cPL1xtHcgYf6npGzfjmsta0pXv4G62ydQb3C+BgF+GlWbt8bdx49TW/4k5MgBdJmZWFhbU7lJC+p16SFBTgghRI4kzIlCczxoN5Hrdjx2YNzIdTvYZVuFjKtehAXHYedsRcVOLqirJvKf9jC7L6wh5kY48TejyYpLxCFVk93D5phuSYAeAgBUrli5OOFS2otS1QIeCGwunl5Y2T56t3F6UBBRY4aij4/Dp1UqTjXtoe8u8KpRsA1zn9KB5Xj+9Yl0Gj2es2fOULtOHblGTgghxGNJmBOFZuealVgpj19GrUDQ6h3oPaoS6XmUm8pFHParcfznbmBzSLcgUIFA1KBxx8bNBVevMniWCcDVqwwuXmVw9vTCubQXFnmcfUMxGLizfAW3Fi7Epowd/u3CsWrWB7ouBBON56ZSq7GwspIgJ4QQ4okkzIlCodfrsLgWl6dlDdpLqG5cwu8G+Fu5Y+fhjluAD6XLBODqWeb/T4l6eKBWP9sQJLr4eKLffZfUvftwq2dN6SphqLotgrqDCvy0qhBCCGEMEuZEoUhOTUStPHkctXu6vj0dv/JVsHPO352q+ZF67BjRb01BSU/Br10qDtUcoO+/4Fm9QPYnhBBCFAQJc6JQ2Fg4cPdw0+VhaQsCq9bDxs66QGpR9Hpiv/ue2G+/xS7QiTJNr2LZuB90XWCy06pCCCHE05IwJwqFtY0VauuKGDIvPnFZtXVFrG2MNw3X/bQ3bxE9ZQppJ07g0dAKj/LXUHX/Cuq8LKdVhRBCmCW5uloUCpVahVet5jz5kFPjVbsFKrXxg1XK/v1c69mTrCsX8W+fSKmGlqhG75br44QQQpg1CXOi0HQY8ByWDp3I/bBTY+nQiQ792xl1v4pWy81PPyVi1KvYlFZTtvUV7Nt2h1d3Q+mqRt2XEEIIUdjkNKsoNB6+jjw/+kW2L/FAm34SQ9Zl7l5DZ4HaqhKWtvXpOKo1Hr6ORttnVmQUUZMnkXHuPKWb2+AWGIqq29dQ92Wj7UMIIYQwJQlzolBVauiFm3cXzu6syZWTN9FlZWFhZUXF+p7Ubu9n1CCX9M92bsyYgcZGQ2CHBGwr+kBf6Y0TQghRvEiYE4XOw9eR54ZWo93gqgSdPUet2jWMeo2cITOTmx9/TMKatTjWLIV3xSA0jV6GLp+Alb3R9iOEEEIUBRLmhMmo1Co0liqjBrnMq9eImjSJrKv/4dXGBhffK6i6fQt1XjLaPoQQQoiiRMKcKDYSNm4k5v0PsHSxJbBDHDbl/P53WrWKqUsTQgghCoyEOWH2DKmpxLz/AYl//olzfU+8yp5B3fBl6PwpWNmZujwhhBCiQEmYE2Yt49IloiZOQhtzgzLtbXD2DoFu30PtAaYuTQghhCgUMs6cMEuKohC/Zg1h/fqjMqRStv1NnKvZwKt7JMgJIYQoUaRnTpgdfVISN2a8R/L27bg2KUNpvxOoGw6G5+fLaVUhhBAljoQ5YVbSz54latJk9IkJ+HS2wcnjInRbDLX7m7o0IYQQwiQkzAmzoBgM3Fm2jFuff4FtYGn8G0Zh5V8W+u6BUpVMXZ4QQghhMhLmRJGnu3OH6HffJXXfftxb+VLK6xiqBkOg83ywtDV1eUIIIYRJSZgTRVrq0WNET5mCkpWBXzdrHNwuQLelUKuvqUsTQgghigQJc6JIUvR6Yr/9jtjvvsOuii9lqoRg6Vce+v4GHhVNXZ4QQghRZEiYEyajGAyQkYFiMKBS//8oOdqbN4l+awppJ0/i0dYXD/cjqBoOg+fnyWlVIYQQ4iES5kShy7h0iTvLlpO0fTua9HRCbG1x6tgRt2FD0d28SfS7U1FpIKCHJXaO56D7j1Czj6nLFkIIIYokCXOiUCX+vZnod94BvT77MSU9ncQ//yTxr79AUXCoUw7v8iew8K0IfdeDRwUTViyEEEIUbRLmRKHJuHSJ6HfeBr0h5wUUBVTgUfoIFk0HQ6d5YGlTuEUKIYQQZkbCnCg0d777PPcgd48C8SktsO32eeEUJYQQQpg5mZtVFArFYCDp3wN5WjbpeOjdmyOEEEII8UQS5kShUNLSULR5C2iK1oCSllbAFQkhhBDFg4Q5UShUFgoqTd7CnEpjQGWhFHBFQgghRPEgYU4UCpWVPU4Bujwt6xSgQ2VlX8AVCSGEEMWDhDlRONRq3Lo1BdUTetxUCm7dmoFaDk0hhBAiL+QbUxQam97vUKZpUu6BTqVQpmkSNr3fLtzChBBCCDMmQ5OIwuNVE+eJX2LtPJY7F21IirBB0atRaQw4+WXgVjUDm+HfgFdNU1cqhBBCmA0Jc6Jw1eyDzTuVKXP4W7zPb0TJSEdlY4uqek9o+roEOSGEECKfJMyJwudVE3p9h6rHN1wIOkn1WvXlGjkhhBDiKck3qDAdtRrFwlaCnBBCCPEM5FtUCCGEEMKMSZgTQgghhDBjEuaEEEIIIcyYhDkhhBBCCDMmYU4IIYQQwoxJmBNCCCGEMGMS5oQQQgghzJiEOSGEEEIIMyZhTgghhBDCjEmYE0IIIYQwYxLmhBBCCCHMmIWpCxBFX2Zm5gP/Dg0NNdq2Q0NDUalURttecSJtkzNpl9xJ2+RM2iVn0i65M2bbPPyd+fB3qjFImBNPFBER8cC/e/bsaZpChBBCCDMXERFBvXr1jLpNOc0qhBBCCGHGJMwJIYQQQpgxlaIoiqmLEEVbQkICe/fuzf63n58f1tbWz7TNmJgY2rdvD8DOnTvx8vJ6pu0VJ9I2OZN2yZ20Tc6kXXIm7ZK7gmibzMzMBy5Xat26NS4uLs+83fvJNXPiiVxcXOjRo4dRt+ns7Jz9c+XKlfH19TXq9s2ZtE3OpF1yJ22TM2mXnEm75K6g2sbY18g9TE6zCiGEEEKYMQlzQgghhBBmTMKcEEIIIYQZkzAnhBBCCGHGJMwJIYQQQpgxCXNCCCGEEGZMxpkTQgghhDBj0jMnhBBCCGHGJMwJIYQQQpgxCXNCCCGEEGZMwpwQQgghhBmTMCeEEEIIYcYkzAkhhBBCmDEJc0IIIYQQZkzCnBBCCCGEGZMwJ4QQQghhxiTMCSGEEEKYMQlzQgghhBBmTMKcEEIIIYQZkzAnhBBCCGHGJMwJIYQQQpgxCXNCCCGEEGZMwpwQQgghhBmTMCeEEEIIYcYkzAkhhBBCmDEJc0IIIYQQZkzCnBBCCCGEGZMwJ8zSqlWreO2112jQoAHW1taoVCqWL19u6rJMLioqii+++IKOHTvi7++PlZUVXl5evPjiixw9etTU5ZlMRkYGkyZNolWrVpQpUwYbGxu8vLxo3rw5y5YtQ6vVmrrEImP+/PmoVCpUKhVHjhwxdTkmFRgYmN0WD//Xpk0bU5dncn/88QcdOnTA3d0dGxsbypYty8CBA4mIiDB1aSaxfPnyXI+Xe/8999xzBbJviwLZqhAFbMaMGYSHh+Ph4YG3tzfh4eGmLqlI+Oqrr5g/fz7ly5enY8eOlCpViitXrrBx40Y2btzIL7/8Qv/+/U1dZqFLSUnhu+++o1GjRnTt2pVSpUoRHx/P1q1bGT58OGvXrmXr1q2o1SX779tz584xa9Ys7O3tSU1NNXU5RYKzszMTJkx45PHAwMBCr6WoUBSF0aNHs3jxYsqXL8+AAQNwdHQkOjqavXv3Eh4ejp+fn6nLLHR16tRh1qxZOT63fv16zp8/T6dOnQpm54oQZmjHjh1KWFiYoiiKMm/ePAVQli1bZtqiioDff/9d2bNnzyOP79u3T7G0tFRcXV2VjIwME1RmWnq9XsnMzHzkca1Wq7Rp00YBlL///tsElRUdWVlZSr169ZTGjRsrgwYNUgDl8OHDpi7LpAICApSAgABTl1HkfPHFFwqgvP7664pOp3vkea1Wa4Kqiq7MzEzF3d1dsbCwUGJiYgpkHyX7z1Bhttq3b09AQICpyyhyevfuTevWrR95vGXLlrRt25b4+HiCg4NNUJlpqdVqrKysHnncwsKCXr16ARAaGlrYZRUpH374IefPn+enn35Co9GYuhxRRKWnpzNnzhzKlSvHokWLcjxWLCzkpN/9Nm7cSFxcHN26dcPT07NA9iFhTuTLrVu3+Pvvv5k5cyadO3fGw8Mj+1qAoUOH5mtb4eHhTJ48mSpVqmBvb4+bmxsNGzbk008/JS0trWBeQAEq6m1jaWkJFP4HbVFuF4PBwLZt2wCoUaNGvtd/FkWpXU6dOsWHH37IrFmzqFat2lO+IuMpSm2TmZnJ8uXL+eijj/j6669Neu1pUWiX7du3Ex8fT8+ePdHr9WzYsIGPP/6Y77//3qR/EBWFtsnN0qVLARg5cmS+182zAunvE8UWkOt/Q4YMyfN2/vrrL8XJySnXbVWqVEm5cuVKnrZVVE6zFsW2uSc8PFyxtrZWvL29czwtUpCKUrtkZmYqs2bNUmbOnKmMHTtWqVKligIow4YNe8ZXmX9FpV0yMjKU6tWrKw0aNMg+NoYMGWLS06xFpW0CAgJyXK9hw4ZKaGioEV5p/hSFdnnvvfcUQJkyZYpSqVKlB9ZTq9XK5MmTjfRq86cotE1OwsLCFLVarfj6+hboZ6+EOZEv9x/U/v7+SseOHfP9hjl16pRia2urAIqDg4Py4YcfKocOHVJ27dqljBo16oE3TVJS0hO3VxTDXFFpG0W5ey1Uq1atFEBZuXLlM7zCp1OU2iU5OfmBelQqlfLWW2+Z5BqfotIub7/9tmJlZaUEBwdnP1aUwpwp22b27NnKrl27lJs3byqpqanK6dOnlVdeeUUBlICAgDy/B42lKLTLa6+9pgCKRqNRGjZsqBw7dkxJTk5W9u3bl/3H0bfffmvkV/5kRaFtcjJr1iwFUGbMmPEMr+7JJMyJfJk5c6ayadOm7Is4r127lu83TMuWLRVAsbCwUA4dOvTI85988kn2NmfNmvXE7RWVMFcU20av1ysvvfSSAiijRo3Kz8sxmqLaLhEREcq3336ruLi4KM2bN1cSExPz87KeWVFol0OHDilqtVp5//33H3jc1GGuKLTN49wLdAsWLMjXes+qKLTLvVBja2urREVFPfBccHCwolarlfLly+f7tT2rotA2D9Pr9Yq/v7+iUqmUq1ev5ufl5JuEOfFM8vuGOXr0aPbyr732Wo7L6PV6pWrVqgqguLi4KFlZWY/dZlEJcw8zddvo9frsL+VBgwYper3+aV+KUZm6XR62bt06BVDefvvtPK9TEAq7XbRarVKxYkWlTp06j7SXqcPcw4raMXPgwAEFUHr37p3ndQqCKdrlrbfeUgClZcuWOa5foUIFBVDi4+Pz+3KMqigcM//8848CKM8999zTvIR8kRsgRKHauHFj9s/Dhg3LcRm1Ws3gwYMBSEhIYPfu3YVRmskZs20MBgPDhg1jxYoVDBw4kOXLl5vtGGoFfcx07NgRgD179jx1jabwrO2SkpLClStXOHPmDFZWVg8MbLpixQoAmjZtikqlemBf5qCgjxkPDw8AsxuLzxjtUrlyZQBcXFxyXP/e4+np6c9WbCEriGOmUG58+B+5f1gUqgMHDgBgb29P/fr1c13u/uE1Dh48mP2FW5wZq23uBbmVK1fSv39/fv75Z7MeaqKgj5no6Gjg/+/2NRfP2i7W1taMGDEix3X27dvHlStXeOGFFyhVqpTZDZBb0MfMvTtaS2K7tG3bFoCLFy8+sp5WqyU0NBR7e3tKlSplrLILhbGPmbi4OP7880/c3Nyyhz8qSBLmRKG69wFQoUKFxw6RUaVKlUfWKe6M0TYGg4Hhw4ezcuVK+vbty6pVq8w6yIFx2uXChQsEBgZiZ2f3wONpaWlMmjQJgC5duhir5ELxrO1ia2ub3XPwsKFDh3LlyhWmTp1KkyZNjFRx4THGMXPp0iX8/f0fOWYuXbrEO++8A8BLL71krJILhTHa5d7sMtu3b2fp0qUP9Dp9/PHHJCQkMGjQILMba87Y300///wzWVlZDBo0CGtra+MVmgvzam1h1jIyMoiNjQXA19f3scu6urpmTymU0zx/S5cuzf5L6t4guEuXLs0+VdaiRYtC6do2FmO1zfvvv8+KFStwcHCgUqVKzJ0795H1e/bsSZ06dYxWe0EyVrusW7eOhQsX0qJFCwIDA3FyciIqKoqtW7cSFxdHy5YtmThxYoG9DmMz5nupuDFW26xdu5aFCxfSqlUrAgICsLe35/Lly2zZsgWtVsvUqVNp1apVgb0OYzPmMfPtt9/SrFkzRo0axcaNG6lSpQqnT5/m33//JSAggE8//bRAXkNBKYj3048//ggUzilWkDAnClFycnL2zw4ODk9c/t4bJiUl5ZHnDhw4kH1dzz0HDx7k4MGD2f82pzBnrLYJCwsD7l4P9eGHH+a4bmBgoNmEOWO1S7du3YiOjubQoUMcPnyYlJQUnJ2dqVWrFgMGDGD48OFm1ZNgzPdScWOstmnbti0XL17k9OnT7N+/n7S0NDw8POjSpQuvv/662V36Ycxjpnz58pw4cYKZM2eybds2tm/fjpeXF2PHjmXmzJmULl3aqLUXNGO/n44dO8a5c+do1KgRNWvWNFqdj2M+n17C7GVkZGT/nNPUSg+71zWd04W0y5cvZ/ny5UarzdSM1TbSLjm3S4MGDWjQoIFxizMhY76XcmLOx5Gx2qZ169Y5To1nrox9zPj5+bFs2TLjFGdixm6bRo0aoSiKcYrLI/O8vU2YJRsbm+yfs7Kynrh8ZmYmcPfanuJO2iZn0i45k3bJnbRNzqRdclcc2kbCnCg0jo6O2T/n5XTPvdv+89Ltbe6kbXIm7ZIzaZfcSdvkTNold8WhbSTMiUJjY2ODu7s7AJGRkY9dNj4+PvsN4+fnV+C1mZq0Tc6kXXIm7ZI7aZucSbvkrji0jYQ5UaiqVasGQGhoKDqdLtflLl26lP1z1apVC7yuokDaJmfSLjmTdsmdtE3OpF1yZ+5tI2FOFKoWLVoAd7upT548metye/fuzf65efPmBV5XUSBtkzNpl5xJu+RO2iZn0i65M/e2kTAnClXPnj2zf87tTiiDwcDKlSuBu1PD3BtxvLiTtsmZtEvOpF1yJ22TM2mX3Jl720iYE4WqUaNGtGzZErg7qOLhw4cfWWbBggXZI2uPHz/e7KZZelrSNjmTdsmZtEvupG1yJu2SO3NvG5VS2IOhCLN24MABQkNDs/8dGxvLlClTgLtdzg8P1Dt06NBHtnH69GmaN29Oeno6Dg4OTJs2jbZt25Kens7atWtZvHgxAJUqVeLEiRMP3GlUlEnb5EzaJWfSLrmTtsmZtEvuSnzbKELkw5AhQxQgz//l5q+//lKcnJxyXa9SpUrKlStXCvGVPTtpm5xJu+RM2iV30jY5k3bJXUlvGznNKkyie/fuBAUFMXHiRCpVqoSdnR0uLi40aNCA+fPnc/r0aSpUqGDqMk1C2iZn0i45k3bJnbRNzqRdcmeubSOnWYUQQgghzJj0zAkhhBBCmDEJc0IIIYQQZkzCnBBCCCGEGZMwJ4QQQghhxiTMCSGEEEKYMQlzQgghhBBmTMKcEEIIIYQZkzAnhBBCCGHGJMwJIYQQQpgxCXNCCCGEEGZMwpwQQgghhBmTMCeEEEIIYcYkzAkhhBBCmDEJc0IIIYQQZkzCnBBCCCGEGZMwJ4QQQghhxiTMCSGEEEKYMQlzQgghjGL27NmoVCratGlj6lLEQ8LCwlCpVKhUKsLCwkxdjjAyC1MXIIQQRdHGjRs5c+YMderUoWfPnqYuRwghciU9c0IIkYONGzcyZ84cNm7caOpShBDisSTMCSGEEEKYMQlzQgghhBBmTMKcEPnQpk0bVCoVs2fPRlEUlixZQuPGjXFycsLR0ZGmTZuyatWqHNe9d/Hxnj178rT9x60fFxfHpEmTKF++PLa2tgQEBDBu3Dhu376dvXx4eDhjxoyhbNmy2NjY4O/vz+TJk0lOTn7WZgAevaA6PDycUaNG4e/vj42NDeXLl2fGjBmkpqZmr3Pu3DkGDRqEn58fNjY2VKxYkblz56LVah+7rz179tC3b198fHywtrbGw8OD5557jmXLlqHX63Nc5+GL8Xft2kXXrl0pVaoUNjY2VK1alTlz5pCRkfHIvlQqFStWrABgxYoV2a/zcb/Dc+fO8eqrr1KxYkXs7OxwcHCgVq1aTJ8+ndjY2Hy0bN4cPXqUYcOGUaFCBezs7HBycqJatWoMHz6cf/7555Hljxw5wjvvvEPLli0JCAjAxsYGFxcXmjRpwvz580lJScl1X/e/7lu3bjFp0iQqVaqEnZ0dKpUqX3WfPn2awYMHZ9fg6upKs2bN+OKLL8jMzMx3O+RGp9OxePFi2rRpg4eHB5aWlri7u1O5cmX69+/Pjz/++Mg68fHx/Pjjj/Tr14+aNWvi5uaGjY0NAQEBvPTSSxw5ciTX/T18vP31118899xzuLu74+TkRLNmzR45Zf/zzz/TvHlzXF1dcXBwoFWrVuzatSvH7T/8frty5QpDhw7F19cXa2tr/P39GT16NNHR0U/dZgaDgdWrV9OlSxc8PT2xsrKiVKlSdOzYkTVr1qAoSo7rPU1bCyNThBB51rp1awVQZsyYofTo0UMBFAsLC8XJyUkBsv+bOXPmI+vee2737t1P3P6sWbNyXX/FihWKr6+vAij29vaKlZVV9nNVq1ZV4uPjlWPHjinu7u4KoDg5OSkWFhbZyzRv3lzR6XTP3BbXrl3L3ubvv/+uuLi4ZO9Po9FkP9eyZUslKytL+fvvvxU7OzsFUJydnRWVSpW9TP/+/XPdz8SJE7OXU6lUiouLywPbb9eunZKUlPTIerNmzVIApXXr1sonn3yiqFSq7PXv33fbtm0faI+DBw8qnp6eio2NjQIoNjY2iqen5wP/HTx48IF9zZ8/X1Gr1dnbtLOze+D34u3trZw6deqZ21xRFEWn0ylvvvnmA8ebvb294urqmv26nJ2dH1nv/uXt7OwUV1fXBx6rVq2acvPmzRz3eW+ZJUuWKJ6entnt4ujoqNz/NXJ/m+dk4cKFD7S9s7OzYmlpmf3vWrVqKdHR0UZpow4dOjzw+pydnRVra+sHHnvYvfoBRaPRKK6urg+so1KplEWLFuW4z/tf+8yZMxVAUavVirOz8wP7/P777xWDwaAMGTIk+/PjXjve2+/ff//9yPbvf7+tXbs2ex0HBwfF1tY2+zk3Nzfl5MmTj13/2rVrjzwfFxentGrV6pE2u//fL7zwgpKZmWmUthbGJS0sRD7cC1uurq6Ks7Ozsnz5ciUtLU1RFEWJiIhQunfvnv0hfvny5QfWNVaYc3FxUerUqaMcOXJEURRFycrKUtasWZMdlMaNG6cEBAQo7dq1U86dO6coiqKkp6crX331VXYIWrJkyTO3xf1fDi4uLspzzz2nnD9/XlEURUlLS1O+/PLL7P3NmDFDcXZ2Vvr376+EhYUpiqIoycnJyvTp07O3sWPHjkf28dVXX2U//+qrryo3btxQFEVRUlJSlM8//zw7pOYUBu99ubq4uChqtVqZOnWqcvv2bUVRFCUxMTH7CxdQfvzxx0fWv/dlO2TIkMe2w9KlS7O/VD/88MPsGnU6nXLixAmlXbt2CqD4+voqycnJeW/gXLz99tvZdQ8fPlwJCQnJfi4hIUHZuHFjju3RvXt35ddff82uT1Hu/p42bNigVK5cWQGUXr165bjPe/tzcHBQKleurOzatUvR6/WKoigP7P9xYW7Tpk3Z2+nRo4dy9epVRVEUJTMzU1m5cmV2OGnWrNkz/7Hx888/ZwfOpUuXZre7wWBQbt68qWzYsEHp06fPI+v98MMPyqxZs5QTJ05khxaDwaBcvXpVGT9+vKJSqRSNRpNjML/32p2dnRWNRqN8+OGHSkJCgqIoihIZGal06tRJARRHR0dl5syZiq2trfL9998rqampiqIoyuXLl5UGDRoogOLv75/dvvfc/35zdnZWatWqpRw9ejS7xn/++Ufx9/fPXv/hP3AeF+Z0Ol32Z0+dOnWUTZs2ZdeVkpKirFixQildurQCKBMmTDBKWwvjkjAnRD7c+8ADlH///feR5zMyMpQyZcoogDJ37twHnjNWmPP09FRiY2Mfef69997LXqZ69epKRkbGI8u88sorCqA899xzT36xT3D/l8OT9gcoHTp0UAwGwyPLtGzZUgGUESNGPPB4Wlqa4ubmpgDKwIEDc6zhyy+/zN7+iRMnHnju/l6WnNpTURSld+/eCqC0b9/+kefyEuaSkpKyeyS3bduW4zJarVapX7++Aiiff/55rtvKi5CQkOwewLfffvuZtnW/yMhIxdraWlGpVEp4ePgjz99rRycnJyUiIiLX7TwuzFWtWlWBuz21OYW1v/76K3s/v/322zO9njFjxmT/AWBMY8eOzfFYVZQHj7eH3/uKcvcPCHt7++xlVq1a9cgyoaGh2c/v37//gefuf7+5u7vn2It64cKF7B7hTz75JNf1Hw5zK1euVAClSpUq2QH0YSdOnFBUKpViZWX1wL4Lqq1F/sg1c0I8hebNm9O2bdtHHre2tqZTp04ABAUFFci+R40ahbu7+yOP39svwKRJk7C2ts51GWPXNnHixMfuD+Ddd9/N8fqq3GrasWMHd+7cAcjxGkKA119/HW9vbwB++eWXHJextrbmrbfeyvG5Hj165LjvvPr9999JSEigbt26D7zW+1lYWDBw4ECAHK9ly48VK1ZgMBhwd3dnzpw5z7St+/n4+FC7dm0UReHQoUO5LvfKK6/g6+ub7+0HBQVx8eJFAGbMmIFGo3lkme7du9OoUSMA1qxZk+993M/FxQWAmJiYZ9rOw7p27QrAgQMHcl3GxsaGCRMmPPK4k5MTTZs2BcDf35+XXnrpkWXKly9PhQoVgMcfk6NHj6Z06dKPPF61alX69OkDwNq1a3N/IQ+5d03bmDFjcHZ2znGZ+vXrU716dbKysti9e3f24wXV1iJ/JMwJ8RQaN26c63NlypQByA4ixnbvC+9hnp6e2T83bNjwscvEx8cX+ZpOnDgBgJ+fH5UqVcpxXY1GQ7t27R5Y/mHVq1fHwcEhx+ee9Xd18OBBAC5evIiXl1eu/73//vvA3ZtSnsW9oNWhQwdsbGzyta7BYOCXX37hhRdewN/fH1tb2wdu6jh27BgAkZGRuW6jefPmT1X3vd+NhYUFrVu3znW5Dh06PLD80+rSpQsqlYq//vqLzp07s2bNmjzfGHD1/TJBYgAACVxJREFU6lXeeust6tevj4uLCxqNJruNunTpAjy+japVq4a9vX2Oz9071hs0aJDrjSN5eY/eO+Yf91xQUNATbywC0Ov12Td2zJ49+7HHcUhICPDgcfwsbS2MR2aAEOIpODo65vqchcXdt1VePkiNue97+83LMjqdrsjV9HB73bp1C7jba/Q493qK7i2f19ru3/fTtse9L62MjIxH7orNSVpa2lPt5557vR8BAQH5Wi8tLY1u3bo90KNiZWWFm5sblpaWwN1Aq9VqH7j7+GE59Qblxb3fjYeHR449uPc86XeZVy1atGD+/PnMmDGDbdu2sW3btuztt2/fnsGDB+fYs/7HH38wcODAB+6qdXJywsbGBpVKRVZWFvHx8Y9to7wcb8/6+fG498S953Q6HXfu3HngD6qc3LlzJ/v15vWPvPuP46dta2Fc0jMnhBBP6d6wKP3790e5ew3yY/971jkx8zsMyD0ffvghu3fvxtbWls8//5zw8HAyMjKIi4sjJiaGmJiY7N5mJZfhJ4AcT48WVVOmTOHatWt8/vnn9OzZk9KlSxMZGcny5ctp164dffv2fSAwxcXFMXToUDIzM2nXrh179uwhLS2NxMREbt68SUxMDL/99psJX1HBuH9on61bt+bpOH74sof8trUwPglzQhSSe1+Ej+vBSUxMLKxyirx7vUCPO6V1//NP22v0LLy8vIBnP31a0Pu7d/3UzJkzmTBhAv7+/o8Ew4K85une7yY2NvaxY8kZ+3dZpkwZJkyYwB9//MHNmzcJCgpi5MiRAKxfv57vvvsue9ktW7aQlJSEq6srmzZtonXr1tja2j6wvaJyXVhUVNQTn7OwsMDNze2J23J3d8/uDXyW4zg/bS2MT8KcEIXE1dUVgIiIiByfT05Ozr5IXNy9rgjufsFfvnw5x2X0en32qcPcrsl7Wmr13Y/Hx/VU3buG7OTJk9y4ccOo+89Js2bNgLs3h+TltO499465unXr5vh8WFgYoaGhz15gLu79LnU6HXv37s11uZ07dwLG/13eU7NmTZYsWZL9e9uxY0f2c/faqHLlytjZ2T22PlO7/3R5bs/VqlUr+xT641haWmZf87pp0ybjFMjj21oYn4Q5IQpJ7dq1gbt3QObks88+M+oI+OauQ4cO2Xft5nY36w8//JB93dq9O0aNxcnJCYCEhIRcl+nbty8uLi5otVomTZr02OBnMBgeu628GDp0KBqNhri4OGbNmpXn9e7doXj27Nkcn3/33Xefqa4nqVWrFtWqVQNg7ty5Oc7asWXLFo4ePQo8++/ySe+jez1u9wI7/H8bXb58OcegfObMmVzvmC5s33//fY6zioSEhLB+/Xrg7qn/vHr11VeBu7+DLVu2PHbZh28Wepq2FsYnrStEIbl/eIpZs2aRlJQE3D31NG3aNObOnZt9m7+4+yVwL8StWbOG0aNHc/PmTeDuBdhffvll9hAQ/fv3p379+kbdf40aNQDYv38/ly5dynEZFxcXvvjiC+DuqcyuXbty9OhRDAYDcDfAXbx4kQULFlC9enX+/vvvZ6qpQoUKTJkyBYBPPvmEkSNHcuXKleznk5KS+PXXX+nVq9cD6z3//PPA3SC1YcOG7Bs+rl27xksvvcS6deuye44Lyvz584G77dmnTx+uXbsG3L3Qf/Xq1dnvj2bNmtGzZ89n2lfPnj0ZPnw4W7dufSBA37lzh7lz52ZPmXVvqBGAjh07olaruXPnDi+//HL26cqsrCzWrVtHx44dH3vjQmHSarV06NCB48ePA3d7j3fu3EmnTp3IzMzEz8+P0aNH53l7gwYNon379iiKQq9evZg7d+4Dd6Smpqaye/duxo4dS7ly5R5Y92naWhSAwhvSTgjz97hBfe/JbeBUnU6ntG3bNnvgTpVKlT0Fk0qlUj799NM8DRqc26DDT5quR1EUZffu3UabXsdY+1u2bJkCKAEBATk+//B0Xq6urg9MT9a2bdsnTueVm8fVd+fOHaVUqVLZz3t4eCgBAQFKQECAcvjw4QeW/e677x6Yvsva2lpxd3d/YKoqchkoNr90Ol324LX3/nNwcHjsdF5hYWHZ03DB3Smk7p+q6aOPPnqmY++e/E7n5eLi8kC71axZU4mKinq6hrnP/YN787/Bjh+ecq9Pnz6PzLLwzjvvPLDM/dONlS1bVlm9enWux0tejre8DESd2+/hcdN53Zv95V6bHj9+/JHtPun9mpiYqHTr1u2Rdnt4+jsLCwujtLUwLumZE6KQaDQaNm/ezJw5c6hSpQpWVlaoVCo6duzIjh07ch3YtqRbuHAh//77Ly+++CKenp6kpKTg6OhI27Zt+emnn9ixY0eB9Ji4urqyb98+BgwYgI+PD4mJiYSHh2ffCXq/0aNHExISwltvvUXt2rWxtrYmISEBBwcHGjRowBtvvMGOHTuMcipYo9Hw9ddfc+DAAV5++WX8/f3RarUoikK1atUYMWLEI6fyAwICOHHiBCNGjMgeW8/GxoZu3brxzz//MHXq1GeuKy8mTpzIiRMnGDRoEH5+fqSlpWFra0uTJk34/PPPOX78eHZ9z+Krr75i/vz5dOnShYoVK6IoCunp6ZQpU4YXXniB33//nd9+++2RU38ff/wxK1eupFGjRtja2qLVaqlQoQLTpk3j9OnTRqnNGBo3bsyJEycYPHgwzs7O6HQ6fHx8GDVqFMHBwdnXKOaHk5MTmzZtYsuWLfTv3x9/f38yMzNJS0vDx8eHjh07Mm/evOyx5u552rYWxqVSlMdc5CGEEEIIkwsLC6Ns2bLA3dPjgYGBpi1IFCkSlYUQQgghzJiEOSGEEEIIMyZhTgghhBDCjMncrEKUYBEREfkeoNXPzy97SATxdO7N5JAfRWX2gcLUsGHDXAfZzs3x48fx8/MroIqEKJokzAlRgun1+uyx2/LKxsamgKopOfLb5iXV7du3891WOQ1IXBwEBgY+dlBqUbLJ3axCCCGEEGZMrpkTQgghhDBjEuaEEEIIIcyYhDkhhBBCCDMmYU4IIYQQwoxJmBNCCCGEMGMS5oQQQgghzJiEOSGEEEIIMyZhTgghhBDCjEmYE0IIIYQwYxLmhBBCCCHMmIQ5IYQQQggzJmFOCCGEEMKMSZgTQgghhDBjEuaEEEIIIcyYhDkhhBBCCDMmYU4IIYQQwoxJmBNCCCGEMGMS5oQQQgghzNj/ATb84lXOPd8TAAAAAElFTkSuQmCC\n", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200, facecolor='w')\n", + "\n", + "s_to_ms = 1e3 # factor to convert from seconds (measured) to ms (plotted)\n", + "\n", + "ax.plot(np.logspace(1, 7), 0.01*np.logspace(1, 7), 'k--',\n", + " lw=0.5,\n", + " label='linear (reference)')\n", + "\n", + "for simulator_id, data_ in data.items():\n", + " ax.plot(data_[:, 6], data_[:, 8]*s_to_ms, '.-', \n", + " lw=0.5,\n", + " label=desc[simulator_id])\n", + "\n", + "ax.grid(lw=0.2, which=\"both\", axis='both')\n", + "\n", + "ax.set_xscale('log')\n", + "ax.set_yscale('log')\n", + "\n", + "ax.set_xticks(data[\"0\"][:, 6])\n", + "\n", + "ax.set_xlabel(\"num_monte_carlo_samples\", fontsize=9)\n", + "ax.set_ylabel(\"t [ms]\", fontsize=9)\n", + "\n", + "ax.legend(fontsize=7, labelspacing=0.15, handletextpad=0.1, frameon=True)\n", + "\n", + "fig.savefig('execution_time_vs_num_monte_carlo_samples.png', bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d1ee4e5c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAJOCAYAAADyEaDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AADpw0lEQVR4nOzdd1hV9R/A8fe9XJYDcA8QBRVn7g0K7i2uTMvcZWlm2dBSU3OWaaalltvKkaK4SEsFBBS3poKCIs7cCg4ELvf8/uDHDWTj5V6Qz+t5eJ7rOd/zPZ97hMuH71QpiqIghBBCCCHyBLWpAxBCCCGEEP+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg+R5EwIIYQQIg/RmDoAYRqPHj3C399f/+8KFSpgaWlpwoiEEEKI/CE2NpZr167p/+3u7o6dnZ3B6pfkrIDy9/enZ8+epg5DCCGEyPe8vb3x9PQ0WH3SrSmEEEIIkYdIciaEEEIIkYdIt2YBVaFChRT/9vb2pkqVKgapOzw8nKpVqxqkrleJPJf0ybNJmzyX9MmzSZs8l/QZ8tlcvHgxxdCgF3+nvixJzgqoFwf/V6lShVq1ahmkbkVRDFbXq0SeS/rk2aRNnkv65NmkTZ5L+nLz2Rh6Qp10awohhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhhBBC5CGSnAkhRB6k6HRo4+JQdDpThyKEMDLZ+FwIIfKQO5ERHN/lTdjhILSxsfhbWuLS1JWGXXtSupKzqcMTQhiBJGdCCJFHhAb5s/un+egSEvTHtLGxhBzYz/kgfzqNHkcNV3cTRiiEMAbp1hRCiDzgTmREqsQsOV1CArt/ms+dyAgjRyaEMDZJzoQQIg84vss73cQsiS4hgRM+24wUkRDCVCQ5E0IIE1N0OsIOB2Wp7IXgQJkkIMQrTpIzIYQwMW1cHNrY2KyVjY1FGxeXyxEJIUxJkjMhhDAxjYUFGkvLrJe1sMjliIQQpiTJmRBCmJhKrcaheq0sldXGxxOwfg1xMc9yOSohhKlIciaEECZ21m8vV86czrSc2syMuu07c3L3TlZ+NJKQA/tl/JkQryBJzoQQwkQUnY6AdavZs2QBtT3a0mn0ONRmZmmWVZuZ0Wn0ONoNH8XQ+Uuwr16LP3+az/opn3M74qKRIxdC5CZZhFYIIUwg/vlz/vxpPuFHD+E+cBgNu/VCpVJRyrESJ3y2cSE4EG1sLBpLS6o1c6NBF0/9DgE2pUrT/eMJXD37D76rf+a3Lz/mtTYdcOs/iEI2tiZ+Z0KIlyXJmRBCGNmTB/fxnjudBzeu4/npJKo0aqo/V7qSM51GfUzH98Zy+tQp6tarh0qddieHY+06vP3NQk7/7UPQH78RdiiQFv3eol6Hrum2wAkh8j5JzoQQwohuR1zEe+50UKno//W36e6XqVKr0VhYpJuYJVGbmVG/U3eqtWhF0IZf8V2zjH/27qbN0JE41q6bG29BCJHLZMwZMH78eFQqlf7Lz88v02v+/PNPevXqhYODA5aWljg4ONCrVy/+/PPPLN9Xq9WydOlSWrZsSalSpbC2tqZy5cqMHDmSc+fOvcQ7EkLkReFHD7Fh6ngK2xXnrZnzDbqReSEbW9q/+wEDZ32PZaHCbJo+kR3zZxN9947B7iGEMI4Cn5ydOnWK+fPnZ7m8TqdjxIgRdOnSBW9vb27cuEFcXBw3btzA29ubLl268M4776DLZAbVvXv3aNGiBe+//z6BgYHcu3eP58+fExERwS+//ELDhg1Zvnz5y749IUQeoCgKR7d7sX3eLJzrNeKNqbMpUqx4rtyrjHMV+n/9LZ0/+IQbYaGsGvc+hzavJz4ua4vcCiFMr0AnZzqdjnfffRetVkvp0qWzdM3EiRNZsWIFAPXr12f9+vUcOXKE9evXU79+fQCWL1/OpEmT0q0jISGBXr16cfToUQB69+7Nn3/+yeHDh1m4cCGlS5cmNjaWkSNHZqslTgiR9yRo4/nr54Uc+H0VTXv2o9tH4zG3tMrVe6pUKmq2bM2w75dSv3N3grdsZPW49wk/fBBFUXL13kKIl1egk7OFCxdy9OhRqlevzvDhwzMtHxYWxnfffQdAo0aNCAoKon///jRu3Jj+/fsTGBhIo0aNAJg7dy4XL6Y9vX3NmjUEBgYCMGrUKLy8vOjUqRNNmjRhzJgxBAUFYWNjg06n48MPP0Sr1RroHQshjCnmyWO8Zn5FyAFfOo36GLf+b2c6hsyQLKwL0erNIQyZ9xMlHBzZPn8Wm2dM4t61K0aLQQiRfQU2Obt69SqTJ08GYOnSpVhkYTuUBQsW6BOlRYsWYW1tneJ8oUKFWLRoEZA4nuz7779Ps56kBK948eLMnTs31fkqVarwxRdfAHDx4kW2bt2axXclhMgrHty8wfpJn3D32hVenzyDWu5tTRZLsXL29J4wlV7jpxB97w5rPx+D75plPH/6xGQxCSHSV2CTs9GjR/PkyRMGDx6Mu7t7puUVRWHbtm0AVK9enWbNmqVZrlmzZlSrVg2Abdu2pepCCAsLIzQ0FIB+/fpRqFChNOsZMmSI/rUkZ0LkL1fP/sP6SZ+gUql5a8Y8HGrUNnVIADg3aMzg7xbj1n8QZ/btYeVHIzmz/y/ZZUCIPKZAJmd//PEHO3fupHjx4vpWrMxcvnyZmzdvAmSazCWdv3HjBpGRkSnOJXVnZlZP2bJlcXFxASAoKChLMQohTO+ffXvwmjWZMpWrMmDGd9iVLWfqkFLQmJvTxLMvQxcspVKd+vz180J+n/gJN8POmzo0IcT/Fbh1zh49esTYsWMB+OabbyhZsmSWrgsJCdG/rl69eoZlk58PDQ3Fyckpx/WEhYVx7do1nj59SuHChbMUK8D169czPH/r1q0s1yWEyJxOl0DAujUc27GFuu0703rISMw0efcjtmjxknQZ8yl123dh/6qfWT/5U2q5t6Xlm0MobFfM1OEJUaDl3U+OXPL5559z69YtXF1dszQJIEnyZMfBwSHDshUqVNC/vnbt2kvXoygK169f13eXZkXyGIQQuSvueQw+i74j4vhRWg95l/qduqNSqUwdVpbYV6/JW7Pnc3b/3wRsWEv4kYM06zOABp27Y6YxN3V4QhRIBSo5CwgIYPny5Wg0GpYuXZqtD8/Hjx/rXxcpUiTDsslbuJ48STng1lD1GFp4eLjBptjfu3ePs2fPGqSuV4k8l/Tl52fzPDqKExtW8+zhfeq/MQiLCs4GW0TamM9FXdaB5iM/4pL/3xz4fRXH/9xB9Y7dKVnZxSj3z678/D2Tm+S5pM+Qzya91RgMpcAkZ3Fxcbz77rsoisLHH39M7drZG6D7/Plz/evMZnZaWlrqX8fExORKPZl5scXuRRcuXKBdu3b6f1etWpVatWpl6x7pOXv2bLafb0EgzyV9+fXZ3LoUjvePP6M2M+OtmfMp5VjJYHXrFB0n/jlBzVo1UauMNzy4QeMm3L1yGd/Vv3B83UoqN2qKx9sj8tzYufz6PZPb5Lmkz5DPJrdbxgtMcjZr1izOnz+Po6MjU6ZMyfb1Vlb/LRoZFxeXYdnY2P9W4n5xuY0X60n+7+zUk5nMukyjoqKyVZ8QIqWw4ED+/Ol7SjlWwvOzSQYbp3XhwQXWhqzl7yt/E6ONwfqsNe0rtmdQzUFUK571oQ0vo1RFJ17/ahZhwUH4/7qC1Z+8T6PuvWnasx/mGXxmCSEMo0AkZ+fPn2f27NlA4vpk2RlYn6Ro0aL615l1MT59+lT/+sWuyxfrySg5y6geIYRpKIrCEe9NBG5YS7UWrej4/ljMLSwzvzALfCJ8mBg4Ea3y38LTMdoYtl/ajk+EDzPdZtLFuYtB7pUZlUpFteZuONdvxJHtmzm63Ytz/vtwHziMai1a5ZsxdULkRwUiOfv++++Ji4vD2dmZZ8+esWHDhlRlkvdD79+/Xz+bsXv37hQuXDhFS1RmMyGTdym+ODD/xXoymi2aVI9Kpcq0JUwIkfu08fH8/csiQg7sp3nfATTv+6bBkpQLDy6kSsxS3FvRMjFwIpXtKhutBQ3A3MoK134Dqe3RDr+1y9m1cC6n/vKhzdCRBt24XQjxnwKRnCV1D0ZERDBgwIBMy0+fPl3/+vLlyxQuXJiaNWvqj50/n/F6QMnP16hRI8W5F+upV69epvVUqFAhR619QgjDeRYdxfZ5M7l1KZwuYz6lhpuHQetfG7I23cQsiVbRsjZkLTPdZhr03llhW7osnp9OIvL0CXxX/8JvEz6iTvvOuPZ7C+uiNkaPR4hXWYFchDYnnJycKF++PAD+/v4Zlj1w4AAA9vb2VKpUKcU5Nzc3/euM6rl16xZhYWEAuLq65iRkIYSB3L9+jXWTPuHBzRu8PnmWwRMznaLj7yt/Z6ns31f+RqeYbkX/SnUbMGjuj7i/PYzQAF9WfjSSU3/5oNMlmCwmIV41BSI5W716NYqiZPiVfJKAr6+v/nhScqVSqfD09AQSW7SCg4PTvFdwcLC+xcvT0zNVl4eLi4u+Ne2PP/7g2bNn6cacpFevXjl630KIlxf5z0nWT/4UjbkFb82cj321GplflE3Ptc+J0WZtRnaMNobn2ueZF8xFZhoNDbv2ZNiCn6ncqCn7VizmtwkfcT1ElnAQwhAKRHJmKB999BFmZmYAjBkzJtXyFjExMYwZMwYAjUbDRx99lGY9n376KQAPHjzg888/T3X+0qVL+gkMVapUkeRMCBM5/bcPW2ZPoZxLdQZM/w7b0mVy5T5WGiusNVmbkW2tscZKkzdmTBa2K0an9z/izZnzMDM3Z+O0CexaOJfH9++ZOjQh8jVJzrLBxcWFzz77DIBjx47h6urKxo0bOXbsGBs3bsTV1ZVjx44B8Nlnn1G1atU06xk8eLC+q/Knn36ib9++7NmzhyNHjvDjjz/SokULoqOjUavVLFy4EE0e3gJGiFeRTpeA75pl7F2+mHodutLr86+wLFQo1+6nVqlp59gu84JA+4rtjbruWVaUq1KNN6d/R8f3xnL17GlWfjySw1v/QJvJskPCsHSKjucJz03a7S0MQ37rZ9PMmTO5c+cOK1eu5OTJk/Tv3z9VmeHDhzNjxox06zAzM8Pb25suXbpw9OhRvLy88PLySlHG0tKSH3/8kc6dOxv8PQgh0hcX84xdC+dy+dRx2gx7j/odu+X6PaPjorn55GaWykbFRvEs/hmFzHMvWcwJlVpN7dbtqdq0BYc2r+fgpt856/s3HoNH4NygiSy9kYvywtp4wrDy1p9f+YBarWbFihXs2rULT09Pypcvj4WFBeXLl8fT0xMfHx+WL1+OWp3xoy1ZsiQHDx5k8eLFuLm5UaJECaysrHB2duadd97h+PHjjBgxwkjvSggBEH33Duu/+pzroefoPX6KURKziw8v8uauNwl7FMbQWkPRqNL+m1mj0vBGtTc4cusI/Xf1J+xhWK7HlhOWhQrjMWgEg779EdsyZfH+djpb5kzlwc2MlyASOeMT4UP/nf3Zfmm7ftxi0tp4/Xf2xyfCx8QRipxQKYbaUFHkK+fOnUuxjcXZs2dl+6ZcJs8lfXnh2fwbfgHvudPRWFjSa/xXlKxQMdfvuSdyD5ODJuNQ1IEfPH6ggk2F1K0gmpStIJejLvOp/6dcib7ChCYT6FO1T55tlVIUhYvHgvFbs5wnD+7RoIsnzXr3N0gXcV74njG1Cw8u0H9n/wyXYNGoNGzotkFa0DDs90xu/g4F6dYUQgjOHzzA7sXfU8apCp6fTaKQjW2u3k+r07Lw5EJWnV1F50qdmdpiqr6bslrxasx0m8l01+mc+OcEDeo0SDHGzMnWid+7/M7co3OZdmgaR/49wlfNv6KIRd7bRUSlUlG1cXMq1W3A8R1bOey9idAAX1q+OYSaLVujyqSHQWQsr6+NJ3JOfjKEEAWWoigc2ryeXT98i0szN16fPDPXE7OHzx/y/t73WXtuLZ82+pRvWn2T5vgxtUqNlZlVmoP/rTRWTG4+mbnuczlw4wBv7HyDkPshuRr3yzC3sKRZn/4M/X4JDjVqs3vx96yf8jm3LoWbOrR8Kz+tjSeyT5IzIUSBpI2Lw2fRdxzc9Duu/QbSefQ4NBYWuXrPkPsh9N/ZnwsPLvBL+18YXGvwS3VJdqrUiU3dNlHEoggDfQayLnQdeXmkik3J0nT7aDz9pswm/vlzfp84jr9+XsizqEemDi3fyW9r44nskeRMCFHgPIt6xB/Tv+TikUN0+2g8zfr0z/VxW9svbWfQn4Ows7JjY7eNNCnXxCD1VrCpwK+df+WNam8w+8hsxvmNIzou2iB155YKNV/j7Tk/0GboSMIPH2TlRyM54bONBG3GXXTiP/l1bTyRNZKcCSEKlHtXI/l94idE3b5Fv6mzqda8Za7eL14Xz6zDs5gYOJFOlTqxptMayhUpZ9B7WJhZML7JeBa0XsDhW4fpt6Mf/9z9x6D3MDS1mRn1O3Zj6IKfqdaiJb5rl/Pr+A+5cuaUqUPLF55rn1O+cPksla1bqm6eWxtPZEz+t4QQBcblU8dZ/9VnWFpb89as+ZSrkrsz2O7F3GPEnhFsCtvEpKaTmO46PVdbMNo6tmVz982UsC7B4D8Hs+bcmjzdzQlQyMaW9u98wMDZC7AsXITNMyaxff4sou7cTvcaRadDGxeHoiuY46gCbwTSe3tvrkRfQZ3Jr3EVKoL/DWac3zhuPb1lpAjFy5LZmkKIAuHk7h34rl6GU/2GdP3wMyysc3cR11N3TvGJ3yfo0LGq4yrqla6Xq/dLUr5IeVZ3Ws2ik4v47th3HL11lBmuM7CzsjPK/XOqjFNl+k/7hvNB/hz4bSWrx71PY88+NO7RB3PLxIT2TmQEx3d5E3Y4CG1sLP6Wlrg0daVh156UruRs4neQ++7F3OPbo9/y5+U/aVq2KT+3/5lz984xMXBimrM2NSoNM9xmoELF3GNz6eHdg1F1R/FWzbcwV5ub4B2IrJLkTAjxStMlJOC75hdO7dlFw66etBo4DLXaLNfupygKm8I2MfvIbGqXqM18j/mUKlQq1+6XFnO1OeMajqNRmUZMDJxI3x19+bbVtzQo08CocWSXSqWihpsHlRs15fCWjRzx3sRZv714DBpBQnw8uxd/jy4hQV9eGxtLyIH9nA/yp9PocdRwdTdh9LlHURS2XtzKvGPzUKvUzHSbSXfn7qhUKiraVKSyXeUM18YDaOnQkp9O/cT3J75n26VtTG42Oc9/PxRkkpwJIV5Zsc+esnPBN1w5c4p2I0ZTt33ubocWmxDLrMOz2BK+hTeqvcH4xuMxNzNdC0Urh1Zs6r6J8QfGM2zPMD6o/wHDag/L8+OPLKysafnmEGq3bo/f2uXsmD87w/K6hAR2/zSfEvYVXrkWtMtRl/n60Nccu32MHpV78GmjTylmVSxFmczWxgMoalGUCU0m4FnZkxnBMxi8ezCelT0Z12gcxa2KG/MtiSzI2z+hQgiRQ1F3brF+8mf8G36BPl98neuJ2a2ntxjy5xB2XtrJdNfpTGo2yaSJWZKyhcuyouMKhr82nIUnFvL+3ve5H3Pf1GFlSbFy9vQaP4UKtetmWlaXkMAJn21GiMo44hLiWHJ6CX229+H2s9v80v4XZrrNTJWYJZfR2nhJapSowa9dfmVK8yn4XvOl+9bu/HHhD1kHLY+R5EwI8cq5cSGU3yd+QkJ8PANmfEfFOvVy9X5Hbx3ljZ1vcO/5PdZ2XkvPKj1z9X7ZpVFrGFN/DD+3/5kLDy7Qd0dfjvx7xNRhZYmi0/Fv+Pkslb0QHPhKTBI4fvs4fXf05ZfTiWvhbemxheblmxusfrVKTV+XvuzotYM2jm2YHjydgT4D8/RCxgWNJGdCiFdKaIAvm77+guLlHRgw4ztK2FfItXspisLac2t55693qGpXlY3dNlKrpOH21zO05uWbs7nHZirbVmbEXyNYfGoxCbqEzC80IW1cHNrY2KyVjY1FGxeXyxHlnqjYKKYenMqQ3UMoalGUjd03MrbB2Fyb4VvcqjjTXaezptMaYrQxDNg1gFmHZ/E47nGu3E9knYw5E0K8EhSdjoOb1xHstYFa7m1p984HaMxzr1sxRhvD1INT8bnsw5BaQxjbYCwadd7/SC1pXZKf2//M8jPLWXx6McduH2NOyzmULlTa1KGlSWNhgcbSMssJ2uZZX1G5YROcGzSmhINjnt0UPjlFUdgTuYc5R+bwPOE5E5tO5HWX1zHLxYkryTUo04A/uv/ButB1LD61mL8i/+Kzxp/RxalLvnh+ryJpORNC5HvxcbHsXDiXYK8NuA0YTMf3P8rVxOza42sM9BmI7zVf5raayyeNPskXiVkSM7UZI+uOZHmH5VyJusLrO14n6EaQqcNKk0qtxqWpa5bKlqtaHeuiRTnktZ41n45m+Zjh7Fu5hMsnj+XZFrWbT24yet9oPjvwGfVL12eb5zb6V+9vtMQsibnanMG1BrOt5zYalmnIhIAJjPhrBBGPIowah0iUfz5NhBAiDU8fPcR77nTuXb1Cj3FfUrVpi1y9X+CNQMYfGI+tpS2/dfkNl2IuuXq/3NS4bGM29djEl4Ff8t7e9xheezgf1P8gzyWaDbv25HyQf4plNF6kNjOj3YhRlK7kjDYujmshZ4g4cYSIE8c4tWcXGktLHGvXpXKDJjjVb0TREiWN+A5S0+q0/B76Oz+d+omiFkX5ofUPtHFsY9KYIHECyTyPeQTdCGLW4Vn02dGHIbWG8G6dd7O8XZR4eXnrJ1AIIbLh7pXLbP3ma3S6BPpP+4YyzlVy7V6KorD8zHIWnVyEm70bs1vOxtbSNtfuZyzFrYqzuO1iVp9bzcITCzlx5wTftvqWsoXLmjo0vdKVnOk0ehy7f5qfZoKmNjOj0+hx+mU0NBYWONVriFO9hrQZqnD/+lUiThwl4sRR9q5YjKLTUaqSM871G+PcoDFlq1TN1bXvXnTu/jmmHZzG+QfnGVB9AGPqj6GIRRGj3T8rXO1d2eK5hZVnVrL8zHJ8InyY0GQCrR1bmzq0AkGSMyFEvhRx4ig7f/iWYmXL0/PzybnaEvIk7gmTgiax7+o+RtYZyah6o/L8WmHZoVapGVZ7GA1KN+DzA5/Td0dfZrrOxL1C3lnUtYarOyXsK3DCZxsXggPRxsaisbSkWjM3GnTxTHd9M5VKRckKFSlZoSJNPPvy/MkTIk8fJ+LEUU7/7cPhrRuxLmqDU72GODdsQsU69bEqnDuJ0rP4Z/x06id+C/2NKnZV+K3Lb9QpVSdX7mUIlmaWvF/vfbo6d2XW4Vl86PshHhU8mNBkAvZF7E0d3itNkjMhRL6iKAonfLbj/+sKnBs2ocuYT7Cwyr3uloioCD7y/Yg7z+7kma6n3FKvdD02dd/EpKBJfLD/AwbVHMRHDT7KE+u1wf9b0EZ9TMf3xnL61Cnq1quHSp29JNmqSBGqu7pT3dUdnS6Bf8MuEHEysVUtJMAXlVqNQ/VaODVIbFUrXt7BIIPiD1w/wIzgGTx8/pCxDcbyds23880WSo42jixpt4S9V/cy58gcenr3ZGTdkQyuOTjPfG+8aiQ5E0LkGwlaLftXLeWfvbtp3KMPLQcMzvYv5+zYd3UfEwMnUqZQGdZ3XY+TrVOu3SuvsLW0ZWHrhfwe+jvzjs/j5J2TfNvqWxyKOpg6ND2VWo3GwuKl/+/VajPsq9fEvnpNWg4YTPS9O1w+eYyIE0c5uPE3Dvy2EtsyZXFu0Bjn+o1xqPlatiea3Iu5x5wjc9gTuYfm5ZqzouMKKhTNveVdcotKpaJ9xfa0KN+CpaeX8uPJH9l+aTsTm06kabmmpg7vlSPJmRAiX3j+9Ak7vp/D9ZAzdBj5Ia+16ZBr90rQJfDTqZ9YdmYZ7RzbMcNtBoXNC+fa/fIalUrFwJoDqV+6Pp/6f0q/Hf342vVr2lVsZ+rQcpVNydLUbd+Fuu27EB/7nGvnzhBx4igXjwRz8s8dmFtaUbFOPZzqN8a5fiOKFC+Rbl06RYdXuBffH/8ejUrD7Jaz6erUNd8vTVHYvDCfNPqE7pW7MzN4JiP+GkEXpy581vgzSlqbdpLFq0SSMyFEnvfo1r9s/WYaz6Ie0XfidCrUyr1xOlGxUUwImEDQjSDGNhjL8NrD8/0v1JyqVbIWf3T/gykHp/Cx38cMqD6ATxp9gqWZpalDy3XmllaJLWYNGqMoCveuXSHi+BEiTh5j77KfUBQdpZ0q49ygCc4NGlHWuaq+JS/iUQTTDk3jxJ0T9KzSk08afoKdlZ1p35CBuRRzYVWnVWy/tJ35x+bTfWt3xtQfwxvV3jD6MiCvIknOhBB52vWQs2ybPwvrIkV4c+Y8ipXLvYHIYQ/D+Mj3I6Jio1jabikt7HN3WY78oKhFUea5z+OPC3/w7dFvOXXnFHPd51LRpqKpQzMalUpFKcdKlHKsRNNe/Yh5HE3kqeNEnDzGyd3bCfZaTyFbOxzr1udSiUf89mwXpYuVZ0WHFTQp18TU4ecatUpNzyo9aV2hNT+c+IE5R+bgfdGbSc0m5emJDvnBqzPdSAjxyjnnv49NMyZRyrESA2bkbmL25+U/GegzkEKaQmzstlESs2RUKhVvVH+D37v+zjPtM/rt6IdPhI+pwzIZ66I21GjZmq4ffsaoZet4Y+ocijeqyfHTvsRvPckbf9vz9pnXMDtxkwc3b5g63Fxna2nLV82/4rcuvwEw0GcgXx/6mqjYKBNHln9Jy5kQwqQUnQ5tXByKTqfvFlJ0OgI3/soR703Ubt2BdiPex0yTO7PCtDotC44vYE3IGro6d2VK8ymy2GY6qhevzsZuG5kePJ3xAeM5cusI45uML9DP67H2Cb88+IOtllup17Men1X9gISIu1w+cZSA9WvwW7ucYuXKJ45Ta9AYhxq1cu172dTqlKrD+q7r2XhhI4tOLmLvlb2MazSOHpV7vFJLzxiDJGdCCJO4ExnB8V3ehB0OQhsbi7+lJS5NXanboQvHtm8h/Ogh3AcOo2G3Xrk25uvB8wd85v8Zx28fZ3zj8bxV460CO74sqwqbF2a222yalm3KrMOzOH33NPPc5+Fsl/Y6Y68qRVHwuezDt0e/JT4hnsnNJtPXpW9iElIV6nfsRvzz51w9d5qI40cJCw7khM82LKytqVinPs71G+NUvxGF7YqZ+q0YlJnajDdrvEn7iu357th3TA6azNbwrUxsNjFf76ZhbJKcCSGMLjTIP9Vq79rYWEIO7CfkwH7UGg2en0ykSuNmuRbDuXvn+MjvI+IS4ljWYRmNyzbOtXu9alQqFb2q9uK1kq/xqf+n9N/Vn4lNJ+JZxdPUoRnF9cfXmRE8g6CbQXSo2IEJTSZQqlCpVOXMrayo3LAplRs2RVEU7l65/P+dCo6w5+eFoCiUrVz1/5MKGlO6knOuLg1jTKUKleKbVt/Qu2pvZgTPoN+Ofrxd823er/s+hcwLmTq8PE+SMyGEUd2JjEh3G54kik6HTanSuRbD1vCtzAieQbXi1ZjvMT9PbVWUn1QpVoV1Xdcx58gcJgVN4sitI0xsOvGV/eWr1Wn5NeRXFp9ajJ2VHT+2+THLuyioVCpKV3KmdCVnmvV+g2fRUYlrqp08xrGdWzm46XcKFyuOU71GODdoRMXX6mFhnb3nmNYQAVNrWq4pW3psYU3IGn4+/TM+lxO3gWrn2E5aqTMgyZkQwqiO7/LOMDGDxF8yJ3y20WnUxwa9d3xCPN8c/YaNFzbSp2ofvmz6JRZmFga9R0FTyLwQX7t+TeOyjZkePJ0z984wt9VcqhWvZurQDOrsvbNMOzSNsIdhvFXjLT6o98FLJaGFbGyp5d6WWu5tSdBquXkhhIiTx4g4foSzvn9hptHgUPM1/QK4dmXLpVtXekMEGnbtme62VsZkbmbOiNdG0NmpM3MOz2Gc3zhc7V35ssmXONo4mjq8PEmSMyGE0Sg6HWGHg7JU9kJwIB3fG2uwFoA7z+7wid8nnLt/jinNp9DXpa9B6hWJulfuTu2StfnU/1Pe8nmL8U3G07dq33zfOvI0/imLTi5i/fn1uBRzYV2XddQqWcug9zDTaKhQqw4VatXBfeAwHt36V7+l1IHfVuK7+heKl3fAqUFjKjdoTPlqNTHTJP76zmiIwPkgfzqNHkcN17yxR6p9EXsWtV2E71Vf5hyZQ69tvRjx2giGvTasQKydlx2SnAkhjEYbF4c2NjZrZWNj0cbFYW5l9dL3PXnnJOP8xqFWqVnVaRV1S9V96TpFak62Tvze5XfmHp3L14e+5ui/R/mq+VcUscidjcRzm981P2YEzyA6LppxDcfxVo230Khz/9emXdlyNOjcgwadexD3PIYrZ05x+cRRzgf5c3znViwLFaZi3QaUrFCRYK/16bZE6xIS2P3TfErYV8gTLWhJWju2pmm5piw7s4xfzvzCjogdTGw6EVd7V1OHlmfkjU5pIUSBoLGwQGOZtb+QNZaWaCxerstRURQ2nN/AsN3DcCzqyMZuGyUxy2VWGismN5/MXPe5BNwIoN/OfoTcDzF1WNly59kdxvmNY8z+MVQtVpWtnlsZXGuwURKzF1lYWVO1cXM6jPyQkYtXM3D2Ahp27Un03dsc/OO3TIcI6BISOOGzzUjRZl0h80KMbTAWr+5elCtcjvf2vsc4v3HcenrL1KHlCZKcCSGMRqVW49I0a38dV2vm9lJdms+1z5kcNJmZh2fyRvU3WN5xuez9Z0SdKnXij25/UNSiKAN9BvJ76O8oimLqsDKkU3RsPL8RT29Pjt8+ztxWc1ncdjH2RXJv8ePsUKnVlHGuQvO+A3hz+ndZ/uPlQnAgik6Xy9HljLOdM8s7LGdOyzmcuH0CT29P1pxbQ7wu3tShmZQkZ0IIo2rYtSdqs4z33lObmdGgS86XZbj55CaDdw9md+RuZrnNYkKTCZirX82FP/OyCjYV+LXzr7xR7Q3mHJnDx34f59lV48MfhjP4z8HMODyDjpU6sr3ndjo5dcqzY+a0cXFo4+KyVvb/QwTyKpVKRVfnrmzvtZ2eVXoy//h83tj5BidunzB1aCYjyZkQwqhKV3Km0+hx6f7SU5uZ0Wn0uByPkTn872H67+xPVGwUv3b+le6Vu79MuOIlWZhZML7JeBa0XsCRW0d4Y+cb/HP3H1OHpRebEMvCEwvpt6Mfj2IfsarjKqa2mIqtpa2pQ8tQdoYIAOz5eSGRp46j02XcDWpKNhY2fNH0C9Z3XY+VmRWDdw9mctBkHjx/YOrQjE6SMyGE0dVwdceuXHlsSpbW/4LRWFpSy70tb836PkezyxRFYfXZ1bz797tUL16dDV03UKNEDUOHLnKorWNbNnffTAnrEgz+czBrzq1Bp5i2q+3wv4fpva03q8+t5t067+LVw4tGZRuZNKasys4QgdJOlbl3NRKv2VNYNmooB9at5v71a7kcYc7VLFGT37r8xuRmk9l/dT/dt3ZnU9gmk3+/GJPM1hRCGN29q5E8vHkDz08nUblhE06fOkXdevVyPMbsWfwzphycwu7I3QyvPZwx9cdgps6461QYX/ki5VndaTWLTi7iu2PfceTWEWa6zsTOys6ocTx8/pDvjn3H9kvbaVC6AYvaLsLZNu/MZsyqhl17cj7IP8NJAWozMzq+N5ZSFZ24fSmccwf2cWbvbo5u20zZKi7Ucm9H9RatsCqSt2bUqlVq+lXrR1vHtnx//Hu+PvQ13uHeTGo2qUD80SUtZ0IIowsN9MOqSFGc6jdEpVajsbDIcWJ2Nfoqb/m8hf91f+a5z+Ojhh9JYpaHmavNGddwHD+1/Yl/7v5D3x19jTa2SFEUdlzagae3J77XfJnafCqrOq3Kl4kZ/DdEIL0xnMmHCKhUKspWcaHtsPcZ+fOvdB/3BYVsbNm/ailLRw5kx/dziDhxNNPZn8ZWwroEM9xmsLrTap5pn9F/V39mH57N47jHpg4tV0nLmRDCqBSdjtBAf6o1b4mZ5uUG6R+4foAJARMoblWcdV3WUaVYFQNFKXJbK4dWbOq+ifEHxjNszzBG1xvN8NeGJ24cnguuRV/j6+CvCf43mM6VOvN5k89fidm7NVzdKWFfgRM+27gQHIg2NhaNpSXVmrnRoItnmmM3NebmuDR1xaWpK08fPSQ00I9z/vvY+s00CtsVo7qbB7Xd21LSsZLx31A6GpZpyB/d/2Bd6Dp+OvUTf135i88afUZnp855dtLGy5DkTAhhVNfPn+Px/bvUaNk6x3XoFB2//PMLi08tppVDK2a1nIWNhY0BoxTGULZwWVZ0XMGS00tYdHIRR28dZVbLWQZNmuJ18aw5t4alp5dSwqoEi9supqVDS4PVnxeUruRMp1Ef0/G9sdkeIlDYrhiNuvWiYdee3ImMIMR/HyH++zi+cyulnSondnu6tqKQjeknSJirzRlcazAdK3Xk26PfMj5gPFvCt/Blsy/zbetneiQ5E0IYVcgBX2xLl6G8S/UcXf847jFfBn6J3zU/RtUdxci6I3OttUXkPo1aw5j6Y2hUphFfBHzB6zteZ07LOTQt1/Sl6z599zTTDk3j0qNLDKo5iPfrvv/KbsoOvNQQAZVKRRmnypRxqkyrgUO5fPI45/z34v/rcvx/XYFzg8bUcm+LU/1G+q2jTKVs4bLM95hP4I1AZh2eRZ/tfRhaayjv1HkHa411mtfoFB3PE56jU3T54vNCkjMhhNFo4+IICw6kQZceOeqKuPToEh/5fsT9mPv82OZH3CvkjT0DxctrXr45m3tsZkLABN756x1G1h3Je3Xey9H4wSdxT/jhxA9svLCRGiVqsL7remqWqJkLUb+azDTmVGncjCqNm/EsOorzQf6c89/Htu9mYG1jSw1Xd2p5tDP5llBu9m5s6bGFlWdXsvzMcnZF7OKLpl/gUcFDX+bCgwusDVnL31f+JkYbg/VZa9pXbM+gmoOoVrya6YLPhCRnQgijiThxhLiYZ9Rw88j2tX9f+ZtJgZMoX6Q867utp6JNRcMHKEyqpHVJfm73M8vPLGfx6cUcv32cOS3nULpQ6RTlMmoF2Xd1H7MOz+Jx3GM+a/wZA6oPMMm2S6+KQja2+n0+716N5Jz/PkIDfDnx53ZKOVailkc7arh5UMjWziTxWWmsGFVvFF2duzLr8CzG7B+DRwUPJjSZwOk7p5kYOBGtotWXj9HGsP3SdnwifJjpNpMuzl1MEndm5DtWCGE0IQF+lK1cleLlHbJ8TYIugUUnF7Hi7Ao6VOzAdNfpr3TXVEFnpjZjZN2RNCjTgAkHJvD6jteZ5TYLV3vXDFtBbC1tmX14Nvuv7cfdwZ2JTSdSrkg5U7+dV0opx0p4vD2cVm8OIfL0Cc757SVg3Wr8f1uJU/1G1HJvi3ODJmjMjb8bR0Wbiixtt5S/r/zNN0e/ocfWHmh1WnSkvTaaVtEyMXAile0q58kWNEnOhBBGEfM4mssnj+H+9vAsX/Po+SPGB4wn+N9gxjUcx5BaQ17JmVkitcZlG7Opxya+DPyS9/a+h4eDB4E3AtNsBdkZsRNztTlFLYoyz30e7Su2l++TXKQ2M8O5QWOcGzQm5sljLgQd4NyBfeyYPxurIkWp7tqKWu7tKONcxaj/DyqVig6VOuBq78pbu97iUtSlDMtrFS1rQ9Yy022mkSLMOknOhBBGERYciKLoqN4i5Uy59Lqozj84z0e+H/E0/ilL2y2lefnmxg5ZmFhxq+IsbruYuUfn8lvob+mW0yk64hLi+M79OxqWaWjECIV1kaLU69iVeh27cv/6Nc4d2Efogf2c2rOLEg6O1HJvS42WrSlSrLjxYtJYc/PpzSyV/fvK30x3nZ7nJglIciaEMIqQA75UqttAPzYloy6q8EfhTDs4DSdbJ1Z0XIF9EXvTBi9MRq1SEx0XnWk5BYUt4VskOTOhEg4VaPXmENz6v83Vf05x1n8fB//4nYB1a6hUtz413dtSpVEzNBYWuRrHc+1zYrQxWSobo43hufZ5nhsqIcmZECLXPbp9i5thoXT58DMAfCJ80h2ou+PSDhQUelTuweRmk7HSWJkqbJEH6BQdf1/5O0tl82orSEGjVptRqV5DKtVryPOnTwg7FMhZ/73s+uFbLAsXpnqLVtRs1ZZyVavlSrenlcYKa411lhI0a411nvyMkeRMCJHrQgN9Mbeypkqjplx4cCFVYpacgoJapebtGm/nyQ9NYVyvQitIQWZVuAh12nWiTrtOPLh5g5AD+wk5sJ/Tf/9JsfIO1GrVhpqt2lC0hOEWHlar1LSv2J7tl7ZnWrZ9xfZ5MpnPexEJIV4piqIQGuBH1SbNMbe0Ym3I2nQTsyQ6Rcevob8aJ0CRpyW1gmRFXm0FEYmKl7fHrf/bvPPjCvpOmkHZylUJ3rKRX0YPZfPMyYQG+BIf+9wg9xpUcxAaVcbtTxqVhkE1BxnkfoYmyZkQIlfdvhTOw39vUKNl62x3UemUtKfBi4IjqRUkK/JqK4hISaVWU/G1enT54BPe+/lXOowcQ0J8PD4/zmPpyLfZs3Qh18+fQ1GUHN+jWvFqzHSbmW6CplFpmOk2M08uowHSrSmEyGUhgb4ULlYcx9p1pItK5MigmoPwifDJsMU1L7eCiPRZFirEa6078FrrDjy6fYuQA/s457+fs75/YVemHDXd21CrVVtsSpXOvLIXdHHuQmW7yiknHmlkhwAhRAGXoNVyPugANVu1Qa02w0qV/wfqCuNLagVJb6xiXm8FEVljV6YsLV5/i+Z9BnA99Czn/PdzdJsXB//4nQq16lDLvS1Vm7bAwipr3dzw3/fOdNfpnPjnBA3qNMgXrauSnAkhcs2VMyeJiY6iZsvWwKsxUFeYRn5uBRHZo1KrqVCrDhVq1aHNsJGEHz7IOf997F78PftWLMGlmSu13NviUKN2ljd5VymgSVCjUoB8sD6xJGdCiFwTGuBHCQdHSlV00h+TLiqRU/m1FUTknIWVNbXc21LLvS1Rd24TErCfEP/9nPPfh02pMtRs1YZardpgVzbtrbruREZwfJc3YYeD0MbG4m9piUtTVxp27WnyjdszIsmZECJXxMU84+LRYJr16Z9iLaOkX7ATAiagkHrAr3RRicyoVWqszKwkMStgbEuXoXmfATTr3Z+bF0I557+XEz7eBHutx756LWq5t8WlmRuWhRLHqYYG+bP7p/noEhL0dWhjYwk5sJ/zQf50Gj2OGq7upno7GZLkTAiRK8KPHEIbF0sNt9Qffm0c22Ctsca+iD3Xn1yXLiohRJapVCrsq9fEvnpNWg95l4tHgznnv4+/flnE/lU/U7VpC+yr1WT/qqUpErPkdAkJ7P5pPiXsK+TJFjRJzoQQuSI00A+HmrWxKZl6ltXfV/7mmfYZP7T+Afui9tJFJYTIEXNLK2q4eVDDzYPH9+8RcmA/5w7sJzTAN9NrdQkJnPDZRqdRHxsh0uyRT0IhhME9eXCfq2dOU7NlmzTPe4V70bRsUyrYVJAuKiGEQRQtUZKmvfox5LufMDM3z9I1F4IDUXR5bz1F+TQUQhjc+YMHUGvMqNq0Rapzl6Muc/z2cXpX7W2CyIQQr7qE+HgS4uOzVFYbG4s2Li6XI8o+Sc6EEAYXEuBL5QZNsCpcJNW5reFbsbW0pW3FtiaITAjxqtNYWKCxtMxaWUtLNBYWuRxR9klyJoQwqHtXI7kbGUGN/69tllx8QjzbLm2ju3N3LM2y9uEphBDZoVKrcWnqmqWy1Zq5ZXmtNGPKexEJIfK10EA/rIoUxal+w1Tn/K778eD5A+nSFELkqoZde6I2M8uwjNrMjAZdPI0UUfZIciaEMBhFpyM00J9qzd0w06QekOsV5kWdUnWoWqyqCaITQhQUpSs502n0uHQTNLWZGZ1Gj8uTy2iALKUhhDCg6+fP8fj+XWqkMUvz5pObHLx5kKktpho/MCFEgVPD1Z0S9hU44bONC8GBaGNj0VhaUq2ZGw26eObZxAwkORNCGFBogC+2pctQ3qV6qnNbL27FWmNNp0qdTBCZEKIgKl3JmU6jPqbje2M5feoUdevVy5NjzF6U9yMUQuQL2rg4woKDqNGydYrtmgASdAlsDd9KZ6fOFDIvZKIIhRAFlUqtRmNhkS8SM5DkTAhhIBEnjhD77Ck13DxSnQu6GcTtZ7fp69LX+IEJIUQ+I8mZEMIgQgL8KFu5KsXLO6Q6tyV8Cy7FXKhVopbxAxNCiHxGkjMhxEuLeRzN5ZPH0lzb7F7MPfyv+dOnap9U3Z1CCCFSk+RMCPHSwoIDURQd1Vu0SnVu28VtmKnN6Orc1QSRCSFE/iPJmRDipYUE+FGpbgMK2dqlOK4oClvCt9C+YntsLW1NEpsQQuQ3kpwJIV7Ko9u3uHkhJM0uzWO3j3H18VXZEUAIIbJBkjMhxEsJDfTF3MqaKo2apjrnFe5FRZuKNCrTyASRCSFE/iTJmRAixxRFITTAj6pNmmNuaZXiXFRsFH9H/k3vqr1lIoAQQmSDJGdCiBy7fSmch//eSLNLc2fETnSKjh6Ve5ggMiGEyL8kORNC5FhIoC+F7YrhWLtOiuOKouAV7oVHBQ9KWpc0UXRCCJE/FYjkLDo6mg0bNvDJJ5/g7u5OlSpVsLW1xcLCgtKlS+Ph4cG3337L/fv3s1TfwYMHGThwIBUrVsTKyoqyZcvSsWNH1q9fn6241q9fT4cOHShbtixWVlZUrFiRgQMHcujQoZy8TSGMKkGr5XzQAaq7uqNWm6U4d/beWcIfhstEACGEyIECsfH5kSNHGDBgQJrn7t69i7+/P/7+/sydO5fffvuNjh07plvX1KlTmT59OjqdTn/s9u3b/PXXX/z111/8/vvvbN68GSsrq3TriImJoW/fvvj4+KQ4fvXqVX7//XfWr1/PV199xZQpU7L5ToUwnqtnThETHUXNVm1SnfMK96Js4bK0KN/CBJEJIUT+ViBazgAqVKjAoEGD+OGHH9iyZQuHDh0iKCiIjRs38vrrr2NmZsa9e/fo0aMHp0+fTrOOn3/+mWnTpqHT6ahcuTIrVqzgyJEjeHt707p14pibXbt2MWzYsAxjGTZsmD4xa926Nd7e3hw5coQVK1ZQuXJldDodU6dO5ZdffjHsQxDCgEICfCnh4Eipik4pjj+Nf4rPZR96VemF2QstakIIIbJAKQC0Wm2mZbZu3aoACqD06tUr1fn79+8rtra2CqA4Ojoqd+/eTXWP7t276+vw9fVN8z779u3Tl+nevXuq2O7evas4OjoqgGJnZ6c8ePAg6280G86ePauPA1DOnj1rsLrPnDljsLpeJa/Sc4l99lRZMLC3Erz1j1TnNl/YrLy2+jXl5uObWa7vVXo2hiTPJX3ybNImzyV9hnw2ufk7VFEUpUC0nJmZZf7Xe8+ePalWrRoAAQEBqc4vX76cqKgoAL755htKlkw5yNnMzIzFixfr7zV37tw07/Pdd98BoNFoUpRPUrJkSb755hsAHj16xPLlyzONXQhjCz9yCG1cLDXc3FOd2xK+hRb2LShXpJwJIhNCiPyvQCRnWVW0aFEAnj9/nuqct7c3ADY2NvTunfYgZwcHB9q1awfAvn37ePz4cYrzjx8/Zt++fQC0a9cOBweHNOvp3bs3NjY2AGzdujX7b0SIXBYa6IdDzdrYlCyd4njYwzD+ufcPfav2NVFkQgiR/0ly9n8XLlzg1KlTAFSvXj3Fubi4OI4cOQJA8+bNsbCwSLced/fEloTY2FiOHTuW4tzRo0eJi4tLUS4tFhYWNGvWTH9NfHx89t6MELnoyYP7XD1zmhpuqdc22xK+heJWxXF3SP/7WwghRMYKdHL27NkzwsPDmT9/Pu7u7mi1WgA++uijFOXCwsJISEgAUiduL0p+PjQ0NMW5kJCQNMtlVI9WqyU8PDzjNyKEEZ0/eAC1xgyXZq4pjscmxLLj0g48q3hibmZuouiEECL/KxBLaSS3evVqhg4dmu75CRMm8Oabb6Y4dv36df3r9Loik1SoUEH/+tq1awarp2bNmhmWf1Hye6Xl1q1b2apPiCShAX5UbtAEq8JFUhzfe2Uv0XHR9K4ia5sJIcTLKHDJWXrq1avHL7/8QuPGjVOdSz52rEiRIqnOJ1e4cGH96ydPnuRKPVmRPLkTwlDuXbvCnchLNO+bet3ALeFbaFSmEZVsKxk/MCGEeIUUuOSsZ8+eNGrUCEhcDPbSpUv88ccfbN26lQEDBrBgwQK6deuW4prkEwQyGm8GYGlpqX8dExOTK/XkhvDwcBRFMUhd9+7d4+zZswap61XyKjyXsH27MbcuxDMLqxTv5dbzWxy5dYRRlUbl6D2+Cs8mN8hzSZ88m7TJc0mfIZ/NxYsXDVJPegpccmZnZ4ednZ3+340bN6Z///78+uuvDB48GE9PT1asWMGQIUP0ZZKv9p80oD89sbGx+tfW1tYpzhmqnqx4sUv1RRcuXNDPLAWoWrUqtWrVyvZ90nL27Flq165tkLpeJfn9uSg6HQcXz6Ommzt16tZLcW7v8b0UtSjKUNehWGnS3x0jPfn92eQWeS7pk2eTNnku6TPks1GpVAapJz0FLjlLz9tvv83OnTv5448/+OCDD+jRowfFixcH/ltiAzLvYnz69Kn+9Ytdl4aqJysyG9OWtGabEFl1/fw5Ht+/m2qWZrwuHu+L3nRz7pajxEwIIURKBXq25os8PT2BxMRo9+7d+uPJE53MBtonb7F6cdyXoeoRwhRCA3yxKVWG8tVqpDh+4PoB7j+/T5+qfUwUmRBCvFokOUumVKlS+tdXrlzRv3ZxcdGv5H/+/PkM60h+vkaNlL/Eks+4zGo9Go2GqlWrZhK5ELlLGxdHWHAQNVt6pGrO9wrzonaJ2lQrXs1E0QkhxKtFkrNkbty4oX+dvCvRwsKCJk2aAHDo0KEMx4v5+/sDiQP6kyYeJGncuLF+IkBSubTExcURHBysv8bcXNaMEqYVcfIosc+eUqNlyi7NW09vEXQziN4usnyGEEIYiiRnyWzatEn/+rXXXktxrmfPngBER0ezZcuWNK+/fv06e/fuBaBt27YpxphB4piztm3bArB37950uza3bNlCdHQ0AL169cr+GxHCwEIDfClbuSrFy6ccy7j14lYszSzp4tTFRJEJIcSrp0AkZ6tXr05zv8zkvv/+e3x8fABwcnKiZcuWKc6PGDECW1tbIHGh2vv376c4n5CQwKhRo/Q7CXz22Wdp3ufTTz8FElf+Hz16tL58knv37jF+/HggcWbpiBEjsvIWhcg1MY+jiThxLFWrWYIuga3hW+lUqROFzQunc7UQQojsKhDJ2dSpU7G3t+fdd99l7dq1BAUFcfr0aQIDA1myZAlubm6MGzcOSOzC/OWXX/RjzJIUL16cb775Bkgcj9a0aVNWrVrFsWPH2L59O+3bt2fHjh0ADBgwAA8PjzRjadOmDf379wfQX7d9+3aOHTvGqlWraNasGVevXgXgm2++oVixYrnxSITIsrDgQBRFR7XmKf9gOfzvYf59+i99XGQigBBCGFKBWUrjwYMHLFu2jGXLlqVbxsHBgZUrV6ZY/yu5kSNHcvPmTaZPn86lS5cYNmxYqjJdunRh5cqVGcaycuVKoqOj8fHxwdfXF19f3xTn1Wo1kydP5t13383COxMid4UE+FGpTn0K26X8Q2Fz+Gaq2FWhTsk6pglMCCFeUQUiOduzZw+7du0iKCiIixcvcvv2be7fv4+1tTWlS5emXr16dOvWjX79+lGoUKEM65o2bRodO3bkp59+IiAggNu3b2NnZ0fdunUZOnQoAwak3tbmRdbW1uzatYt169axevVqTp8+zaNHjyhTpgwtW7bkgw8+oHnz5oZ6+0Lk2KPbt7h5IYQuYz5Ncfx+zH18r/nyScNPcn0xRiGEKGgKRHJWrVo1qlWrpu+6fFktWrSgRYsWL13Pm2++mWqTdSHykvOBfphbWlGlUbMUx3dc2oEKFd2cu6VzpRBCiJwqEGPOhBDZpygKIYF+VG3aAvNkW48pioJXuBftKrbDzsrOdAEKIcQrSpIzIUSabl8K5+HN66lmaZ64c4LI6EjZEUAIIXKJJGdCiDSFBPpS2K4YjrVTDvjfEr6FCkUr0LhsYxNFJoQQrzZJzoQQqSRotZwPOkB1V3fU6v+WlYmOi+avyL/oXbU3apV8fAghRG4oEBMChBDZc/XMKWKio1J1afpE+BCvi8ezsqeJIss7YmJiiI6O5unTp6kWkzaU+Ph4wsPDc6Xu/E6eTdrkuaQvs2djZmZG4cKFsbGxwdra2oiRpSbJmRAilZAAX0o4OFK6krP+WNJEgFYOrShVqJQJozO9qKgobt68mev3UavVaLXaXL9PfiTPJm3yXNKX2bPRarXExsby4MEDypcvr98VyBQkORNCpBAX84yLR4Np1vuNFGuYhTwI4fyD83xQ7wMTRmd6MTExqRIzjSZ3PkrVajVqtXQfp0WeTdrkuaQvs2eTPHG7efMmlpaWWCWbqW5MkpwJIVK4eDQYbVwsNVp6pDjuFeZF6UKlcbV3NU1geUR0dLT+tY2NDWXLlk213ZuhxMTEmLx7Ja+SZ5M2eS7py+zZJCQkcOvWLf3PeFRUlMmSM0mvhRAphAT44lCzNjYlS+uPPYt/hs9lH3pW6YlGXbD/pnv69Kn+dW4mZkII4zIzM6Ns2bL6fyf/WTc2Sc6EEHpPHtzn6pnT1HBLORFgT+QensU/o3fV3iaKLO9IGvyv0WgkMRPiFWNmZqYfppBbE32yQpIzIYTe+YMHUJupcWmWsutyS/gWmpVrhn0RexNFJoQQBYckZ0IIvdAAP5wbNsGqcBH9sUuPLnHq7in6uMiOAEIIYQySnAkhALh37Qp3Ii+lWtvMK9yLYpbFaF2hdTpXCiGEMCRJzoQQAIQG+mFVuAhO9Rrpj8UlxLHj0g56VO6BhZmFCaMTQoiCQ5IzIQSKTkdooB/VWrREY26uP77/6n4exT6SiQDC4Dw8PFKsoyeE+I8kZ0IIrp8/x+N7d1PN0vQK96JB6QY42zmnc6XITTpF4VmcFp1OMXUo2bZ69WpUKhWrV682dShC5DsFe8EiIQQAoQG+2JQqQ/lqNfTHrj2+RvC/wcxwnWHCyAqmkJvRLA+M4M8z/xITr8Pa3IzOr5VlhJszNcvbmDo8IUQuk5YzIQo4bVwcYcFB1GyZsptpa/hWipgXoUOlDiaMruDZduoGPX4MZMuJG8TE6wCIiU9gy4nE49tO3TBxhEKI3CbJmRAFXMTJo8Q+e0p1Nw/9Ma1Oy7aL2+jq3BVrjWwFYywhN6P55I/TaNPpxtTqFD754zQhN6PTPJ9dfn5+qFQqpk6dSmBgIB4eHhQtWhQ7Ozv69OnDxYsXAdDpdFSsWJESJUoQGxubZl2tWrVCo9Fw/fp1hgwZwtChQwEYOnQoKpVK//Wi+Ph4pk6dSqVKlbC0tMTFxYXFixeneY+nT58yZcoUqlevTrFixShevDhdu3YlKCgoVdmpU6eiUqnw8/Nj3bp11KtXD2tra8qVK8fYsWOJiYnJ6WMTItdJciZEARca4EsZ56qUsK+gPxZ4I5A7MXfoU1XWNjOm5YER6SZmSbQ6hRWBlw163+DgYNq2bYutrS1jxozB3d2drVu30qJFCyIiIlCr1YwYMYIHDx7g5eWV6voLFy4QEBBAp06dcHBwoGfPnnh6egLg6enJlClT9F8vGjBgACtXrqRjx44MHz6cBw8eMHr0aJYtW5ai3PPnz2nTpg1ff/01hQsX5oMPPsDT0xNfX1/c3d3ZtGlTmu/txx9/5N1336VWrVq8//77FCtWjIULFzJixAgDPDkhcoeMOROiAIt58piIE8dwHzg0xXGvMC9qFK9BjRI10rlSpCcmLoFLd59k+zqdorDrn3+zVHbnPzcZ3KIi6hzMdqxcqgjWFim3ndqzZw9Lly5l5MiR+mM///wz7733HmPHjmXHjh0MHz6cr7/+mmXLlvHmm2+muH758uUAvPPOOwD07NmTR48esW3bNnr27MmQIUPSjef69eucPXsWG5vEsXRjx46ldu3azJs3T18fwLfffsuRI0d46623+PXXX3n+/DnW1tZ8+OGHNGvWjHfffZdOnTpRtGjRFPXv3buX48ePU61aNQBmzpxJvXr12LBhA3PnzqV8+fLZfIJC5D5JzoQowMIOBaIoOqq1aKU/dvvpbQ7cOMCXTb40YWT516W7T+i2KDBX7xGr1dHjx9RdeVmxc4wbte1tUxxzcXFJkQhBYqI1b948du3axd27dylfvjzdu3fH29ubixcvUqVKFSCxW3Lt2rWUK1eOrl27Zjue2bNn6xMzgGrVquHq6oq/vz+PHz/WJ1tr1qzB3NycOXPmpOgerV+/PoMHD2bZsmV4e3vz9ttvp6h/7Nix+sQMwNramgEDBjBt2jSOHz8uyZnIkyQ5E6IACwnwpVKd+hS2K6Y/tu3SNizUFnRx7mLCyPKvyqWKsHOMW7av0ykKry89RKxWl2lZS42aTe81z3HL2YtcXV1Rq1OOclGr1bi6uhIeHs7p06dp164dI0eOZOvWrSxfvpw5c+YAsH37du7cucOXX36p3zA6Oxo2bJjqmIODAwCPHj2iaNGiREdHExERQY0aNfTnkmvdujXLli3j1KlTqZKzzOoXIi+S5EyIAurR7VvcvBBClzGf6o/pFB1bwrfQoVIHiloUzeBqkR5rC7NULVNZ1bVOObacyHw2Zrc65anjYJeje6SlTJkyGR6PiooCoEOHDjg5ObFmzRpmzJiBRqNh+fLlqFQqhg8fnqN7J281S5KU5CUkJAAQHR2dYZzlypVLUS679QuR18iEACEKqPOBfphbWlGlUTP9sSO3jnDjyQ36uvQ1YWQF1wg3ZzTqjFvDNGoVw92cDHrf27dvZ3jc1jYx2VSpVLz77rvcunWLHTt2cO3aNf766y/atm2Ls3PuLVSclGClF+etW7dSlBMiv5PkTIgCSFEUQgL9qNqkOeZWVvrjXmFeONs6U69UPdMFV4DVLG/DvH51003QNGoV8/rVNfhCtEFBQeh0KbtTdTodBw8eRKVSUbduXf3xoUOHYm5uzvLly1m5ciU6nS7VeDUAM7PESQeGaJ2ysbHB2dmZixcvcuNG6pZFPz8/AOrVq/fS9xIiL5DkTIgC6HbERR7evE6Nlv9t1/Tw+UP2Xd1H76q9Zc9DE/KsZ8/2D9zo08ABa/PEj2hrczP6NHBg+wdueNazN/g9w8LCUi1dsWzZMsLCwujatSulSpXSHy9Tpgw9e/Zk9+7dLFmyhJIlS9KzZ89UdRYvXhyAa9euGSTGwYMHEx8fzxdffIGi/LfcyD///MPq1auxtbVNMw4h8iMZcyZEARQa4Ethu2I41v6vRWTHpR0oKHSv3N2EkQn4rwXt625VUWkssNKYoc6ku/NldOzYkQ8//BAfHx9q1arFuXPn2LFjByVLluSHH35IVf69995j06ZN3L59m08++QQLC4tUZZo3b461tTULFizg4cOH+gRv0qRJOYrx888/Z9euXfz666+Ehobi7u7OgwcP2LhxI1qtlmXLlqVaRkOI/EpazoQoYHQJCZw/eIDqru6o/9/1pCgKW8K30NaxLcWtips4QpFErVJRyEKTq4kZQLNmzdi3bx9RUVEsXLgQPz8/evbsyaFDh9IcS9a6dWscHR0B0l3MtXjx4mzevBkXFxeWLVvG5MmTmTx5co5jtLKyYv/+/UyePJno6GgWLVrE1q1bcXd3x8/Pj9dffz3HdQuR1xg1OVMUBS8vL15//XWcnJwoXLgwhQsXxsnJiddffx0vL69U4x6EEIZ15Z+TPIt6lKJL8/Td01yKukTvqr1NGJkwJTc3N/z8/Hjy5AlRUVFs2bJFv5bZi27dusXNmzdp2bIl1atXT7fOLl26cOTIEZ49e4aiKCm6I/38/FL8O7nVq1ejKAqVKlVKcbxw4cJ8/fXXXLhwgUePHvHw4UN8fHxwc0u9dMnUqVNRFAUPD49U54YMGYKiKBkujiuEKRmtW/Pq1av069ePo0ePAqT4obxy5QpXr15ly5YtNGzYkE2bNlGxYkVjhSZEgRIS4EsJB0dKV/qvRcQr3Av7IvY0K9csgyuFSLRgwQK0Wi3vv/++qUMR4pVklOQsKioKd3d3rl69iqIotGjRgjZt2mBvnziw9caNG/j6+hIUFMSxY8do3bo1J0+e1E/fFkIYRlzMMy4eDaZZ7zf0g/6fxD1hT+QehtcejlolIx1E2qKioliyZAlXrlxh+fLl1KxZk379+pk6LCFeSUZJzmbOnMmVK1coXrw4GzdupG3btmmW8/X15fXXX+fKlSvMmjWLb775xhjhCVFgXDwajDYulhpuHvpjPpd9iE2IpWeVniaLS+R9Dx8+5IsvvsDKygo3NzeWLl2qXy5DCGFYRknOtm7dikqlYunSpekmZpA4yHTp0qX069cPLy8vSc6EMLCQAF8catTGplRp/TGvcC9a2rekTOG0V18Xry4PD490x329qFKlSlkuK4R4OUbpw7h+/ToWFhb07p35YONevXphaWmZ5kKDQoice/LwAVfPnKZGSw/9sdD7oYTcD6FP1T6mC0wIIUQKRmk5K1asGDExMak21k2LmZkZVlZWWFtbGyEyIQqO80H+qM3UuDT7b2abV7gXpaxL0dKhpQkjE0IIkZxRWs5atGhBdHQ0YWFhmZYNCwsjKioqzanRQoicCw3ww7lhE6wKFwEgRhuDT4QPnlU80ahlPeqCKDIyEpVKlWJJiSFDhqBSqYiMjDRZXEIUdEZJziZMmIC5uTmjRo0iNjY23XJxcXGMGjUKc3NzJkyYYIzQhCgQ7l27wp3ISynWNtt7ZS+P4x/Tu4qsbZZnKTqIewomXv/Rz88PlUrF1KlTTRqHEAWFUZKzRo0a8ccff3D8+HHq1avHqlWriIyMJD4+nvj4eCIjI1m1ahX169fnxIkTbN68mQYNGhgjNCEKhNBAP6wKF8GpXiP9sc1hm2latikVbCqYMDKRpltnYOt7WH1fGWaVh9n2sPW9xOMGZG9vT2hoKLNnz9Yfmz17NqGhofqljoQQxmeUvozk062jo6PT3e4jSXqb16pUKrRarSFDE+KVp+h0hAb64dLcDY25OQCXoy5z4s4Jvm31rYmjE6mc2QxbR4JOi37TpvhncHo9nNkEvX6G1/oa5Fbm5uapVvgvV64c5cqVM0j9QoicMUrLWdK2HYb4EkJkz43zITy+dzdFl+aW8C3YWtrSxrGNCSMTqdw6o0/M0qTTJp43UAtaVsacTZ06ldatE793pk2bhkql0n/JuDQhcodRWs58fX2NcRshRBpCAn2xKVUGe5caAMQnxLP90na6O3fH0szSxNGJFA79lH5ilkSnhUOLodcSo4Tk4eFBZGQka9aswd3dPcVelXZ2dkaJQYiCxijJmbu7uzFuI4R4gTYujrBDgdTv1A3V/5ey8b3my4PnD2Rts9wS9wzuZT4zPRVFB+e2Zq3suS3Q5B3IyXZbJV3AolCWiyclY2vWrMHDw0MmBQhhBDJ/XohXWMTJo8Q+e0r1ZNs1bQnfQt1SdalSrIrpAnuV3QuDX3L5D1Ltc1jWOvNyaXnXH8rXM2g4QgjDkuRMiFdYaIAvZZyrUsI+cUbmjSc3OHjzINNaTDNxZK+wki6JCVB2KTpY1Tkx8cqMxgqG/pnzljMhRJ5mlOTswIEDObquVatWBo5EiIIj5sljIk4cw33gUP0x74veFDIvRMdKHU0Y2SvOolDOW6Zq9UqclZlpud5gL8sNCfGqMkpy5uHhgUqlyrxgMrJshhAvJ+xQIIqio1qLxD9yEnQJbA3fSmenzhQyz/qYI2FEzUcnLpeR0aQAtQaajzJeTEIIozPKUhqQ/eU0dCZeEVuI/C400JeKdepT2K4YAEE3g7j97DZ9qxpmjSyRC8q+lriOWXrbaak1iefLvmbUsJLWqkxISDDqfYUoqIySnOl0ugy/Hj16xJ49e3B3d6dEiRL4+/tLcibES4i6c4sb50OomWwigFeYF9WKVaNmiZqmC0xk7rW+8K4f1H0Txdw68Zh5Iaj7ZuJxAy1Amx3FixcH4Nq1a0a/txAFUZ6YEGBjY0P79u1p164dPXv2pEePHpw4cQInJydThyZEvhQa4Ie5pRVVGjcH4F7MPfyv+/N548+zPcRAmEDZ16DXEp53/A5rDaCxBrXROjpSqV69OuXLl2fDhg1YWlri4OCASqVizJgx2NramiwuIV5VpvtpT4NKpeLbb78lKiqK6dOnmzocIfIlRVEICfSjapPmmFtZAYkTATRqDV2du5o4OpEtKjVYFDZpYgaJ3ZpbtmyhWbNmrF+/nq+++orJkyfz8OFDk8YlxKsqTyVnANWqVcPGxoa///7b1KEIkS/djrjIw5vX9ds1KYrClvAttK/YHltLaeUQ/3n+PHHZDkvL/3aKWL16NYqiUKlSpRRlmzZtip+fH9HR0fqxwS+WEUIYRp5LzuLj44mJieHu3bumDkWIfCk0wJfCdsVwrF0XgGO3j3Ht8TXZEUCkcvHiRQAcHBxMHIkQIrk8MeYsOW9vb+Lj4+XDQogc0CUkcP7gAWq4uaP+/wy7zWGbqWRTiYZlGpo4OpFXhIWFsXLlStatW4darcbT09PUIQkhkskTLWdxcXFcunSJb7/9lnfeeQeVSkXnzp1NHZYQ+c6VM6d4FvWIGm6JXZpRsVHsvbKX3lV7y0QAoRcSEsIPP/xAsWLF8PLyok6dOqYOSQiRjFFazpLWyMkKRVGwt7dnypQpuRiREK+mkAP7KeHgSGmnygDsjNiJTtHRvXJ3E0cm8pKePXsSExNj6jCEEOkwSstZVheetbKyYuDAgQQHB1O+fHljhCbEKyMu5hkXjwZTwy1xRw5FUdgctpnWjq0paV3S1OEJIYTIIqO0nPn6+mYchEZDsWLFcHFxQaPJc8PghMgXLh4NRhsXS43/Lzx75t4ZLj66yCeNPjFtYEIIIbLFKC1n7u7uGX65urpSs2ZNScyEeAkhAb441KiNTanSAGwJ30K5wuVoXq65iSMTeVVkZCQqlYohQ4bojw0ZMgSVSkVkZKTJ4jKltJ4JGOa5pFe3EC/KExMChBAv58nDB1w9c5oaLT0AeBr/FJ/LPvSq0gszddbHfIq8RafoeBb/DJ1i2u3s/Pz8UKlUTJ061aRxCFFQSFOVEK+ACwcPoDZT49LUDYDdl3fzXPucXlV7mTgykRMXHlxgbcha/or8i+cJz7HWWNO+YnsG1RxEteLVDHYfe3t7QkNDU2zBNHv2bCZMmIC9vb3B7iOEyB6DJ2dr1641WF2DBg0yWF1CvMpCAnxxbtAEqyJFAPAK98LV3pWyhcuaODKRXT4RPkwMnIhW0eqPxWhj2H5pOz4RPsx0m0kX5y4GuZe5uTnVq1dPcaxcuXKUK1fOIPULIXLG4MlZUr/8y1KpVJKcCZEF969f5c7lSzTr0x9IbHU5c+8MCzwWmDYwkW0XHlxIlZglp1W0TAycSGW7ygZpQYuMjMTJyYnBgwezevVqIPEzfM2aNVy+fJlKlSoxdepUpk2bBsC0adP0rwF9mYwkXe/r68ulS5dYsGAB4eHhlChRgn79+vH1119TtGjRFNesXLmSbdu2cfr0aW7dukWhQoVo3LgxEyZMoHXr1inK+vn50bp1a6ZMmUKHDh2YOnUqR44cISoqCkVRsl1fThw4cIC5c+dy6NAhHj9+jKOjI2+88QZffvklhQoVeun6RcFj8OTM0dEx3eTs7t27PHv2LPHGGg0lSpQA4P79+2i1iR9GhQsXpmRJmfYvRFaFBPhiVbgITvUaAYkTAYpbFadVhVYmjkxk19qQtekmZkm0ipa1IWuZ6TbTKDF5eHgQGRnJmjVrcHd3x8PDQ3/Ozs4uy/XMnz+fffv28cYbb9C1a1f27t3LggULCA4O5sCBA5ibm+vLjh49mrp169KuXTtKlSrFjRs38Pb2pl27dmzZsiXNHQ0OHjzIrFmzaN26Ne+++y5Xr159qfqyasmSJYwePRo7Ozu6d+9O6dKlOXbsGDNnzsTX1xdfX18sLCxyXL8omAyenKU3k2Xp0qWMHTsWNzc3Jk+eTKtWrfSb7cbFxeHv78+MGTM4fPgw48eP57333jN0aEK8chSdjtBAP1yau6ExN+e59jk7InbQ16Uv5mrzzCsQBhejjeFy1OVsX6dTdOyJ3JOlsnsi9zCg+gDUquzP6XKydcJaY53l8knJ2Jo1a/Dw8MjxpIA9e/Zw9OhR/W4EiqIwcOBA1q1bx8KFC/nkk/+WfAkJCcHJySnF9f/++y+NGjXis88+SzOZ+vvvv1m5ciVDhw5NdS4n9WVFSEgIH374IXXq1GHfvn36BgeAOXPm8MUXX7Bo0aIU702IrDDKhID9+/fzwQcf0LNnT/744w/U6pQfKBYWFrRv35527drRr18/PvjgA6pXr57iLzQhRGo3zofw+N5darRM7JrZd3Ufj+MeyybnJnQ56jJv7HwjV+8RmxDLgF0DcnTtxm4bqVmipoEjytygQYNSbBOlUqmYNWsWGzduZPXq1SkSmBcTKUgcC9enTx8WLVrElStXKF26dIrzDRo0SDMxy2p9FStWzPZ7+vnnn9FqtSxatChFYgbw+eefM3/+fNavXy/Jmcg2oyRn8+bNQ1EUvv/++1SJWXIqlYp58+bh5eXFd999J8mZEJkICfTFplQZ7F1qAIkTARqVaURFm+z/ohGG4WTrxMZuG7N9nU7RMWT3EGITYjMta2lmyepOq3PccmZIp06dwtvbO8WxSpUqpVrLq2XLlqmurVixIhUqVODcuXPExcXpu/8iIiKYPXs2+/fv58aNG8TGpnwmN2/eTJWcNW7cON0Ys1JfTpKz4OBgILFVcN++fanOm5ubc/78+WzXK4RRkrNjx45hZ2dHhQoVMi3r6OiInZ0dR48eNUJkQuRf2rg4wg4FUq9jN1RqNVeir3D01lFmt5xt6tAKNGuNdY5bpjpW6sj2S9uzVK52ydo5uoehnTp1KsUkAUhcePzF5KxMmTJpXl+mTBkiIyN5/PgxJUqU4OLFizRp0oTo6Ghat25N9+7dsbGxQa1W4+fnh7+/f6rkKqP6c1pfVjx48ACAmTONM/5PFBxGSc4eP35MQkJCir+M0hMXF8fTp0+ztVm6EAXR5ZPHiH32VL/w7JbwLRS1KEo7x3amDUzk2KCag/CJ8MlwUoBGpWFQzbwzk33IkCFZWvH+9u3b6R5XqVT6GZvff/89Dx8+5Ndff2XgwIEpyr733nv4+/unWU96E9FyWl9W2NjYABAdHZ1qxqkQL8MoOwQ4OTmh1WqztAba2rVriY+PT3OMgBDiPyEB+ynjXJUS9hWI18Wz7eI2ujt3x0pjZerQRA5VK16NmW4z0ajS/rtZo9Iw022mQReizYqkP5YTEhJyXEdAQECqY1euXOHatWvUqlVL/4f7pUuXAFIN0lcUhaCgoGzf19D1Jde0aVPgv+5NIQzFKMnZgAEDUBSFDz/8kDVr1qRbbu3atXz44YeoVCoGDMjZYFchCoKYJ4+JOHGMmv9vNTtw7QD3n9+nd9Xepg1MvLQuzl3Y0G0DPSr3wMosMdG21ljTo3IPNnTbYLAFaLOjePHiAFy7di3Hdaxdu5Z//vlH/29FUfjyyy9JSEhI0fKWNPYrMDAwxfVz5szh7Nmz2b6voetLbtSoUWg0GsaMGZNi6Y4kjx494uTJky91D1EwGaVb89NPP2XLli2cOnWKYcOGMWXKFDw8PPTbg9y4cQN/f3+uXr2KoijUq1ePTz/91BihCZEvhR0KRFF0VGuRuJaZV7gXr5V8zegtKiJ3JLWgfdngS1TmKqw0Vjka/G8o1atXp3z58mzYsAFLS0scHBxQqVSMGTMmxdZPGenYsSPNmzenf//+lCpVin379nHs2DGaNWvGmDFj9OXee+89Vq1aRZ8+fejXrx8lSpQgODiYEydO0LVrV3bt2pWt2A1dX3K1a9dm8eLFvP/++1SrVo0uXbpQuXJlHj9+TEREBP7+/gwZMoSlS5fm+B6iYDJKcmZlZcW+ffsYPnw43t7eXL16lV9//TVFmaSVnHv06MHKlSuxspKuGSHSExroS8U69SlsV4xbT28RdDOIyc0mmzosYWBqlRpr86yvSZZbzMzM2LJlC+PHj2f9+vU8fvwYgIEDB2Y5ORs3bhw9evRgwYIFXLx4keLFizN27FimT5+eYixy/fr1+euvv5g0aRJbtmzBzMyMFi1aEBQUxPbt27OdTBm6vhe988471KtXj/nz53PgwAF27NiBra0tjo6OfPzxxwwePPil6hcFk9E2Pi9WrBhbtmzh6NGjbNiwgWPHjnHnzh0ASpcuTaNGjXjjjTdo0qSJsUISIl+KunOLG+dD6PJB4tpJWy9uxdLMks5OnU0cmchvnj9/DqBfEBxg9erV+q2ckmvatCl+fn4vdb8RI0YwYsSITMt5eHik6oaExLXMkhbBjYmJ0ZdN+uP+ZepLUqlSpTTrS++5QOIyHuvXr88whozqFuJFRkvOkjRu3DjD9WiEEBkLDfTH3NKKKo2bk6BLYGv4Vjo7daaweWFThybymYsXLwLg4OBg4kiEEMkZPTkTQuScoiiEBvhSpUlzzK2sCLoRxL9P/5UdAUS2hIWFsXLlStatW4darX6pvSWFEIZn9BGmOp2Oo0ePsnnz5iwtrSGE+M/tiIs8uHmdmv/frskr3IsqdlV4reRrJo5M5CchISH88MMPFCtWDC8vrxTbKgkhTM+oydmiRYsoV64czZo144033ki1D9rDhw+pXbs21atXT3fBwpw6duwYX3/9NR06dMDBwQFLS0uKFCmCi4sLQ4cOTXM8Qkb+/PNPevXqpa/LwcGBXr168eeff2a5Dq1Wy9KlS2nZsiWlSpXC2tqaypUrM3LkSM6dO5fdtygKgNAAXwrbFcOxdl3ux9zH96ovfV36prsApxBp6dmzJzExMZw+fZqePXvm6r2mTp2KoiiyHZ8Q2WC0bs3Ro0ezdOlSFEXBxsaGJ0+epBoYWaxYMRo0aMDvv//Opk2b+OCDDwxy71atWqW5AGJcXBzh4eGEh4ezevVqBg0axLJlyzLcxUCn0/Huu++yYsWKFMdv3LjBjRs38Pb2ZsSIEfz8888Z7iN67949unTpkmqbqoiICH755RfWrFnDjz/+mKXBs6Jg0CUkcP7gAWq4uaM2M2PHpR2oVWq6OXczdWhCCCEMyCgtZ7t372bJkiUUKVKErVu38ujRI0qVKpVm2TfffBNFUdi7d6/B7n/z5k0Aypcvz9ixY9m8eTNHjhzh0KFDzJ8/X7/e2tq1azPdhmTixIn6xKx+/fqsX7+eI0eOsH79eurXrw/A8uXLmTRpUrp1JCQk0KtXL31i1rt3b/78808OHz7MwoULKV26NLGxsYwcOTJbLXHi1XblzCmeRT2ihltrFEXBK9yLthXbYmuZtaUMhBBC5BOKEXh6eipqtVpZsGCB/ljZsmUVtVqdquyjR48UlUqlODs7G+z+Xbt2VTZu3Khotdo0z9+9e1dxcXFRAAVQ/P390yx34cIFRaPRKIDSqFEj5dmzZynOP336VGnUqJECKBqNRgkPD0+znhUrVujvNWrUqFTnw8PDFRsbGwVQqlSposTHx2fzHWfu7Nmz+hgA5ezZswar+8yZMwar61Xyss9l18K5ysqP31N0Op1y7NYxpfbq2srhm4cNFJ1p5afvmbCwMCUkJEQJCwvL9Xu9+BljaJcvX1YAZfDgwfpjgwcPVgDl8uXLuXrvl5X0bNJ6DwVZbn/P5GdZfTZZ+RnPzd+hiqIoRmk5O3z4MADDhg3LtKytrS02NjbcunXLYPffuXMn/fr1S3cz9ZIlSzJv3jz9vzdv3pxmuQULFqDVJm5IvGjRIqytUy4OWahQIRYtWgQkjif7/vvv06znu+++AxK3RJk7d26q81WqVOGLL74AEqe6b926NaO3JwqAuOcxhB89RM2WrVGpVHiFeVGhaAUalW1k6tBELlJ0OnTPnqHodCaNw8/PD5VKlWpNMCFE7jBKcvbgwQNsbW0pWrRolsqr1Wp0Rv4wat26tf510ka5ySmKwrZt24DErUyaNWuWZj3NmjWjWrXELXS2bduWalxdWFgYoaGhAPTr149ChQqlWU/y7lVJzsTFI4fQxsZS3dWd6Lho/rryF72r9jbplj4i9zw/f56b4ydw1dWNCw0acqFhI26On8Dz8+cNeh97e3tCQ0OZPXu2/tjs2bMJDQ3VD/cQQhifUT7ZbWxsiI6OJj4+PtOyDx48ICoqipIlSxohsv/ExsbqX6fVwnb58mX92DV3d/cM60o6f+PGDSIjI1OcSz4rNKN6ypYti4uLCwBBQUEZBy9eeSEBvjjUqI1t6TLsitiFVqfFs7KsTfUqitq5i8t9Xydq2zaU/6/gr8TEELVtW+LxnS+33VBy5ubmVK9enXLlyumPlStXjurVq2Nubm6w+wghsscoydlrr72Goij67s2MrF+/HkVRaNTIuN01/v7++tc1atRIdT4kJET/unr16hnWlfx8UivZy9Rz7do1nj59mmHZF12/fj3DL0N2G4vc9eThA66eOU2Nlonb1HiFeeHu4E6pQmlPqhH51/Pz57k5YQL8f/hEKlotNycYrgUtMjISlUqVoqV+yJAhqFQq/R+WU6dO1fcsTJs2DZVKpf968Y/PtEydOhWVSoWfnx/r1q2jXr16WFtbU65cOcaOHavfhulFq1atomnTphQpUoQiRYrQtGnTdLdPSs+VK1cYPnw49vb2WFhY4ODgwPDhw7l69epLl/fw8EClUvH8+XMmTJiAo6MjVlZW1KhRg0WLFqXqNdHpdCxfvpwmTZpQvHhxrK2tcXBwoHv37i+9LZZ49RhlKY2+ffvi5+fH1KlT+euvv9JdYuL06dNMmjQJlUrFgAEDjBEakPhDM2fOHP2/+/Xrl6rM9evX9a8z2+qkQoUK+tfXrl176XoUReH69ev67tKsSB6DyN8uHDyA2kyNS1M3Qu6HcOHhBT5s8KGpwxK54MGq1eknZkm0Wh6sXkP5ObMzLmcgHh4eREZGsmbNGtzd3VOsV2ZnZ5flen788Ud2796Np6cnbdq0Yffu3SxcuJB79+7x+++/pyj74YcfsmjRIuzt7Rk+fDgAXl5eDB06lJMnT/LDDz9ker+wsDDc3Ny4e/cu3bt3p1atWpw9e5aVK1eyY8cOAgMD9b0TOSmfpF+/fpw8eZI+ffro4/zwww+JjIxMMZb5iy++4Ntvv6Vy5cq8+eabFC1alBs3bhAYGMjevXtlHTiRglGSs3feeYfFixfj6+tL+/bt+fjjj0lISAAgPDycyMhIduzYwYoVK4iJiaF58+a8/vrrxggNgO+//54jR44AictaNGzYMFWZx48f618XKVIkw/oKF/5vj8MnT57kSj2GFh4ebrANee/du8fZs2cNUterJKfP5cRff1KiSjUuRkay/MpyipsXx+6hHWcfvTrPOD99z8THx6NWq1Gr1Wm2+uhiYojPQovSixSdjujdu7NUNvrPP7Hu2wdVBmsppse8UiXU/5/MlLTxeUJCgv69JH02P3/+nJiYGJo2bUpsbCxr1qzB1dWV8ePHp6gvvZavJEnDWfbu3UtQUJA+wZk0aRLNmjVjw4YNfP3115QvXx5IHPqxaNEiqlevjq+vL7a2iUvFjB8/Hg8PDxYuXEj37t1p2rQpMTExab4HgHfffZe7d++yaNEifYIH8PPPP/Pxxx8zcuRIfHx8clw+aVz0hQsXOHr0qD7OCRMm4O7uzvfff0+vXr30v0+WL19OuXLlOHz4cKqxxg8ePMj0OWaVVqs1WF2vmqw+G51OR1xcHM+fP0/3cylpX9rcYpTkzNzcnF27dtGpUyd8fX1TNOEm79pTFIXXXnsNLy8vo6147u/vz4QJEwAoXbo0S5YsSbNc0gcAkOEitQCWlpb61y9+Ixiqnsy82GL3ogsXLtCuXTv9v6tWrUqtWrWydY/0nD17ltq1axukrldJTp7L/etXib51A4+3BmNfzZngf4IZWGMgdV57tbbbyU/fM+Hh4Wi1WtRqdaoZ2wAxERH8++ZbuRqDEhvLrYFv5+jaSl6bsf7/z7qVlRWQOM426b0kjbm1srLSH0v6LDI3N0/zPWckaeza2LFjqVu3rv64tbU1b775JtOmTSMkJITKlSsDsGHDBiCxC7Vs2bIpyk+dOpW33nqL9evX4+rqirW1dZrv4erVq/j7+1OzZk1Gjx6d4vfJhx9+yM8//4yfnx/37t2jQoUK2S4P6HuAvvrqq1RxTp48mbfffpuNGzfi5uamP5e0M03yz3bAoJMvYmJisv1/VFBk9dmo1WosLCzQaDRUrVo1zTK5naMYbYeAihUrcvz4cebNm8fKlSu5cuVKivP29va88847fPLJJylajHLTuXPn6NWrF1qtFisrKzZt2kTp0qXTLJv0AQCJOwtkJPnkghe/EV6sJ/m/s1NPZjLrMo2KispWfcI0QgP9sCxcGKf6jdkRuZNn8c/oVbWXqcMSGbB0dqaSV9rL8WRE0em4OvBtlGQ/9+lRWVri+NuvOWo5s3R2zvY1GTl16hTe3t4pjlWqVCnVgt5p9UgkfU49evRIf+zkyZMAaXbzJY19O3XqVKYxQeKkqxd/iarValq1asX58+c5deoUFSpUyHb55Fq2bJnq/knHkt4LQP/+/Vm8eDG1a9emf//+tG7dmubNm0siJdJktOQMEtcBmzx5MpMnT+bmzZvcvHmThIQEypYtS8WKFY0ZCpcvX6ZDhw48fPgQMzMzNmzYQKtWrdItn3wZkMy6GJMP3n+x6/LFejJKzjKqR7z6FJ2OkABfqjVricbcHK9wL5qXb459EVniIC9TW1vrW6ayy6ZTJ6L+v2RPhuU6d6bQa3ljs/tTp04xbdq0FMfc3d1TJWc2NjaprtVoEn8FJXWlAkRHR6NWq9PcRaZMmTKoVCqio6MzjCnpfJkyZdI8nzQ7Nalcdsu/GFN6x5L/EfzDDz/g5OTEqlWrmDFjBjNmzMDKyop+/foxb948o69QIPI2ky2SVL58eRo1akTTpk2NnpjdvHmTdu3acfPmTVQqFStXrsTTM+NlCZK3RCUf1J+W5F2KL/6VlZN6VCpVpi1h4tVz43wIj+/dpUar1lx8eJHTd0/Tp2ofU4clclHxoUNAk8nfzBoNxYcMNko8WTFkyBAURUnx9TKzD21sbNDpdNy9ezfVuTt37uj3Z86sDoDbt2+neT5ptnpSueyWTy6ta5KOJY1Dg8RE9NNPP+XcuXPcuHGDdevW0bJlS9auXctbb+VuN7jIfwrcCpb37t2jffv2REREAIkr/Q8aNCjT62rWrKl/fT6TaezJz7+4LEdO6qlQoYLRunpF3hES6ItNqTLYu9TAK9yLYpbFaF2hdeYXinzLqnp1ys+Zk36CptFQfs4crDJZhsfQksahJW/hyi1JexSnleAlHatXr16GdSSdP3DgQKqJToqicODAgRTlsls+uYCAgHSPJb2XF5UvX54BAwawe/duqlSpwt69e2UQv0jBqMnZ9evXGTduHLVq1aJIkSL6Ju0kDx8+ZNasWcyePVu/TZIhRUVF0bFjR/1aY3PmzGH06NFZutbJyUk/myj5mmhpSfpBtre3p1KlSinOJR8cmlE9t27dIiwsDABXV9csxSheHdq4OMIOBVLDzYN4RcuOiB30qNwDczNZGPRVZ9utK06bN2Hbsyeq/w97UFlbY9uzZ+Lxbl2NHlPx4sWBzCcaGcLgwYmtgtOmTUvRjRgVFaXvPk0qkx5HR0dat27NuXPnWLlyZYpzv/zyC6GhobRp00bfs5Hd8slNnz49RfdlVFQUM2bMQKVS6eOMjY3l4MGDqa59+vQpT548wdzcPN0lpkTBZLQxZ3///Tf9+vUjOjpa/5fJiwMvixUrhre3N8ePH6dWrVr06NHDYPd/9uwZXbt25cSJEwBMnDgx1ZTwjKhUKjw9PVmyZAnnz58nODg4zS2cgoOD9S1enp6eqd6ji4sLNWrUIDQ0lD/++IN58+aluYVT8sUWe/WSAeAFzeWTx4h99pQabh7sv7qfqNgoerv0NnVYwkgSW9BmYzd5ElYqFSorqxwN/jeU6tWrU758eTZs2IClpSUODg6oVCrGjBmTouvOEFq1asWYMWNYtGgRtWvXpk+fPomLL3t5cf36dT788ENatWqVaUvTkiVLcHNz45133mHHjh3UrFmTc+fOsX37dkqVKpVqZn52yydxcXHRxwno4xw3bpx+MfWYmBhcXV1xcXGhYcOGODo68uTJE3bu3MmtW7f49NNPU83gFAWcQbdRT8fVq1cVGxsbRaVSKZ6enoqXl5dSvHhxRa1Wpyq7ZMkSRaVSKe+++67B7h8bG6t06NBBv3v82LFjc1TPhQsXFDMzMwVQGjVqlGqH+2fPnimNGjVSAEWj0aS7o/2KFSv0sYwePTrV+YsXLyo2NjYKoFSpUkWJj4/PUbwZOXv2rD4GQDl79qzB6j5z5ozB6nqVZOe5eM+dofw6YayiKIoyfM9wZZDPoFyKKm/IT98zYWFhSkhISLo/34b04meMoV2+fFkBlMGDB+uPDR48WAGUy5cvpygbHBysuLu7K0WLFtV/brxYJi1TpkxRAMXX1zfVuVWrVimAsmrVqlTnVq5cqTRu3FgpVKiQUqhQIaVx48bKypUr9eeTnk1a7yFJZGSkMnToUKVcuXKKRqNRypUrpwwdOlSJjIxMM9bslHd3d1cAJSYmRvn888+VChUqKBYWFkq1atWUhQsXKjqdTl82Li5O+eabb5QOHTooDg4OioWFhVKmTBmlVatWyrp161KUfVm5/T2Tn2X12WTlZzw3f4cqSuLgzVw3duxYRaVSKW+88Yb+WNmyZdNMziIiIhSVSqXUr1/fYPfv3bu3/gG2adNG+eeff5QzZ86k+3XhwoV065owYYK+rvr16ysbNmxQjh49qmzYsEGpX7++/twXX3yRbh1arVZxdXXVl+3Tp4+ye/du5fDhw8qiRYuU0qVLK4CiVqsVHx8fgz2H5CQ5M76sPpdnj6OV79/0VI7t9FauRl9Vaq+urWy7uC2XozOt/PQ98yolZ6GhoQpg0D+GjcXUSUhScpbXmPq55GX5KTkzSrfmnj17UKlUTJ8+PdOyTk5OWFpacvnyZYPdf8uWLfrX+/fvp06djBfwrFixYrp7xs2cOZM7d+6wcuVKTp48Sf/+/VOVGT58ODNmzEi3fjMzM7y9venSpQtHjx7Fy8sLLy+vFGUsLS358ccf6dy5c4axildP2KFAdAk6qru2YkX4rxQ1L0r7iu1NHZZ4BSWtci6zwYXIW4wyiOHq1atYW1unu9Lui4oUKZLtjb6NRa1Ws2LFCnbt2oWnpyfly5fHwsKC8uXL4+npiY+PD8uXL890cGfJkiU5ePAgixcvxs3NjRIlSmBlZYWzszPvvPMOx48fZ8SIEUZ6VyIvCQ30pWLd+ljaFMX7ojddnLtgrZGFKoXhhIWFMWHCBEaNGoVarc50KSEhhHEZpeVMrVZneQq2VqslOjo603VsskMx0J6RyXXp0oUuXbq8VB0ajYb333+f999/30BRifwu6s4tbpwPocsHnxBwPYC7MXdlbTNhcCEhIfzwww+4uLiwcOHCTHsThBDGZZTkrGLFioSGhnL16lUcHR0zLHvgwAHi4+Oz3MomxKskNNAfc0srqjRuzuKgz6hZoiY1StTI/EIhsqFnz56yrtZLepmFdoXIjFG6NZM22F66dGmG5eLj45k4cSIqlUrGWokCR1EUQgN8qdKkOQ8Sojhw44C0mgkhRAFklOTs448/xsLCgnnz5rFixYo0y5w4cYJ27dpx+PBhihYtyqhRo4wRmhB5xp3Ll3hw8zo13TzYdmkblmaWdHF6ua5zIYQQ+Y9RkrOKFSuyfPlyEhISePfddylTpgwPHz4EoEWLFtjb29O4cWMCAgLQaDSsXbtWNoEVBU5IgC+FbO1wqF2HLeFb6FCxA0UsZMN78Wry8PBItUh3QSbPQyRntCWn33rrLf78808qV67M3bt3iYuLQ1EUgoOD+ffff1EUhSpVqrB7926D7gwgRH6gS0jgfJA/1V3dOXrnGDee3KCvS19ThyVMTNEpxMcmoOgMP6kpt61evRqVSpVitxMhRNYYbfsmgPbt23PhwgUOHDhAUFAQN2/eJCEhgbJly+Lq6krr1q31G+wKUZBcOXOKZ1GPqNmyNXPDl+Js60zdUnVNHZYwkXvXH3Nq7zUunbiDNk6HxkJN5QalqdeuAiUdipo6PCFELjNqcgaJe1S6u7vj7u5u7FsLkWeFBvhS3L4C5uWKsy9oHx83+Fi6OAqosKO32LcqFF2y1jJtnI4LwbcIP3KbtkNr4NK4rAkjFELkNtPtpCuEACDueQzhRw9Rs2VrdkbsBKB75e4mjkqYwr3rj1MlZsnpdAr7VoVy7/pjg9zPz88PlUrF1KlTCQwMxMPDg6JFi2JnZ0efPn30OwjodDoqVqxIiRIliI2NTbOuVq1aodFouH79OkOGDGHo0KEADB06FJVKpf96UXx8PFOnTqVSpUpYWlri4uLC4sWL07zH06dPmTJlCtWrV6dYsWIUL16crl27EhQUlKrs1KlTUalU+Pn5sW7dOurVq4e1tTXlypVj7Nix2VpKJDIyEpVKxZAhQ7h48SK9evWiWLFiFC5cmHbt2nH69Ok0rzt79iz9+vWjdOnSWFpa4uTkxEcffcT9+/ezfG+tVsv8+fOpW7cu1tbW2Nra0rp1a3bs2PHS5ZN3PW/bto0mTZpQqFAhSpUqxbBhw7h9+3aqa06cOEHfvn1xdHTE0tKSUqVK0bhxY2bOnJnl9yQyZ/SWs7i4OP7++2+OHTvGnTt3AChdujSNGjWiffv2WFhYGDskIUzq4tFgtLGxVGvRilmHRtLWsS3FrIqZOixhAqf2Xks3MUui0ymc3nuNtkNqGuy+wcHBzJ49m06dOjFmzBjOnTvH1q1bCQgIIDg4GGdnZ0aMGMFXX32Fl5cXb775ZorrL1y4QEBAAF27dsXBwYGePXvy6NEjtm3bhqenJ/Xq1Uv33gMGDODIkSN07twZMzMz/vjjD0aPHo25uTnvvPOOvtzz589p06YNR44coUGDBnzwwQfcv3+fjRs3smfPHtavX8/rr7+eqv4ff/yR3bt34+npSZs2bdi9ezcLFy7k3r17/P7779l6TpGRkTRr1oxatWoxbNgwLl26xLZt22jdujWhoaGUKVNGXzYwMJCOHTsSFxdH3759qVSpEocOHeKHH35g586dBAcHZzrxTVEU+vbty7Zt23BxcWH06NE8ffqUjRs30qNHD+bPn8/HH3+covybb77Jzp07s1Q+iZeXF3v27KFv3760a9eO4OBgVq1aRUBAAEeOHKFYscTPo1OnTtGiRQvMzMzw9PSkYsWKPHr0iJCQEH755RcmTpyYrecpMmDQnTozsWjRIqVkyZKKWq1O86tkyZLKwoULjRlSgSUbnxtfes9l88zJyvqvPldO3j6p1F5dWzl446CRIzO9/PQ9k9mmyHGxWuXOlehsf92OjFKWfOCr/DhyX6ZfSz7wVW5HRuXoPnGxWn2svr6++s+ApUuXpngfS5cuVQClW7duiqIoyo0bNxSNRqN4eHikes+ffvqpAije3t76Y6tWrVIAZdWqVWk+p6SNw5s2bapERUXpj58/f17RaDRKtWrVUpSfNm2aAihvvfWWotPp9JtYnzhxQrGwsFDs7OyU6OhoffkpU6YogGJra6ucP39ef/zZs2eKi4uLolarlRs3bqQZ24suX76sf05z5sxJcW7SpEkKoMyePVt/LCEhQalcubICKLt3705R/rPPPlMAZdiwYWk+j+TWrFmjAIq7u7sSGxurP37lyhWlZMmSikajUS5dupTj8kn/R2nFOWHCBAVQPvjgA/2xcePGpfp/TnLv3r3UDy6PkY3P0zBixAhWrVql30rJwcEBe3t7AG7cuMH169e5f/8+H330ESdPnmTlypXGCk0Ik3ny8AFX/jlFuxGj+CNsM/ZF7GlarqmpwxIv4dGtZ/wx62iu3iMhXsem2cdydG2/LxtTyjHlpAIXF5cUrVQA77zzDvPmzWPXrl3cvXuX8uXL0717d7y9vbl48SJVqlQBErsl165dS7ly5ejatWu245k9e3aK7fqqVauGq6sr/v7+PH78mKJFE2Nds2YN5ubmzJkzJ0X3aP369Rk8eDDLli3D29ubt99+O0X9Y8eOpVq1avp/W1tbM2DAAKZNm8bx48cpX758lmN1cnLis88+S3Fs+PDhzJgxg6NH//s/DwoK4tKlS3Tu3JmOHTumKP/VV1+xYsUK1q1bx5IlSzLsLVqzZg0A3377bYpyjo6OfPzxx0ycOJHff/+dyZMn56h8knbt2qWKc+LEiSxdupS1a9fyww8/pNgv2to69V6/JUqUSPd9iOwzSnK2fv16fbI1cOBAvvrqK/0PdpJLly4xffp01q5dy5o1a2jXrl2qpnMhXjUXDh5AbaamfMO6/OXzFSNeG4FaJUNB8zO7soXo92XjbF+nKApbvjtBQrwu07Jm5mp6f9ogR5NG7MoWSnXM1dU1xS9fSNwT2dXVlfDwcE6fPk27du0YOXIkW7duZfny5cyZMweA7du3c+fOHb788ks0muz/SmnYsGGqYw4ODgA8evSIokWLEh0dTUREBDVq1NCfS65169YsW7aMU6dOpUrOMqs/ydSpU1OV++ijj7Czs9P/u169eqmeU1p1nTx5Ekhcu+xFRYoUoVGjRvz1119cuHCB1157LVWZ5PUUKlSIJk2apDrXunVrILGrMaflk7Rs2TLNOOvVq4efnx8RERFUqVKFfv36sWDBAnr16sUbb7xB+/btadWqlb6hRRiOUZKzxYsXo1Kp+OCDD/jhhx/SLFO5cmVWr16Nra0tixYtYvHixZKciVdeSIAvzg2asP9OALEJsXhW9jR1SOIlmVuYpWqZyqoqDUtzIfhWpuWqNixN6Yo2mZbLquRjpdI6HhUVBUCHDh1wcnJizZo1zJgxA41Gw/Lly1GpVAwfPjxH907eapYkKclLSEgAIDo6OsM4y5Url6JcdusHmDZtWqpyQ4YMSZGcZbWul4k3uejoaCpUqJDlOqKjo9NMXjO7Z1b//5s2bYqfnx+zZs1i3bp1rFq1CoDGjRvzzTff6BNA8fKM8if6P//8g0ql4quvvsq07FdffYVKpeLMmTNGiEwI07l//Sp3Ll+iRksPvMK9aGXfijKF0/6QFAVDvXYVUKszbg1Tq1XUbZf2L+ycSmtWXvLjtra2QOJSSO+++y63bt1ix44dXLt2jb/++ou2bdvi7Oxs0JiSS0qK0ovz1q1bKcrlhKIoqb4qVaqUo7oMFa+NjY1+4lxW6rCxseHu3bvZvmdW//8hsZXtzz//5OHDh/j6+jJu3DjOnDlD165diYiIyPD9iKwzWv+JnZ1dlvqkS5QogZ2dnazxJF55oYF+WBYuTKxjUULuh9C7am9ThyRMrKRDUdoOrZFugqZWq2g7tIbBF6INCgpCp0vZnarT6Th48CAqlYq6df9bEHno0KGYm5uzfPlyVq5ciU6nSzVeDdAvKJ68RSmnbGxscHZ25uLFi9y4cSPVeT8/P4AMZ4UaU/369YH/4kru6dOnHDt2DGtr6xRj4dKr59mzZxw5ciTVubTec3bLJwkICEh17MmTJ5w6dUr/7F9kbW2Nh4cH8+bN48svvyQmJoa///47w/cjss4oyVm1atWIioriyZMnmZZ98uQJ0dHRmX7TCpGfKTodoYF+VGvWEu/IbZSyLkVLh9TjPkTB49K4LK9/2YjqzcqisUj8iNZYqKneLPF4bixAGxYWxrJly1IcW7ZsGWFhYXTt2pVSpUrpj5cpU4aePXuye/dulixZQsmSJenZs2eqOosXLw7AtWvXDBLj4MGDiY+P54svvtBPLIPEnpmkITFpxWEKrq6uVK5cmT///JO9e/emODdjxgzu37/PgAEDMl06avDgwQB88cUXxMfH649fu3aN+fPno9FoeOutt3JcPsnevXvZs2dPimMzZ87k0aNHDBo0SD/O7tChQzx//jzV9UktbFZWVhm+H5F1RhlzNmzYMEaNGsWiRYv44osvMiz7448/kpCQwLBhw4wRmhAmceNCCNF37+DcogVT/vmA/tX7o1EbfdlBkUeVdChK2yE1af56Jcw1lmjM1agy6e58GR07duTDDz/Ex8eHWrVqce7cOXbs2EHJkiXTHCf83nvvsWnTJm7fvs0nn3ySZpLRvHlzrK2tWbBgAQ8fPtQneJMmTcpRjJ9//jm7du3i119/JTQ0FHd3dx48eMDGjRvRarUsW7ZMP7PT1NRqNatXr6Zjx4506dKF119/nYoVK3Lo0CH8/PyoXLmyfkJFRt5++222bNnCtm3bqFOnDt26ddOvW/bgwQPmzZuXolXr7bffZtOmTezcuTNL5ZN069aN7t2769djCw4OxtfXl8qVK/P111/ry33zzTf4+vrSqlUrnJycsLKy4sSJE+zbtw9nZ2d69eplmAcojLfOWf/+/RUzMzNl6tSpyuPHj1Odf/r0qTJt2jRFo9EoAwYMMFZYBZasc2Z8yZ/Lnp8XKr+MHqp4h3krtVfXVq5GXzVhZKaXn75nsrIGkqFkdV2mnEpa52zKlClKQECA4u7urhQuXFixsbFRevXqpYSHh6d5nU6nUxwdHRVACQ0NTbf+Xbt2KY0bN1asra31nzVJ0lrXK8ngwYMVQLl8+XKK40+ePFEmT56suLi46Nc269y5sxIQEJCqjqR1znx9fVOdy2wNthclrXM2ePDgNM/z/7XFXvTPP/8offv2VUqWLKmYm5srFStWVMaOHavcvXs3Vdn0nkd8fLzy3XffKa+99ppiaWmpFC1aVHF3d1e2bduWZizR0dFZLp/8OXh7e+v/r0qUKKEMGTJE+ffff1OU3717tzJo0CClWrVqStGiRZUiRYooNWvWVL788ss031Nek5/WOVMpSrL24VyS1Aq2detWoqOjsba2plGjRinWOTt27BgxMTEZNk2rVCpWrFiR2+EWCOfOnaN27dr6f589e5ZatWoZpO6zZ8+mqFskSnou2rg4lo58m3odu7LMdh/mZuYs77Dc1OGZVH76ngkPD0er1aLRaKhatWqu3ismJibNNaUMxc/Pj9atWzNlypQ0l5JIz7///oujoyPNmzfnwIEDuRZfRnL72eRX2Xkuq1evZujQoaxatYohQ4bkbmB5QFafTVZ+xnPzdygYqVszaf+upDzw2bNn6f5AP3r0iDVr1qQYU5B0rSRn4lVw+eQxYp89pUi9Kpw4PJe5reaaOiQhsmXBggVotVref/99U4cixCvJKMnZoEGDZPalEP8XEuBLGecq7HtyCDtLO9o4tjF1SEJkKioqiiVLlnDlyhWWL19OzZo16devn6nDEuKVZLSWMyEExDx5zOWTR2kxYBDLLv1A98rdsTDLeMaWEHnBw4cP+eKLL7CyssLNzY2lS5fql8sQQhiWTA8TwggUnQ5tXBxhhwLRJei4W1HFgxMP6F1F1jYTpuPh4UFWhx1XqlQpy2VF/jBkyJACMdYsPzJKchYXF8etW7ewsLCgbNmUa/Q8efKEqVOn8vfff6NWq+nWrRtffvmlDPQUr4Q7kREc3+VN2OEgtLGxqFQqCtkVY/e5HdQtVZcqxapkXokQQogCxSjJ2fLlyxkzZgyDBw/Wb4CepGvXrgQGBur/Ivvnn38ICAjA19dXxqmJfC00yJ/dP81Hl2yFdEVRePrwAY7eCk36yj50QgghUjPKDgFJKw+/uJH59u3bCQgIQKVS8dZbbzFixAjMzc0JCAjg119/NUZoQuSKO5ERqRKz5NSKintbArgTKXvRCdOJjIxEpVKl6NoaMmQIKpWKyMhIk8VlSmk9EzDMc0mv7syEh4fTq1cvypUrh1qtTrEZu/jPq/S9a5TkLDQ0FICGDRumOL5u3TpUKhXjx4/n119/5ZdffmHBggUoisK6deuMEZoQueL4Lu90E7MkuoQETvhsM1JEIj9SdDrinz9HeWHfS2Pz8/NDpVJlay00YRgJCQn07NkTHx8funbtyldffcWECRNy9Z55NckpSN+HRunWvHv3LoUKFaJYsWIpjvv6+gIwYsQI/bG3336bUaNGcfr0aWOEJoTBKTodYYeDslT2QnAgHd8bi0ptlL+TRD6hH6sYHIQ2LhaNpSUuTV1p2LUnpSul3n4np+zt7QkNDcXW1lZ/bPbs2UyYMEG/SLgwrcuXLxMSEsI777zDL7/8YupwhJEYJTl7+vRpqgH+kZGR3L17F0dHR5ycnPTHCxcujJ2dHQ8ePDBGaEIYnDYuDm1sbNbKxsaijYvDXDYMFv+X1lhFbWwsIQf2cz7In06jx1HD1d0g9zI3N6d69eopjpUrV45y5coZpH7x8m7evAlA+fLlTRyJMCaj/LlevHhxnjx5wqNHj/TH9u/fD0CLFi1SlddqtRQpUsQYoQlhcBoLCzSWllkra2mJJo1No0XBlNlYRV1CArt/mm+wsYpZGXM2depUWrdOnLwybdo0VCqV/isr3V5Tp05FpVLh5+fHihUreO2117CyssLe3p6PP/5fe/cd31S5/wH8czKapCtdlAIdbMreIJQ9L0vAhXpRFEVRrwqiOC6XcX+gotdxxesEGQ4QBZGNguxd9oYCxQKWVbqbNsl5fn+kCU2btGmbNin9vF+vvnJ6znPOefLNSfLNc57znInIyMgoss4333yD4cOHo27dutBqtQgJCcHAgQNtZ1sKKniqa9euXRgwYACCgoLsLigrzfbKYtu2bRg2bBjCwsKg0WjQqFEjTJkyBdnZ2eXabt26ddGzpyURLxh762m9s2fPYvLkyWjXrh1CQ0Oh1WrRqlUrvPHGG8jMzCyyvb/++gsvv/wyGjVqBJ1Oh6CgIDRt2hTjx49HWlqabZ8LFy4EANSrV8+2z169etm2Y/3/ypUrePTRRxEWFoaAgAAMGTIEFy5Yjs1Tp05hxIgRCAkJQUBAAB544AFcu3atSJ1cfW1KcxwKIfDJJ58gNjYWGo0GMTExmDFjBmQPdw8ojUppOWvXrh02bNiAefPmYdKkSZBlGfPmzYMkSbZgW924cQOZmZlo2rRpZVSNyO0khQIRbVri8t74EstGtG3JU5pkU5q+in97fmKl1KlXr15ITEzEwoUL0bNnT7sv6dJ0TP/www+xadMmjBo1CkOGDMHGjRvx8ccfY8+ePdi2bRvUarWt7AsvvIDWrVujX79+qFGjBq5cuYIVK1agX79+WL58OYYPH15k+7t27cLbb7+N3r1745lnnsGff/5Zru256vPPP8cLL7yAoKAgDBs2DOHh4YiPj8esWbOwefNmbN68GT5l/AE2YcIEHD58uEjsrY/Lly/HvHnz0Lt3b/Tq1QuyLGPXrl2YPXs2tm7dahfX7OxsxMXFITExEQMGDMDIkSORl5eHixcv4ttvv8Wrr74KvV6PCRMmYMGCBThy5Ahefvll22tct25du7rdvn0b3bp1Q0REBMaMGYOzZ89i9erVOH36NH799Vd0794d7du3x9ixY3HgwAEsW7YMKSkptoYZK1dfm9Ich6+99hq2bt2KoUOHYuDAgVixYgWmT5+OrKwsvPfee2V6LSpbpSRnY8aMwfr16/HGG29g48aNuHHjBg4ePIiAgAA8+OCDdmW3b98OAEzOqEo7US8dAfsEFML5cDCyJHCibnol1ooqgzHXgJQrl0u9npBlnNm9w6Wyp3dtR5sBQ8qU2IfUiYRa4/ppdOuX4MKFC9GrV68yd8besGED9u/fj1atWgGwtG6MHj0aP/zwAz755BNMmjTJVvbkyZN23V0AS6tPhw4d8NprrzlMpn7//Xd88803ePLJJ4ssK8v2XHHy5Em89NJLaNWqFTZt2oTQ0FDbsnfffRdvvvkm5syZY/fcSmPChAnYsmWL09g/9thjeOWVV+ySv5ycHLz//vuYNm0ali5dir///e8AgE2bNuHixYuYMGECPvroI7vtZGZm2pI4a0J45MgRTJgwoUhSZnX06FFMnDgRH374oW3e888/j88//xzdu3fH9OnT8fLLLwOwvNZDhw7F2rVrcfDgQbRr1862jquvTWmOw4MHD+Lo0aO20/P/+te/0KhRI3zxxReYOXNmmZPlylQpydmoUaOwYcMGLFiwwDashlarxRdffFEk4/3xxx8dtqgRVRWykLE+ewciWknocSQMEoomaLIksL31TSRn38B0IUMhsfXsbpFy5TK+e3NChe7DbMzD9/98pUzrjn7nY9SsX/mDHz/++OO2xAywnBp7++238eOPP2LBggV2CUzhL2vA0hfu/vvvx5w5c3Dp0iWEh4fbLW/Xrp3DxMzV7cXExJT6OX355ZcwmUyYM2eOXWIGAJMnT8aHH36IxYsXlzk5K4mzizb+8Y9/YNq0adi4caMtObNyNMB7WboR+fv7Y+bMmXbzHnnkEXz++ecIDQ3FSy+9ZJsvSRIefvhhrF27FkeOHLFLziritfnXv/5l128yLCwMw4cPx8KFC3HmzBm0bNmyVNvzhEq7fdM333yDp556Crt27UJQUBD69u2L+vXtrzrKy8uDXq/H448/jsGDB1dW1YjcymAyIMeUA6NKBwkSroTlIPy2BmqzAkaljEsR2ThRLx23A42AyVLeV+3r6WqTm4TUicTodz4u9XpClrFk+hswG/NKLKtU++Dh6e+WueXMnQ4fPowVK1bYzatbt26Rsby6d+9eZN2YmBhERUXhxIkTyMvLs7VoXLhwAe+88w7++OMPXLlyBbmFLrC5evVqkeSsY8eOTuvoyvbKkpzt2bMHgKVVcNOmTUWWq9VqnD59uthtbNmyBVu2bLGb16ZNG4wYMaLE/QshMH/+fCxYsADHjx9HWlqaXb8q68UEANCjRw/UqlUL7777Lo4cOYKhQ4eiZ8+eaNq0aZkGfG/UqBF8fe0/t6wJUatWrYps07qsYJ2AinltCg/bBQCRkZbjvmDfd29WqffWjIuLQ1xcnNPlPj4+vFSYqjytSgudUod2Z4PwV4gBv3e8DgBQmSWYlAIFG9J0Kh20Kl6peTdRa7Rlbplq0qUbTm77o8RysV27I6Jh4zLtw90OHz6MGTNm2M3r2bNnkeSsZs2aDtevWbMmEhMTkZGRgdDQUCQkJKBTp05IT09H7969MWzYMAQGBkKhUGDLli3YunVrkS/w4rZf1u25wjqqwKxZs8q0PmBJzgrHb8yYMS4lZy+99BI+/fRTREVF4d5777UNUqtWqzFjxgy756XX67Fnzx5MnToVq1atwtq1awEAUVFReOONN/D888+Xqt6BgYFF5qlUqhKXGY1G27yKem2K27+5hD6d3oI3PidyM4WkwJC8DvDP+BNruiTbkjGTquhNo/vH9OcpTbJpP2QETu/cWuxFAQqlEu0Gl70Du7u5evNsR1fqWedLkoSAgAAAwEcffYTbt2/j22+/xejRo+3Kjh8/Hlu3bnW4HWetP2XdniusSUB6erqt/qU1ffr0MvXju379Ov73v/+hVatW2L17t60VKycnB2lpaUUSPgCIjo7GggULIMsyjh49it9++w2ffPIJXnjhBQQHB+ORRx4p03Moq4p8bao6fisQuZlsNqPmoRxcqWHAjWDnv/pUkgqPN3u8EmtG3i68bn387YVXoFAqHS5XKJX42wuvuHUgWlco8+tTnlYH68VeBV26dAlJSUlo3ry57ZTm+fPnAaBIJ30hBHbudG1w54Lcvb2COnfuDODO6c3KdOHCBQgh0K9fvyKnFx3FuiCFQoE2bdpg8uTJWLx4MQDL7RSt3PF6u6K0r01l1csbMDkjcrMT2zYh6/oNdHpwlNMyKkmFWd1moUlIk0qsGVUFTeN64u9vf4TmPftC5WMZL0+l0aB5z774+9sfuW0A2tIICQkBACQlJZV5G4sWLcLRo0dt/wsh8NZbb8FsNtu1vFn7F+3YYX/l6rvvvovjx4+Xer/u3l5Bzz//PFQqFV588UW7oTusUlNTcejQoXLtwxnr89q1a5ddP7PLly/jzTffLFL+xIkTDlsvrfO0BQbCdsfr7YrSvjaVVS9vwNOaRG5kMhqx++fFaNw5DleDZKgkFXpF98LOKzuRY8qBTqVD/5j+eLzZ40zMyKnwuvXxt+cnoseYZ6BWKqHy8fHoeHixsbGoXbs2lixZAo1Gg8jISEiShBdffNHu1k/FGThwILp06YKHH34YNWrUwKZNmxAfH4977rkHL774oq3c+PHjMX/+fNx///146KGHEBoaij179uDgwYMYMmQI1qxZU6q6u3t7BbVo0QKfffYZnnvuOTRp0gSDBw9GgwYNkJGRgQsXLmDr1q144okn8MUXX5R5H85Yr2hctmwZOnTogL59++LatWtYvXo1+vbta2uVsvr999/x2muvIS4uDo0bN0ZoaCguXLiAlStXQqvV4oUXXrCV7dOnD/7zn//gmWeewf333w8/Pz/ExMTgsccec+tzKO1r447jsKpgckbkRsc2rUfmrVtoMWkYZu15Gg/HPozXO70OWcg4ePQg2rVqxz5m5DJJofCKW3splUosX74cr7/+OhYvXmwb1X/06NEufym+8soruPfee/Hxxx8jISEBISEhePnll/F///d/duNOtW3bFr/99humTJmC5cuXQ6lUomvXrti5cydWrlxZ6mTK3dsrbNy4cWjTpg0+/PBDbNu2DatWrYJer0d0dDQmTpyIMWPGlGv7xVmwYAHq1q2LZcuWYc6cOYiOjsaLL76IKVOm4Oeff7YrO3DgQCQmJmLbtm1Yvnw5MjMzUadOHYwaNQqTJ09Gs2bNbGUHDRqE9957D19//TU++OADGI1G9OzZ0+3JWWlfG3cch1WFJIQo2kuZ7nonTpxAixYtbP8fP34czZs3d8u2jx8/brft6sKYa8C8l8ahbut2ONIhD78k/IJ1961DsDYYQPWNiyuqUmzOnTsHk8kElUqFRo0aVei+cnJyHI5L5S6nT59G06ZN8cwzz+DLL7+skH1Mnz4dM2bMwObNm+1GdS+vio5NVcW4OOdqbFx5j1fkdyjAPmdEbnNo/WrkZGSg3qA++PHMj3iy+ZO2xIzIGyUkJAC4MwYUEXkHntYkcoPc7CzsX7kMLfsMwMLLPyLQJxCPNXPvKQAidzl79iy++eYb/PDDD1AoFOW6tyQRuR9bzojc4MCaFTDl5qJGnw5YfWE1nmv9HEf9J6918uRJ/Pe//0VwcDCWLVtmd1slIvI8tpwRlVN2ehriV69A64FD8OWFBYgKiMJ9je/zdLWInBoxYgRycnIqZV9lHWSVqDpjyxlROe1fuQwA4NOlIbZf2Y4X270ItULt4VoREVFVxeSMqBwyU27h8PrVaDf4XvzvzFdoHtocA2IGeLpaRERUhTE5IyqHPb8shcrHB9mtQ3H05lFMbD+R45gREVG58FuEqIzSrl/DsU0b0P7e+zDn1OfoWrsrOtfq7OlqUQWz3t/PZDJVi3v8EVUnZrMZJpMJwJ33uicwOSMqo90/L4bW3x9/NjQjMT0RE9pN8HSVqBL4+fnZppOTk5mgEd0lzGYzkpOTbf8XfK9XNl6tSVQGt64k4eS2PxD32BN46+T/MKjeIDQNberpalElCAwMREpKCgAgPT0d6enpUKkq5qNUlmUoPHhPTW/G2DjGuDhXUmysLWZWnrwlFJMzojLYtfR7+IeG4mjtG0g5noIX275Y8kp0V9DpdKhduzauXr1qm1f4Q91d8vLy7O47SXcwNo4xLs6VJja1a9eG1oP3tWVyRlRK1y6ex9k9O9D9qXGYcGo2Hmz8IKICojxdLapEer0eGo0GaWlpyMrKqrBTmwaDocJa5ao6xsYxxsW5kmKjVCrh5+cHvV7v0cQMYHJGVGq7ln6H4Fq1sT3oLMw3zHi21bOerhJ5gFarrfAP8OPHj1f4zdWrKsbGMcbFuaoUG56YJiqFq2dP4cLB/Wg2bAh+OLMEY5qPQagu1NPVIiKiuwiTM6JS2LHkW4RF18UazX74+/hjTPMxnq4SERHdZZicEbno0rHDSDpxFPWH9MPKC6vwTKtn4Kf23KXWRER0d2JyRuQCIQR2LvkWEQ0bY6l5I2r51cJDjR/ydLWIiOguxOSMyAUXDu7DXwlnEDGwK7Zc3ooX274ItZI3NyciIvdjckZUAiHL2LnkW0Q2a4mFmb8iNiQWg+oN8nS1iIjoLsXkjKgEZ3Zvx40/E+HXpwUO3TiMCe0m8ObmRERUYfgNQ1QM2WzGrp9+QN027TEv5Wd0juiMrrW7erpaRER0F2NyRlSME9s24fZfV2CKi0JCagImtJ8ASZI8XS0iIrqLMTkjcsJkNGL3z4vRoFMXzL3+IwbEDECLsBaerhYREd3lmJwROXFs03pk3rqFW+0DcSP7Bm9uTkRElYLJGZEDRoMBe5b/iIZx3fDNX0twf6P7UVdf19PVIiKiaoDJGZEDhzashiEzExeayzDKRoxvPd7TVSIiomqCyRlRIbnZWdj/689o2KM7vr+6DKObjkYN3xqerhYREVUTTM6IColfvQKmvDwcapACrUqLJ1s86ekqERFRNcLkjKiA7PQ0HFizAnV7dcPyv9ZgXMtxCPAJ8HS1iIioGmFyRlTA/pXLAADbaici3Dcco2JHebhGRERU3TA5I8qXmXILh9evRmTve/Dbjc34R9t/QKPUeLpaRERUzag8XQEib7Hnl6VQ+vhgTchRNBQNMaTeEE9XiYiIqiG2nBEBSLuejGObNqBGr/bYd/sgJrafCKVC6elqERFRNcSWMyIAu39eDK2/P3723412unboXqe7p6tERETVFFvOqNq7dTkJJ7dthl/35jidcQ4T20/kzc2JiMhj2HJG1d6un76Hf2gIfvDZgj41+qBNeBtPV4mIiKqxatNydv36daxevRpTp07FoEGDEBYWBkmSIEkSnnjiiVJvb926dRg5ciQiIyOh0WgQGRmJkSNHYt26dS5vw2Qy4YsvvkD37t1Ro0YN6HQ6NGjQAM8++yxOnDhR6jpR6V27eB5n9+yA1KUe/spNxsvtXvZ0lYiIqJqrNi1nNWvWdMt2ZFnGM888g3nz5tnNv3LlCq5cuYIVK1bg6aefxpdffgmFwnnue/PmTQwePBj79++3m3/hwgV89dVXWLhwIT799FM8/fTTbqk3ObZr6XfQR0TgW8UmjKw/EvWD6nu6SkREVM1Vm5azgqKjozFgwIAyrfvPf/7Tlpi1bdsWixcvxr59+7B48WK0bdsWADB37lxMmTLF6TbMZjNGjhxpS8zuu+8+rFu3Dnv37sUnn3yC8PBw5Obm4tlnny1VSxyVztWzp3Dh4H5kdaqJLDkbz7V+ztNVIiIiqj4tZ1OnTkXHjh3RsWNH1KxZE4mJiahXr16ptnH27Fn85z//AQB06NAB27Ztg06nAwB07NgR9957L3r27In4+Hi8//77GDt2LBo2bFhkOwsXLsSOHTsAAM8//zz+97//2ZZ16tQJgwYNQvv27ZGeno6XXnoJp06dgkpVbV6qSiGEwI7FixAcFYUvxO/4e9O/o6afe1pXiYiIyqPatJzNmDEDQ4cOLdfpzY8//hgmkwkAMGfOHFtiZuXr64s5c+YAsPQn++ijjxxux5rghYSE4P333y+yvGHDhnjzzTcBAAkJCfjll1/KXGdy7M9jR5B08hiS2+qgUqowtsVYT1eJiIgIQDVKzspLCIFff/0VABAbG4t77rnHYbl77rkHTZo0AQD8+uuvEELYLT979ixOnToFAHjooYfg6+vrcDsFL1JgcuZeQgjs+HERQurVxU+mzRjXchz0Gr2nq0VERASAyZnLLl68iKtXrwIAevbsWWxZ6/IrV64gMTHRbpn1dGZJ24mIiEDjxo0BADt37ixLlcmJ8wf2ITnhLBJayAj1DcUjsY94ukpEREQ27MjkopMnT9qmY2Njiy1bcPmpU6fs+raVdjtnz55FUlISsrKy4Ofn53J9L1++XOzy5ORkl7d1NxGyjF0/fouQRvWxwLQZ/+78b2hVWk9Xi4iIyIbJmYsKJjuRkZHFlo2KirJNJyUllXs7QghcvnzZdrrUFQXrQHec2b0dN/5MxKWhoagfUB/DGgzzdJWIiIjsMDlzUUZGhm3a39+/2LIFW7gyMzMrZDvudu7cuSL948rq5s2bOH78uFu25U6ybMbO7+ZDU7c2Nsu7MSlsEk6fPF1p+/fWuHgDxsYxxsU5xsYxxsU5d8YmISHBLdtxhsmZiwwGg23ax8en2LIajcY2nZOTUyHbKUnhFrvCzpw5g379+tn+b9SoEZo3b16qfThz/PhxtGjRwi3bcqdjm39DdspNHLtHizY12mBM3JhKvYemt8bFGzA2jjEuzjE2jjEuzrkzNhX93cHkzEVa7Z1+SXl5ecWWzc3NtU0XHm6j8HYK/l+a7ZSkpFOmaWlppdpeVWcyGrH758UIbNkAB/AHFrRfwJubExGRV+LVmi4KCAiwTZd0ijErK8s2XfjUpbu2Q6VzdON6ZN66hQ2R59Azsifa12zv6SoRERE5xOTMRQVbokq6ErLgKcXCHfPLsh1JkkpsCSPnjAYD9v7yI7St6+KsdJk3NyciIq/G5MxFzZo1s02fPl18J/KCy5s2bVru7URFRZVqGA2yd2jDahgyM7Cq5lEMazAMjYIbebpKRERETjE5c1G9evVQu3ZtAMDWrVuLLbtt2zYAQJ06dVC3bl27Zd26dbNNF7ed5ORknD17FgAQFxdXlioTgNzsLOz/9WcoWtfBdXUG/tHmH56uEhERUbGYnLlIkiQMHz4cgKVFa8+ePQ7L7dmzx9biNXz48CKdzhs3bmxrTVu6dCmys7MdbmfBggW26ZEjR5a3+tVW/OoVMOblYnnYITwc+zBq+dfydJWIiIiKxeSsFCZMmAClUgkAePHFF4sMb5GTk4MXX3wRAKBSqTBhwgSH23n11VcBACkpKZg8eXKR5efPn8c777wDwHITdCZnZZOdnoYDa1Ygr1U48nTAuJbjPF0lIiKiElWboTR27NhhN2jczZs3bdMJCQl2LVWA/Y3HrRo3bozXXnsN7777LuLj4xEXF4fXX38dDRo0wPnz5zF79mwcOnQIAPDaa6+hUSPHfZvGjBmDb775Bjt37sT//vc/JCcnY9y4cQgODsa+ffvwf//3f0hPT4dCocAnn3wClaravExutX/lMgghY3loPJ5qMR5B2iBPV4mIiKhE1eZbf+7cuVi4cKHDZTt37ixyc3FHyRkAzJo1C9evX8c333yDQ4cO4eGHHy5S5qmnnsLMmTOd1kWpVGLFihUYPHgw9u/fj2XLlmHZsmV2ZTQaDT799FMMGjSohGdGjmSm3MLh9auR1kYP3wA9/t70756uEhERkUt4WrOUFAoF5s2bhzVr1mD48OGoXbs2fHx8ULt2bQwfPhxr167F3LlzoVAUH9qwsDDs2rULn332Gbp164bQ0FBotVrUr18f48aNw4EDB/D0009X0rO6++xZ/iMktRIrgg5gfOvx8FX7erpKRERELqk2LWcLFiwocuqyPAYPHozBgweXaxsqlQrPPfccnnvuOTfVigAg7Xoyjv2xAdfb+aFOaAxGNmKfPSIiqjrYckZ3nd0/L4bSV4v1wcfxYtsXoVaoPV0lIiIilzE5o7vKrctJOLltM87HmtA0ogX6x/T3dJWIiIhKpdqc1qTqYddP30Ol98OWkOP4ut083tyciIiqHCZndNe4dvE8zu7ZgdOdgC7RcehUq5Onq0RERFRqTM7orrFr6XdQhQZib8gxLG33H09Xh4iIqEzY54zuClfOnMKFg/uxr8ENDG44BLEhsZ6uEhERUZkwOaMqTwiBnUsWQREeiJM1bnrnzc1lGZIpB5BlT9eEiIi8HE9rUpX357EjSDp5DDs7pWNU7ChEBkR6ukp3JB8Ddv8POPkrmhuzgTW+QLPhQJcXgIiWnq4dERF5IbacUZUmhMCOHxdBRATgakQenmn1jKerdMexn4GvegFHFgPGbMs8Y7bl/696WZYThCwDBoPlke5gaytRtcWWM6rSzh/Yh+SEs/ij802MaTEGIdoQT1fJIvkY8MuzgGwCAAgBCLMESSkgSbDM/+VZoEaTatuCZjh9GinzFyD9t9+gzMnBGZ0OgQMGIOTJJ6CNrcZ9BvNbW8WJX9HUkAOxWgepOVtbyQUFE/oSbiFI3o3JGVVZQpax68dvYazjh6zaGRjTbIynq3TH7v8BsgmG2yqknPFHepIWwqyApJQRGGVASJNMaINNwO7PgJGfe7q2lS5t9Rpcff11wGyGgARZ4QNFjgFpv/6KtNWrUXv2bOiHDvF0NSvfsZ9h+OYFpJzSIi1JD7MIh1LKhT5qHUK2/QLt2P8BLR/wdC3J27D7xF2HyRm5VyX+cjuzeztu/JmI37skY3ybSZV/c3OjAci5nf+Xcmc66yZw7CekXdLh6p4gQNwZCFeYFUhL9EXaJR1q35MKvfSjZYGPH+DjC6itj76WeWrfQvMLLVdWvVtTGU6fxtXXJyNDWwtJUX1wvUZbyEoNFOZchN84hKikP3D19cnQNGxQvVrQko8h7aOXcOZoCyRF9sX1roXisn0TmqS9BP3b1be1lRw49rNdKz2AO90njv0EjPySCX0VxOSM3KOSf7nJZjN2/fQ9sqN10ESH44FG5fjwMeUC2SmOEy27+YX+rP3ICvMJhOEWiiRmdoSEq3uCoAm8Ae2N05Y6GLMtf3nZgDELEC70NVKoCiVszhK8QomeWld80qf2tZSpgDsspHz+EZJD2+JU7BgIhdI2X1ZqkBxxD66Fd0TT0wuh//xj1P7vF27fv7cyLJ+Ngwl9cKqd87hknV6ILsvfg/b5bz1YUy/A03cWhbpPFMHuE1UWkzMqPw/8cjuxdRNu/3UVG7tdxRttZ0GtVFsSnCIJVaHkyrYs9c4yZ0mWRg/oggBdMOAbAviHWz7kdCGWedb51mldCKDVA5ICKUMbOU/MrISElHNBqP3RpqJfMELcSdjysgo95idvedkF5uc4mJdteb6O5pvziq+asNQPKl8ItS+g0gFqPwiVDlBpAbUvhFJnSeCUOgiVFlBalgml1lJeqcmfr7VMKzUQUOPKngs41XqyXQJit2+FEqdix8B/z/sISUiApFRCUigAhQQJAoBsyRklGZYIy4AkIEmWZFaC2VIGwnJMymbLo8h/LDiv8GORMg7WqYgyZhMurlfhVOy0EuMSsf7faFrvTUCnBzQBgCYQ0AbmT+vzp/P/r6AE22N4+s5efveJYsnVt/tEVcbkjMqnIn65WZMsh61XKTBlpmD3ikTcjshBTX8zBv7yKpAz1rUkSxdcIMkKdp5oaYMAZenfHsJshunmTaT/qQVQcstX2kUfmMY/B0AAZhkQMoQsLC0Csgwhipk2m10sDwihA8w+gBxoXyb/0bYdIQOycPSiAEjL/yufP2Mfc5qAWAmFEn/W6gX/ocPKtzMp/wIMyX5agrA8OlomCUsiKAGQJEgKy6NlWrKUURT4X6Gw/Q+FdCeRVCjyl+U/KiVAUgC2ZFMBSaEFlEoAAieV3VyKyynl39DkzDIozNmAId2SfDujUN1J1LSBlveCbTqw0HTgnWlbspf/WEK9KkWBH4GyLMFo1kIt50BRHU/fyWbLD62TK1wrf3IFMPx/1buVsYq1tjI5o/Jx9ZfbxulAh7HFnD4seLrQyZeNJhDQBePozXBk5GiwpWMK3gtqC0VMQ+eJllbvln5Zcm4uTDdu2P/dvGmbNt/In05JsSRNrhIAlAooVGrLB4ZCgiQp7kwrlI7nO5tWKCxfpI7mSyVMK5Ullyk8XTABsc6XJEA2AnIeJHMeIOcC5jxI5lzIOWnYsq6RS6G5Ft4e9e4JgKRUQRYKCKGAEBIEFBAC+fMkCCFZ8knrNCyPQgaEdVoAQra0u9n+t60HyPmtnHeWifxH2MoIgfz1rdNSgXkF1sedZZY0sMC8/D/Y5ikAGZChgKjpWgL0V3gn/LJZhkZhho9awMdHgkYrQasDNL4SfP0ArZ+A1leGWidDqZah9DFCqcqDQs4CctOBtMuWxC43DcjNsEyLYo5bH/+iSZvdtN5BshdgP1+tden5OZT/I/DKjRgcuD0SV3QdbP3x6uTEo33wL6jjidN3sgyYcy0t16ZcwJRj6Ytqyv8rON9kLWdd5qRcwflFyhksZUr6zC3MmA183NLyI7VIEl7wUe94vo9/lUhoHKqira2SEMLRz2S6y504cQItWrSw/X/8+HE0b968dBuRZeCdOnYtVkWGjHBEE1igJauYU4QF5+cnWUaDAXNfehoXQtKQ2icCXw/4uvRP3lZXATktzS7JMt24WTT5unkTcnq6/cpqNVRhYVDVqHHnMX9aGRaKq5NehcjNLbEOkk6HJgfiLcnNXUjIAllpuUi9noPUa9lIuZqBY1uulno7Un5rlZTfoiXlJ4GW/NPSaqUoNF+SSijvqEzh8pJ9ectj8du3TtuVd1S3AuVlkxm7ll9wOR4hAUYY8wRyjRKMstKS5DmgMmVDZcyG2pQNlSkbatkAH2tSp1FAo1NC66+Gxl8LbaAaugBl/p8ElVZAqQUUyjxIeRmWJC43PT+pSy8wXWC+Kcd5pZU+RRM4raNTs4FFW/M2v43Dv2Vil/J5h62LkmxGV/NnaDMoBBj4dimSnlIkTY7KmUt+j9tXVJHfRUBr6R6g0lpOPas0lvkqTf7/1mVax9MqraXsr/+wq4PTz1+FGujyDyAv487rZ/eYn6Q77ecqFX1tSpvgeaIF1lGXGyuFqlytrW75Di0GW86o7Ew5tsSsxCEjAOClo4C+drlasg5tWI3szHTsaHsZc9u/67CMMJlgunULpus3YLpZTEvXzZsQefZ9rxT+/nbJlja2iW1aWWC+Uq8vNqHK/NvfkPbrryU+n8CBA6t8YiaEQE6GEanXs5F2PRup13Isj9ctjyZjfl8wCfAP0UCC7DSZKEglGTFuTn8oVFU7Pq4QssDe5WdhduEjWQkTHp49wHIqFZb4G3PNyM02wZBltD0aUjKRk5IJQ2oWDBm5yM3MQ262CVm5AreNQJ5ZCaNRDaRKQGqRClmSOVMOVEYZPpIaaoUePqpAaDSARqeExs8H2gANtHpfaGv6QRcWCF2YP7SBaqh1EiQ5506rXG5+EmdIK5rUpVwsmvjBvs3gyq0G2KWcXWx/vF14HjW2vo46xxu7FvTCSZItASqQJPmGlCOZclDO3VdXn/8DOLLY9vmblqSDWWjyh1/JufP52/JBoP/04rclhOVUqaPEzWFClw5kJAM3z9i/zsW16tm1wDp71Dtfrgl0vbtJFb9YgskZlZ1KB6h9kZYgSh4yoqEEBEWVq2k858YN7PvlR9wOycFj2c1Qa81BXL+xoWjidft2fo/2fJIEZWiorWVL06AhVPd0uZOEhee3foWFQeHrnuE4Qp58Amlr1gCmYj6oVCqEPOFFY7OVwJBlTcByLI/X7iRgeYY7p8T8gzXQh/siooEesV0ioA/3RVC4DoFhOihVCmz8fCfOHCm5xaFhK/9qkZgBltazek0DkHCqmJanfPWbBtgSM8DSCuejVcFHq0JASMFTh+ElbkvIAnkG052ELi0HOTfTkXMrAzm3NcjN0MGQ6Y/cbBNycwXSjIDRrERethqmHB/gZsGtZQPIhiSbLYmdOQdqGOGjMMFHJcNHo4RGVwMa39q2pE4X4gddnUDowvXQRYTAJyjAkrYbs+4kcJnXcGDqNgj/kvvjHbw9AnXGt7K0zBeXdCl97o4LJbq8gLRVK3HmaFPHw6/s3IQmrU5BP/75krclSYDG3/IXWLts9RHC0rpol8ilOU7srI/ZN4GUC/bzirtgSe3rWsvdieVV+mIJJmdUdgoFDMF9cXVPfMlDRnTsCK2DxEzIMsypqZbE6rp9kmVt9bL25zodoIExPAj3x/8F7cbLuO5z/M7pxBo14Nu+ncNWLlVICCRV5R7q2thY1H73XVx94w3HCZpKhdrvvut143jlGUx3kq/81q/Ua5aEzJBltJXzDfSBPlyHsEh/NGwfDn24DkHhvgisoYPap/gv0TbDWuHcsX2QZedfjgqFQOthrdz2vKqC9ve3wPlZ+2z91xyRJIF297dwury0JIUEja8aGl81AsN0AAIB1HRpXdksIy/HDENGLrJvpCLnRtqdlro0NQyZArk5KuQZZBjygPQ8BYwGNYxpGpiv+eRvxQQgJf/vIhSyESqzAWrk2ZI6tQq44nuPS3W6rOuETP9W8AnwhVKjhqRWQ1KpqnzrtDOGVDUOXuiHU+0ecz78ytlv0SVVDW1EJVRIkixD8vj4AgHl2KHR4FrLnXXakAqk/lng/zTXTzl76cUSTM6oXFLO+Lk0ZMRfG9Pgb5pT9BTjrVtFkheFXg9VjTCowmpAXas2dK1awxQYgMTt63EtOA3bHhmEf/T7FxQBAZbO515KP3QINA0bIGXBQqRv2ACRkwNJp0PgwIEIeWKMxxIzU54ZaTdybEmYrTXsWjay0+/8YtX6qW1JV92WofktYL7Q19DBR1f2j46wyAD0fbI5Ns0/6fC2kQoF0PfJ5giLDCjzPqqisMgA9BvbHBvnn3TY9UdSAP28KC4KpQJafwW0/moE1fIHEOnyuiaj2XLa9VoKsm+kwXArAzmpWTCk5cCQYTn9mmuQkWcUyMxWQqhd66skK32w8J3Tln+EDIVshEI2QikboZBNUAgTlMIMBcxQCpPlEWYoJBlKyFBKMpQKYflfASgVwvKnFFAqJSiVElRKQKmWoFRJUKkUUKoUUKkBpVoJpVoBlVoFhVoFSa0CVCpLcqi0/C+prPPUtv/vzCv0vzWxdFAGSiUkScLFuT/jVGPnVz8LhRKnGj+GiHnL0PT9f7r8+nicOr+107/k1l+H8rKAt11s/TNmW7ro+PiVbV8VhMkZlZmQZaRv2+9SWcPJczDeSIU6PNzSl6tpLFQ9uttaudQFWrwUGk2R9bd8Ow8mhcCOdtlYMeh1KHWB7n46FcLSgvYOImbOxLH9B9GyYzsoVBXfKdZskpF+s2ACZu0Hlo3M27m2Lj1qrRJB+acdazcKQlBNX1tCpvWruLsPNO4YgZBafjiyMQkJB6/DlCdD5aNAw3bhaN0vymsSkMpWXeKiUivhX1MP/5r6EsvKJjO+fO43yMqinwuFSbIRcfcoIZtkmIwyzEYBs0kBk9EHZrMaZpOw/JkFTGbAbJZglgGjDJhlBWRZgllIMAsFzEIBOT99gyxZRsYxllgFAMhPCk2WR3MeFLIBCjnPNk+ZnzTakkdzgfIO/mzJpdmyDaWcB4UkcD56CER4yad7TyYoUGP+fKiCgqHUB0Kp10MZGAiFXg+lXu/wM7dKy+9yU/BiNcvwKxqolblQKAp0e7GO4+hlmJxRmQmDASKn5D4yVg03rC9Tn67MlFs4vGE1jtVLw8NtH0OYLqzU2/CUm5czcHhjEs7nf9HuWbwdDdqFo40bvmhlWSAzxYDUa/bJV+r1HGTcMljGLQOgUitsCVfjjhGW6ZqWVjBdgNpjrY9hkQHo+0Qz9Hm8KY4eOY5WrVvY9aWqrhgXewqVEnW0t5BkLLklJEpzA63Hjnbr/oUQkM0iP9mTYcozw2ySYcqTLY8O5lnKyTCbzDDmyTDnmWDKNVnK5Zktj0YzTHmW9XOt6xRMHk32XWfL41qNDtixYifUucctF3mYcixX8uZPqxVmaHxV0ARo8hM3vS2BUwbpoQgMhFIfVDSxCwio9C4jLlEoLMNlHFmMK7caOB9+JfQ80GyE153SBJicUTlIWi0knc6lBE3S6SBpyzbO0Z7lP8KkkPFnYxmfNn+iTNvwhLP7k7Fp/inIBQZ1NeXJOLMnGef2XUPfJ5uiccfi+2UUHoqi4FWQaTdzIJss21YoJehr6KAP90X91mG2TvhBNX3hp9d49Ze7pJCgVEteXUdPYFzuaP9Qa1z+NrnYQXol2Yx2D7V2+74lyXIKU6lSAJXcwCKbZZhNAiajuUDCZ0noDJm5WP3pMZe2IxRKZLcZiDyDGbk5JpjynA2ZIaCGCSpzLtQ3DFD9lQ1VbiaUhj+hyjtpS+YsV/JakjsfHwk+vipo/H3gE+gLlTWxy0/kFIGBlmQvKD/Z0+uh0Ouh8POr2B+GXV7A4TU3sEsx3u5iElmpQZJ/HC7n3oOul79AG1culvAAJmdUZpJCgcABAyp0yIi068k4umk9DjZOwdj24+Hv41+Wqla6m5cziiRmBcmywKb5pxBSyw+hdfxdHooiIEyHoHAdIpuGoEV+AqYP90VAiAYKpff9+iNyhzrdW6LrySvYdQDOxzlrb0ad7t43JEJ5KJQKKJSAWlP0OQtZQAmz5bRrCZQw45Fp99gSfbNZRl6OCblZJuTmmJCXbXnMzTbmPxacZ0JujhGZWXkwZBmRl2N2Os62BBkqQx7U2blQ/ZkNlTELSkMSVKYzUBvtW+tUsgEajQIaXxV8/NTQBGrhE+APlb6E1joXT8NeOQdLYlbs8CvjUeMcUKcyLpYoJSZnVC4VPWTE7p8Xw6SRkNrMHw81eaiMtax8hzcmOU3MrGRZYMVHhyDMoshQFEE17wxFERRu6QdmHYqCqDpq8+zfUGP7MRxcegSXDWGQlT5QmPMQqb2Jdg+1vusSs5JYhl/xd3H4FX+7FlilUgGdvw90/j7FrOWcyWhGXo7ZSTJntCR+2dY/I3Izc5GdZSmblyscXggEAFKmGer0XKgSc6DKy4Iq77Jda53KlGNpsZNM0PhI8Mkfb0/jr4FWr4OPPsCW2O3/IxNCXfzdSIRCiYNLj3jlscPkjMqlIoeMuHU5CSe2/YH9TW/huQ5vwkdZtg+SyiZkgfMHr7tUNi/HjM731rP1AdPX0EFVwlAURNVVne4tUad7S8gmc6VeYOOtPDH8CmC5oEOlVsI3sPSfyUJY+u/lWZM3Rwldjgl52UbkZuXZBlDOyDEhL/8K3iLPVwBIBRQplqFYlMYs5OgauFSfy4YwyCaz1x1HTM6o3CpqyIidS79Dnq8E0SoCQ+oPcXOtK44pv2+IK4Qs0Kp3lMPTFkTkmEKlhDJA53VfqJWtqg2/Alj68Kl9lFD7KOEXVPqrRK13xHCYzOXPy07JwvGdrv1AlpU+MGZkQxPsPTECmJyRm1iHjKj19iycOHgQzdu1K9fAj9cunse5vTuxr+VNvNLxfSikqnM6z5hrgkIhlXhaEwBUPgqo1FXnuRGRd6kuw69YFbwjhn+w4zKyyYyT2y5DduFsi8KcB3WAe+4M405MzsitJIUC0GrLPSL3jiWLkB0ABLWLRbc63dxUu4qVZzDh8MYkHN74J1y9Ar5hu3BejUdE5cLhV+xZhl+56dLwK5Ham17ZAsuf7OR1rpw5hcTDB7C/wQ1M7PiKV98FALB0jj288U98O2U3Dq6/hObdauPeCa2hKOHDUaGQ0LpfVCXVkojudhx+5Y72D7WGJDu5rDRfRQ2/4g5sOSOvIoTA9iULkKGX0aBzF7Sq4b33V5TNMk7vScb+1ReRlZaHpl0i0GFIPdvNp/s+2dTpcBoKhYS+Tza96045EBF5g6o+/AqTM/Iqfx47gisnTyC+QwrmtH/Z09VxSMgC5w/dwN6VF5B6LRsN24ej8731EVTTvt9CdesLQkTkTary8CtMzshrCCGwdfF8pASb0KHrQNTT1/N0lewIIZB0MgV7fr2AG39mILp5CAY81Rw1op0nWewLQkTkOVV1+BUmZ+Q1zsfvxY0L53HkngzMa+Ndt9RIvpCGPSvO48rZVETU12PkpLao3cjJpUIOsC8IEZHnVLXhV5ickVcQsoytSxbgWmge+vV4EDX9anq6SgCAW1cysefXC0g8ehOhdfwx5PlWiGkZ6vUXKRARUdXF5Iy8wund25F6+TJO9TBgSsuxnq4O0m7kYN/qCzi77xoCQ7XoP7YZGnWoyZYvIiKqcEzOyONksxnblizA5fAcPNDrKQT6BHqsLllpuYhfm4iTO65C669Gz0eaoGlcLSh5U3EiIqokTM7I405s3YTM6zdwqb8S78Y+7JE6GLKMOPTbnzj6RxKUagU631sfLXtHQs37XBIRUSVjckYeZTIasW3pIlyMyMLjvV6GRln6e62VhzHXjKObk3Dotz9hNslo3TcKbQdEQ+OrrtR6EBERWTE5I486unEdclJTkTJYj2H1h1Xafs0mGSd3XEX82kQYsoxo3r0O2g+KgZ++cpNDIiKiwpickccYDQbsWPY9ztfOxDO9p0PpYBRnd5NlgXP7r2HfqgtIv2VAk84R6DS0HgLDdBW+byIiIlcwOSOPObB+JXKzsmAcUAc9I3tW6L6EEEg8ehN7fr2AlKtZqNc6DIOfb4XQ2v4Vul8iIqLSYnJGHmHIysTuFT/iTGQGXuj1fxU6btiVM7ex59fzSL6QjjpNgnD/6+0RUU9fYfsjIiIqDyZn5BH7Vy2DMc8A/x7N0Da8bYXs4/qldOz59QKSTqYgPCYA977cBpGxwRxAloiIvBqTM6p02elp2L/mF5yOycBb3Sa5ffu3k7Owd+UFnD94A8ERvvjbsy1Qv00NJmVERFQlMDmjSrfrl8XIk42I7BuHhsEN3bbdjBQD9q++iNO7/4JfsAZ9Ho9Fk84RUHAAWSIiqkKYnFGlyky5hSO/rcXpepl4t8vLbtlmTkYeDqy/hGNbL0OjUyHugUZo0aMOlGomZUREVPUwOaNKteWnhciVTGg5aDAi/CLKta28HBMOb/wThzcmQZKADoPqonXfKPhoeVgTEVHVxW8xqjSp15JxestmnI014L8dxpd5OyajGce3XsGBdZdgzDOjZa9ItB8YA60/R/UnIqKqj8kZVZqNi7+GQW1C3NCHoNeUfigL2Szj9O5k7F9zEVlpeWgaVwsdB9eFf7C2AmpLRETkGUzOqFLcupyExD17caGVGZNajynVukIWSDh4HftWXUTqtWw06hCOTsPqI6imbwXVloiIyHOYnFGlWP/dZ8jSmDBoxFPQqVy7VZIQAn+eTMGeFedxMykT0c1DMeCp5qgRHVDBtSUiIvIcJmdU4a5dPI/kQ8dwuZMK/4y936V1/jqfhj0rzuPquVTUaqDHyEntULtRUMVWlIiIyAswOaMKt2bRHKT5GfHQyElQKYo/5G5ezsTelReQePQmQuv4Y8gLrRDTIpQDyBIRUbXB5Iwq1OXTJ3D7ZAJSugeiX73+Tsul3cjG3pUXcS7+GgLDdOj/VDM0al8TkoJJGRERVS9MzqjCCCGwauF/kRKQh8fvm+qw9SsrLRfxaxJxcsdV6ALU6PlIEzSNqwUlR/UnIqJqiskZVZgLR+KRfeEqcgfURqfaneyWGbKMOPTbJRz94zKUagU6j6iPVr0iofJReqi2RERE3oHJGbmVbDIjLysXZqMJaxZ9ihtBuXh6xBu25cZcM478kYRDv/0JWRZo0z8abfpHQ6PjoUhERAQwOSM3ObvvOHYs+Qm3rxwBYMJmKAGY4depKWJDY2E2yTix/Sri1yUiN8uI5j3qoMOguvAN9PF01YmIiLwKkzMqt82LfsXBNfMAyAXmmgEAvvsSsfy9xchMi0FmigFNOkeg49B6CAxzbawzIiKi6obJGZXL2X3HHSRmBcm4eGAxIluOx9B/9URIbb/KrB4REVGVw0viqFw2f/89nCdmVjJSb+5gYkZEROQCJmdUZrLJjMzkUy6VzfzrJGSTuYJrREREVPUxOaMyy87KBmBysbQpvzwREREVh8kZlZ0P4Hq3RVV+eSIiIioOkzMqM1+tH7ICQ10qmxUYCl8t+5wRERGVhMkZlZlCUkB0r4WSDyNLOYXEw42IiKgk/Lakcnl46GM428Afzg8lBc428MfDQx+rzGoRERFVWUzOqFyahDTB8KdHY3sHEzIDw3GnD5oKmYHh2N7BhOFPj0aTkCaerCYREVGVwUFoqdwG1x+MBk81wKKTi/DjxROQc8xQ6JToX685Zjd7nYkZERFRKTA5I7doEtIEs7rNwv/F/R8OHj2Idq3asY8ZERFRGfDbk9xKISmgVWqZmBEREZURv0GJiIiIvAiTMyIiIiIvwuSMiIiIyIswOSMiIiLyIkzOPOzSpUuYNGkSYmNj4efnh5CQEHTs2BHvv/8+srN5o3AiIqLqhkNpeNCqVaswevRopKen2+ZlZ2cjPj4e8fHxmDt3LtasWYOGDRt6sJZERERUmdhy5iGHDh3CqFGjkJ6eDn9/f8yaNQu7du3Cpk2bMG7cOADA2bNnMWTIEGRkZHi4tq6TZQGDSYYsC09XxaswLs4xNo4xLs4xNo4xLs5Vtdiw5cxDXn75ZeTk5EClUuG3335Dly5dbMv69OmDRo0aYfLkyTh79iw++OADTJ8+3XOVdcHJq+mYu+MC1h1LRo7RDN2yqxjUMgJPd6uPZrUDPV09j2FcnGNsHGNcnGNsHGNcnKuqsZGEEFUjjbyL7Nu3D507dwYAPPvss/jiiy+KlJFlGS1atMCpU6cQFBSE69evQ61Wu60OJ06cQIsWLWz/Hz9+HM2bNy/Ttn49fAWTlh6BycEvEpVCwgcPtcbwNnXKXNeqinFxjrFxjHFxjrFxjHFxriJj487vUEd4WtMDVqxYYZt+8sknHZZRKBR4/PHHAQCpqanYvHlzZVSt1E5eTXd68AOASRaYtPQITl5Nd7j8bsW4OMfYOMa4OMfYOMa4OFfVY8PkzAN27NgBAPDz80P79u2dluvZs6dteufOnRVer7KYu+OC04PfyiQLzNtxsZJq5B0YF+cYG8cYF+cYG8cYF+eqemzY58wDTp06BQBo2LAhVCrnL0FsbGyRdVx1+fLlYpcnJyeXanuOyLLAumOubWf10asY0zUGCkkq9369nSwE1hz9y6Wy1SkuAGPjDOPiHGPjGOPiXGlis/bYX3j/gVZQKLwrNkzOKpnBYMDNmzcBAJGRkcWWDQ4Ohp+fH7KyspCUlFSq/URFRZW5jq4ymMzIMZpdKptrknHvp97Z+udJjItzjI1jjItzjI1jjItzOUYzDCYzfH28Kx3yrtpUAwWHxfD39y+xvDU5y8zMrMhq4dy5cyjttSGyENAoJeSaS17PRynh3f7h1eKXmywE3vj9OvIYlyIYG8cYF+cYG8cYF+dKExuNUkLCmVOljk1CQkJZq+cSJmeVzGAw2KZ9fHxKLK/RaAAAOTk5pdpPSS1tZ86cQb9+/Wz/N2rUqExXmgw5Zcbyg1dKLDesdR3c16t1qbdfVe24fphxcYKxcYxxcY6xcYxxcc7V2AxtXQetWrYs9falCk50eUFAJdNqtbbpvLy8Esvn5uYCAHQ6Xan2ExkZWexfRERE6SruxNPd6kNVwrl6lULCU93quWV/VQXj4hxj4xjj4hxj4xjj4lxVjw2Ts0oWEBBgm3blVGVWVhYA106BekKz2oH44KHWTt8E1rFkvHmwv4rAuDjH2DjGuDjH2DjGuDhX1WPD05qVTKvVIjQ0FLdu3Srxisrbt2/bkrPK6OBfVsPb1EGj8ADM23ERa4/9ZRmFWa3E4Ja18FS3el578Fc0xsU5xsYxxsU5xsYxxsW5qhwb3iHAA3r06IHt27fDz88PqampTofT2L17N7p27QoAmDp1KmbMmOG2OlTU6MayLHDw6DG0a9XS6y5N9iTGxTnGxjHGxTnGxjHGxTl3x4Z3CLgLdevWDYDllOWBAwecltu6dattOi4ursLr5Q4KhQStSsEPhkIYF+cYG8cYF+cYG8cYF+eqWmyYnHnAiBEjbNPz5893WEaWZSxatAgAEBQUhN69e1dG1YiIiMjDmJx5QKdOndC9e3cAwLx587B79+4iZT744APbXQFefvllt970nIiIiLwXLwjwkP/+97+Ii4tDTk4OBgwYgLfeegu9e/dGTk4OlixZgq+++goA0LhxY0yaNMnDtSUiIqLKwuTMQ9q2bYsff/wRo0ePRnp6Ot56660iZRo3bow1a9bYDb9BREREdzee1vSgYcOG4ejRo5g4cSIaN24MX19fBAUFoUOHDpg9ezYOHTqEhg0berqaREREVInYcuZhMTEx+PDDD/Hhhx96uipERETkBdhyRkRERORFmJwREREReREmZ0RERERehMkZERERkRdhckZERETkRXi1ZjWVm5tr939CQoLbtp2QkABJqhr3L6tMjItzjI1jjItzjI1jjItz7oxN4e/Mwt+p5cXkrJpKSkqy+7/g/T6JiIjIdUlJSWjXrp3btsfTmkRERERehMkZERERkReRhBDC05WgypeamoqtW7fa/o+KioJGoynXNpOTk9GvXz8AwMaNGxEREVGu7d0tGBfnGBvHGBfnGBvHGBfnKiI2ubm5dt2DevbsiaCgoHJv14p9zqqpoKAgDB8+3K3b1Ov1tukmTZogMjLSrduvqhgX5xgbxxgX5xgbxxgX5yoqNu7sY1YYT2sSEREReREmZ0RERERehMkZERERkRdhckZERETkRZicEREREXkRJmdEREREXoTjnBERERF5EbacEREREXkRJmdEREREXoTJGREREZEXYXJGRERE5EWYnBERERF5ESZnRERERF6EyRkRERGRF2FyRkRERORFmJwREREReREmZ0RERERehMkZERERkRdhckZERETkRZicEREREXkRJmdEREREXoTJGREREZEXYXJGRERE5EWYnBERERF5ESZnRERERF6EyRkRERGRF2FyRkRERORFmJyR1/juu+/w7LPPokOHDtBoNJAkCQsWLPB0tTzqypUr+PjjjzFgwABER0fDx8cHERERuP/++7F3715PV8+jDAYDXnnlFfTo0QO1a9eGVqtFREQE4uLiMH/+fBiNRk9X0WvMnj0bkiRBkiTs2bPH09XxqLp169piUfivV69enq6ex/3yyy/o378/QkNDodVqUa9ePTzyyCNISkrydNUq3YIFC5weK9a/vn37Vsi+VRWyVaIymDJlCi5duoSwsDDUqlULly5d8nSVPG7OnDmYPXs2GjRogAEDBqBGjRo4d+4cVqxYgRUrVuCHH37AqFGjPF1Nj8jMzMTnn3+OTp06YciQIahRowZu376NdevWYezYsViyZAnWrVsHhaJ6/wY9fvw4pk2bBj8/P2RlZXm6Ol5Br9djwoQJRebXrVu30uviLYQQGD9+PL766is0aNAADz/8MAICAnD16lVs3boVly5dQlRUlKerWanatGmDadOmOVz2888/48SJExg4cGDF7FwQeYnff/9dJCYmCiGEeOeddwQAMX/+fM9WysOWLVsmtmzZUmT+tm3bhFqtFsHBwcJgMHigZp5nNptFbm5ukflGo1H06tVLABCrV6/2QM28R15enmjXrp3o3LmzGD16tAAgdu/e7elqeVRMTIyIiYnxdDW8zscffywAiOeff16YTKYiy41Gowdq5Z1yc3NFaGioUKlUIjk5uUL2Ub1/UpJX6devH2JiYjxdDa9y3333oWfPnkXmd+/eHb1798bt27dx7NgxD9TM8xQKBXx8fIrMV6lUGDlyJAAgISGhsqvlVWbNmoUTJ07gm2++gVKp9HR1yEvl5ORgxowZqF+/Pv773/86PFZUKp5os1qxYgVu3bqFoUOHombNmhWyDyZnhOvXr2P16tWYOnUqBg0ahLCwMNv59CeeeKJU27p06RImTZqE2NhY+Pn5ISQkBB07dsT777+P7OzsinkCFcTb46JWqwF45kPTm2MjyzLWr18PAGjRokWp1y8Pb4rLwYMHMWvWLEybNg3NmjUr4zNyH2+KTW5uLhYsWIC3334bn376qUf7b3pDXH777Tfcvn0bI0aMgNlsxvLly/Huu+/iiy++8NgPHG+IizNz584FADz99NOlXtdlFdIeR1UKAKd/Y8aMcXk7K1euFIGBgU631bhxY3Hu3DmXtuUNpzW9MS5Wly5dEhqNRtSqVcvhKYiK5k2xyc3NFdOmTRNTp04VL7zwgoiNjRUAxJNPPlnOZ1l63hIXg8EgmjdvLjp06GA7PsaMGePR05reEpuYmBiH63Xs2FEkJCS44ZmWjjfE5V//+pcAIF577TXRuHFju/UUCoWYNGmSm56t67whLo4kJiYKhUIhIiMjK/Szl8kZ2R2o0dHRYsCAAaV+Exw8eFDodDoBQPj7+4tZs2aJXbt2iU2bNolx48bZvRHS09NL3J63JWfeEhchLP2IevToIQCIRYsWleMZlp03xSYjI8OuPpIkiVdffdUjfWS8JS6TJ08WPj4+4tixY7Z53pSceTI206dPF5s2bRLXrl0TWVlZ4tChQ+Kxxx4TAERMTIzL70N38Ya4PPvsswKAUCqVomPHjmLfvn0iIyNDbNu2zfZj57PPPnPzMy+eN8TFkWnTpgkAYsqUKeV4diVjckZi6tSpYtWqVbaOjRcvXiz1m6B79+4CgFCpVGLXrl1Flr/33nu2bU6bNq3E7XlDcuaNcTGbzeLRRx8VAMS4ceNK83Tcyltjk5SUJD777DMRFBQk4uLiRFpaWmmeVrl5Q1x27dolFAqF+Pe//20339PJmTfEpjjWBO2DDz4o1Xrl5Q1xsSYqOp1OXLlyxW7ZsWPHhEKhEA0aNCj1cysPb4hLYWazWURHRwtJksSFCxdK83RKjckZFVHaN8HevXtt5Z999lmHZcxms2jatKkAIIKCgkReXl6x2/SG5KwwT8fFbDbbvmBHjx4tzGZzWZ+K23k6NoUtXbpUABCTJ092eZ2KUNlxMRqNolGjRqJNmzZF4uXp5KwwbztmduzYIQCI++67z+V1KoIn4vLqq68KAKJ79+4O12/YsKEAIG7fvl3ap+M23nC8bNiwQQAQffv2LctTKBVeEEDltmLFCtv0k08+6bCMQqHA448/DgBITU3F5s2bK6NqHuXOuMiyjCeffBILFy7EI488ggULFlTp8bsq+pgZMGAAAGDLli1lrqMnlDcumZmZOHfuHA4fPgwfHx+7wTIXLlwIAOjSpQskSbLbV1VQ0cdMWFgYAFS5seDcEZcmTZoAAIKCghyub52fk5NTvspWooo4XirlQoB8vDaWym3Hjh0AAD8/P7Rv395puYJDQuzcudP2BXq3cldcrInZokWLMGrUKHz77bdVfliEij5mrl69CuDOFa1VRXnjotFo8NRTTzlcZ9u2bTh37hzuvfde1KhRo8oNuFrRx4z1is3qGJfevXsDAE6dOlVkPaPRiISEBPj5+aFGjRruqnaFc/fxcuvWLfz6668ICQmxDdVTkZicUblZ39ANGzYsdliH2NjYIuvczdwRF1mWMXbsWCxatAgPPvggvvvuuyqfmAHuic3JkydRt25d+Pr62s3Pzs7GK6+8AgAYPHiwu6pcKcobF51OZ/t1X9gTTzyBc+fO4c0338Q999zjphpXHnccM6dPn0Z0dHSRY+b06dN4/fXXAQCPPvqou6pcKdwRF+sdSH777TfMnTvXrmXo3XffRWpqKkaPHl2lxjpz9/fSt99+i7y8PIwePRoajcZ9FXWi6kSavJLBYMDNmzcBAJGRkcWWDQ4Ott1CxtF92ubOnWv7tWMdWHXu3Lm2U1PdunWrlOZkd3BXXP79739j4cKF8Pf3R+PGjTFz5swi648YMQJt2rRxW90rmrtis3TpUnz44Yfo1q0b6tati8DAQFy5cgXr1q3DrVu30L17d0ycOLHCnoe7ufO9dLdxV2yWLFmCDz/8ED169EBMTAz8/Pxw9uxZrF27FkajEW+++SZ69OhRYc/D3dx5zHz22Wfo2rUrxo0bhxUrViA2NhaHDh3CH3/8gZiYGLz//vsV8hwqQkW8l+bNmwegck5pAkzOqJwyMjJs0/7+/iWWt74JMjMziyzbsWOHrV+M1c6dO7Fz507b/1UlOXNXXBITEwFY+hLNmjXL4bp169atUsmZu2IzdOhQXL16Fbt27cLu3buRmZkJvV6PVq1a4eGHH8bYsWOr1C99d76X7jbuik3v3r1x6tQpHDp0CNu3b0d2djbCwsIwePBgPP/881Wuq4U7j5kGDRogPj4eU6dOxfr16/Hbb78hIiICL7zwAqZOnYrw8HC31r0iufu9tG/fPhw/fhydOnVCy5Yt3VbP4lSdTy7ySgaDwTbt6FY6hVmbgx11LF2wYAEWLFjgtrp5krvicjfFxMpdsenQoQM6dOjg3sp5kDvfS45U5WPJXbHp2bOnw9uhVVXuPmaioqIwf/5891TOg9wdl06dOkEI4Z7KuajqXu5FXkGr1dqm8/LySiyfm5sLwNI35m7GuDjH2DjGuDjH2DjGuDh2N8SFyRmVS0BAgG3aldMr1svUXWlqrsoYF+cYG8cYF+cYG8cYF8fuhrgwOaNy0Wq1CA0NBQBcvny52LK3b9+2vQmioqIqvG6exLg4x9g4xrg4x9g4xrg4djfEhckZlVuzZs0AAAkJCTCZTE7LnT592jbdtGnTCq+XpzEuzjE2jjEuzjE2jjEujlX1uDA5o3Lr1q0bAEvT8IEDB5yW27p1q206Li6uwuvlaYyLc4yNY4yLc4yNY4yLY1U9LkzOqNxGjBhhm3Z2pY8sy1i0aBEAy61ArCNS380YF+cYG8cYF+cYG8cYF8eqelyYnFG5derUCd27dwdgGahv9+7dRcp88MEHttGXX3755Sp3W52yYFycY2wcY1ycY2wcY1wcq+pxkURlD95BXmfHjh1ISEiw/X/z5k289tprACzNvIUHfn3iiSeKbOPQoUOIi4tDTk4O/P398dZbb6F3797IycnBkiVL8NVXXwEAGjdujPj4eLurabwV4+IcY+MY4+IcY+MY4+JYtY+LoGpvzJgxAoDLf86sXLlSBAYGOl2vcePG4ty5c5X4zMqHcXGOsXGMcXGOsXGMcXGsuseFpzXJbYYNG4ajR49i4sSJaNy4MXx9fREUFIQOHTpg9uzZOHToEBo2bOjpalY6xsU5xsYxxsU5xsYxxsWxqhoXntYkIiIi8iJsOSMiIiLyIkzOiIiIiLwIkzMiIiIiL8LkjIiIiMiLMDkjIiIi8iJMzoiIiIi8CJMzIiIiIi/C5IyIiIjIizA5IyIiIvIiTM6IiIiIvAiTMyIiIiIvwuSMiIiIyIswOSMiIiLyIkzOiIiIiLwIkzMiIiIiL8LkjIiIiMiLMDkjIiIi8iJMzoiIyKnp06dDkiT06tXL01WhQhITEyFJEiRJQmJioqerQ26k8nQFiIgqy4oVK3D48GG0adMGI0aM8HR1iIgcYssZEVUbK1aswIwZM7BixQpPV4WIyCkmZ0RERERehMkZERERkRdhckbVXq9evSBJEqZPnw4hBL7++mt07twZgYGBCAgIQJcuXfDdd985XNfaGXfLli0ubb+49W/duoVXXnkFDRo0gE6nQ0xMDP7xj3/gxo0btvKXLl3Cc889h3r16kGr1SI6OhqTJk1CRkZGecMAoGgH40uXLmHcuHGIjo6GVqtFgwYNMGXKFGRlZdnWOX78OEaPHo2oqChotVo0atQIM2fOhNFoLHZfW7ZswYMPPog6depAo9EgLCwMffv2xfz582E2mx2uU7hz+qZNmzBkyBDUqFEDWq0WTZs2xYwZM2AwGIrsS5IkLFy4EACwcOFC2/Ms7jU8fvw4nnnmGTRq1Ai+vr7w9/dHq1at8M9//hM3b94sRWRds3fvXjz55JNo2LAhfH19ERgYiGbNmmHs2LHYsGFDkfJ79uzB66+/ju7duyMmJgZarRZBQUG45557MHv2bGRmZjrdV8Hnff36dbzyyito3LgxfH19IUlSqep96NAhPP7447Y6BAcHo2vXrvj444+Rm5tb6jg4YzKZ8NVXX6FXr14ICwuDWq1GaGgomjRpglGjRmHevHlF1rl9+zbmzZuHhx56CC1btkRISAi0Wi1iYmLw6KOPYs+ePU73V/h4W7lyJfr27YvQ0FAEBgaia9euRU6Rf/vtt4iLi0NwcDD8/f3Ro0cPbNq0yeH2C7/fzp07hyeeeAKRkZHQaDSIjo7G+PHjcfXq1TLHTJZlfP/99xg8eDBq1qwJHx8f1KhRAwMGDMDixYshhHC4XlliTW4kiKq5nj17CgBiypQpYvjw4QKAUKlUIjAwUACw/U2dOrXIutZlmzdvLnH706ZNc7r+woULRWRkpAAg/Pz8hI+Pj21Z06ZNxe3bt8W+fftEaGioACACAwOFSqWylYmLixMmk6ncsbh48aJtm8uWLRNBQUG2/SmVStuy7t27i7y8PLF69Wrh6+srAAi9Xi8kSbKVGTVqlNP9TJw40VZOkiQRFBRkt/0+ffqI9PT0IutNmzZNABA9e/YU7733npAkybZ+wX337t3bLh47d+4UNWvWFFqtVgAQWq1W1KxZ0+5v586ddvuaPXu2UCgUtm36+vravS61atUSBw8eLHfMhRDCZDKJl156ye548/PzE8HBwbbnpdfri6xXsLyvr68IDg62m9esWTNx7do1h/u0lvn6669FzZo1bXEJCAgQBb8aCsbckQ8//NAu9nq9XqjVatv/rVq1ElevXnVLjPr372/3/PR6vdBoNHbzCrPWH4BQKpUiODjYbh1JksR///tfh/ss+NynTp0qAAiFQiH0er3dPr/44gshy7IYM2aM7fPDGkfrflevXl1k+wXfb0uWLLGt4+/vL3Q6nW1ZSEiIOHDgQLHrX7x4scjyW7duiR49ehSJWcH/7733XpGbm+uWWJP7MLpU7VmTp+DgYKHX68WCBQtEdna2EEKIpKQkMWzYMNuH8tmzZ+3WdVdyFhQUJNq0aSP27NkjhBAiLy9PLF682Jb4/OMf/xAxMTGiT58+4vjx40IIIXJycsScOXNsSc3XX39d7lgU/LAPCgoSffv2FSdOnBBCCJGdnS0++eQT2/6mTJki9Hq9GDVqlEhMTBRCCJGRkSH++c9/2rbx+++/F9nHnDlzbMufeeYZ8ddffwkhhMjMzBQfffSRLel0lNxZvyyDgoKEQqEQb775prhx44YQQoi0tDTbFygAMW/evCLrW788x4wZU2wc5s6da/uSnDVrlq2OJpNJxMfHiz59+ggAIjIyUmRkZLgeYCcmT55sq/fYsWPFmTNnbMtSU1PFihUrHMZj2LBh4scff7TVTwjL67R8+XLRpEkTAUCMHDnS4T6t+/P39xdNmjQRmzZtEmazWQgh7PZfXHK2atUq23aGDx8uLly4IIQQIjc3VyxatMiWbHTt2rXcPx6+/fZbWwI5d+5cW9xlWRbXrl0Ty5cvFw888ECR9b788ksxbdo0ER8fb0tCZFkWFy5cEC+//LKQJEkolUqHibb1uev1eqFUKsWsWbNEamqqEEKIy5cvi4EDBwoAIiAgQEydOlXodDrxxRdfiKysLCGEEGfPnhUdOnQQAER0dLQtvlYF3296vV60atVK7N2711bHDRs2iOjoaNv6hX+wFJecmUwm22dPmzZtxKpVq2z1yszMFAsXLhTh4eECgJgwYYJbYk3uw+SMqj3rBxgA8ccffxRZbjAYRO3atQUAMXPmTLtl7krOatasKW7evFlk+b/+9S9bmebNmwuDwVCkzGOPPSYAiL59+5b8ZEtQ8MO+pP0BEP379xeyLBcp0717dwFAPPXUU3bzs7OzRUhIiAAgHnnkEYd1+OSTT2zbj4+Pt1tWsBXEUTyFEOK+++4TAES/fv2KLHMlOUtPT7e1GK5fv95hGaPRKNq3by8AiI8++sjptlxx5swZWwvd5MmTy7Wtgi5fviw0Go2QJElcunSpyHJrHAMDA0VSUpLT7RSXnDVt2lQAlpZUR8nXypUrbfv56aefyvV8nnvuOVtC704vvPCCw2NVCPvjrfB7XwjLDwI/Pz9bme+++65ImYSEBNvy7du32y0r+H4LDQ112Mp58uRJW4vte++953T9wsnZokWLBAARGxtrSygLi4+PF5IkCR8fH7t9V1SsyXXsc0aULy4uDr179y4yX6PRYODAgQCAo0ePVsi+x40bh9DQ0CLzrfsFgFdeeQUajcZpGXfXbeLEicXuDwDeeOMNh/2TnNXp999/R0pKCgA47IMHAM8//zxq1aoFAPjhhx8cltFoNHj11VcdLhs+fLjDfbtq2bJlSE1NRdu2be2ea0EqlQqPPPIIADjsC1YaCxcuhCzLCA0NxYwZM8q1rYLq1KmD1q1bQwiBXbt2OS332GOPITIystTbP3r0KE6dOgUAmDJlCpRKZZEyw4YNQ6dOnQAAixcvLvU+CgoKCgIAJCcnl2s7hQ0ZMgQAsGPHDqdltFotJkyYUGR+YGAgunTpAgCIjo7Go48+WqRMgwYN0LBhQwDFH5Pjx49HeHh4kflNmzbFAw88AABYsmSJ8ydSiLVP2HPPPQe9Xu+wTPv27dG8eXPk5eVh8+bNtvkVFWtyHZMzonydO3d2uqx27doAYEss3M36BVZYzZo1bdMdO3Ystszt27e9vk7x8fEAgKioKDRu3NjhukqlEn369LErX1jz5s3h7+/vcFl5X6udO3cCAE6dOoWIiAinf//+978BWC7SKA9r4tS/f39otdpSrSvLMn744Qfce++9iI6Ohk6ns7vIYd++fQCAy5cvO91GXFxcmeptfW1UKhV69uzptFz//v3typfV4MGDIUkSVq5ciUGDBmHx4sUud5S/cOECXn31VbRv3x5BQUFQKpW2GA0ePBhA8TFq1qwZ/Pz8HC6zHusdOnRweiGFK+9R6zFf3LKjR4+WeKENAJjNZtuFDtOnTy/2OD5z5gwA++O4PLEm9+AdAojyBQQEOF2mUlneKq58MLpz39b9ulLGZDJ5XZ0Kx+v69esALK06xbG25FjLu1q3gvsuazysX0IGg6HIVZ+OZGdnl2k/VtbWiZiYmFKtl52djaFDh9q1ePj4+CAkJARqtRqAJUE1Go12V9cW5qi1xhXW1yYsLMxhC6tVSa+lq7p164bZs2djypQpWL9+PdavX2/bfr9+/fD44487bPn+5Zdf8Mgjj9hdNRoYGAitVgtJkpCXl4fbt28XGyNXjrfyfn4U956wLjOZTEhJSbH7geRISkqK7fm6+qOt4HFc1liT+7DljIioAOswHqNGjYKw9Mst9q+89zQs7bAVVrNmzcLmzZuh0+nw0Ucf4dKlSzAYDLh16xaSk5ORnJxsaw0WToZLAODwdKS3eu2113Dx4kV89NFHGDFiBMLDw3H58mUsWLAAffr0wYMPPmiXAN26dQtPPPEEcnNz0adPH2zZsgXZ2dlIS0vDtWvXkJycjJ9++smDz6hiFByKZt26dS4dx4W7GZQ21uReTM6IysH6xVZcC0taWlplVcfrWVtpijuFVHB5WVt1yiMiIgJA+U9XVvT+rP2Ppk6digkTJiA6OrpIoleRfYasr83NmzeLHcvM3a9l7dq1MWHCBPzyyy+4du0ajh49iqeffhoA8PPPP+Pzzz+3lV27di3S09MRHByMVatWoWfPntDpdHbb85Z+VVeuXClxmUqlQkhISInbCg0NtbXWlec4Lk2syb2YnBGVQ3BwMAAgKSnJ4fKMjAxbp2my9MsBLF/YZ8+edVjGbDbbTtU569NWVgqF5SOvuJYkax+sAwcO4K+//nLr/h3p2rUrAMvFEq6cRrWyHnNt27Z1uDwxMREJCQnlr6AT1tfSZDJh69atTstt3LgRgPtfS6uWLVvi66+/tr1uv//+u22ZNUZNmjSBr69vsfXztIKnp50ta9Wqle2UdXHUarWtz+iqVavcU0EUH2tyLyZnROXQunVrAJYr/Bz5z3/+49YR0qu6/v37265KdXa15pdffmnr92W9ItJdAgMDAQCpqalOyzz44IMICgqC0WjEK6+8UmwiJ8tysdtyxRNPPAGlUolbt25h2rRpLq9nvQLvyJEjDpe/8cYb5apXSVq1aoVmzZoBAGbOnOnwrg5r167F3r17AZT/tSzpfWRtEbMm4MCdGJ09e9Zh4nv48GGnVwRXti+++MLhXSfOnDmDn3/+GYDlVLurnnnmGQCW12Dt2rXFli188UxZYk3uxcgSlUPB4RSmTZuG9PR0AJZTPW+99RZmzpxpuyydLB/q1qRs8eLFGD9+PK5duwbA0iH5k08+sQ1ZMGrUKLRv396t+2/RogUAYPv27Th9+rTDMkFBQfj4448BWE4dDhkyBHv37oUsywAsCdmpU6fwwQcfoHnz5li9enW56tSwYUO89tprAID33nsPTz/9NM6dO2dbnp6ejh9//BEjR460W+9vf/sbAEtitHz5ctsFEBcvXsSjjz6KpUuX2lp2K8rs2bMBWOL5wAMP4OLFiwAsHd+///572/uja9euGDFiRLn2NWLECIwdOxbr1q2zS4hTUlIwc+ZM2y2SrENjAMCAAQOgUCiQkpKCv//977bTg3l5eVi6dCkGDBhQbEf+ymQ0GtG/f3/s378fgKV1d+PGjRg4cCByc3MRFRWF8ePHu7y90aNHo1+/fhBCYOTIkZg5c6bdFZdZWVnYvHkzXnjhBdSvX99u3bLEmtys8oZUI/JOxQ0Sa+VsIE6TySR69+5tGwhSkiTbLXckSRLvv/++S4PQOhvEtqTbswghxObNm912OxV37W/+/PkCgIiJiXG4vPDtm4KDg+1uR9W7d+8Sb9/kTHH1S0lJETVq1LAtDwsLEzExMSImJkbs3r3bruznn39ud7smjUYjQkND7W5NBCcDj5aWyWSyDYZq/fP39y/29k2JiYm22y4BllsGFbw1z9tvv12uY8+qtLdvCgoKsotby5YtxZUrV8oWmAIKDhaN/MFzC99i7YEHHigyCv/rr79uV6bg7aXq1asnvv/+e6fHiyvHmysDGzt7HYq7fZP17iDWmO7fv7/Idkt6v6alpYmhQ4cWiVvh252pVCq3xJrchy1nROWgVCqxZs0azJgxA7GxsfDx8YEkSRgwYAB+//13pwOlVncffvgh/vjjD9x///2oWbMmMjMzERAQgN69e+Obb77B77//XiEtGsHBwdi2bRsefvhh1KlTB2lpabh06ZLtSseCxo8fjzNnzuDVV19F69atodFokJqaCn9/f3To0AEvvvgifv/9d7ecelUqlfj000+xY8cO/P3vf0d0dDSMRiOEEGjWrBmeeuqpIqfOY2JiEB8fj6eeeso2tptWq8XQoUOxYcMGvPnmm+WulysmTpyI+Ph4jB49GlFRUcjOzoZOp8M999yDjz76CPv377fVrzzmzJmD2bNnY/DgwWjUqBGEEMjJyUHt2rVx7733YtmyZfjpp5+KnGp79913sWjRInTq1Ak6nQ5GoxENGzbEW2+9hUOHDrmlbu7QuXNnxMfH4/HHH4der4fJZEKdOnUwbtw4HDt2zNbHrzQCAwOxatUqrF27FqNGjUJ0dDRyc3ORnZ2NOnXqYMCAAXjnnXdsY51ZlTXW5D6SEMV0qCAiIqIKkZiYiHr16gGwnI6uW7euZytEXoNpLxEREZEXYXJGRERE5EWYnBERERF5Ed5bk+guk5SUVOoBP6OiomyX8FPZWEf6Lw1vGZ2+MnXs2NHpoM3O7N+/H1FRURVUIyLvw+SM6C5jNpttY4e5SqvVVlBtqo/Sxry6unHjRqlj5WiA27tB3bp1ix3kmKovXq1JRERE5EXY54yIiIjIizA5IyIiIvIiTM6IiIiIvAiTMyIiIiIvwuSMiIiIyIswOSMiIiLyIkzOiIiIiLwIkzMiIiIiL8LkjIiIiMiLMDkjIiIi8iJMzoiIiIi8CJMzIiIiIi/C5IyIiIjIizA5IyIiIvIiTM6IiIiIvAiTMyIiIiIvwuSMiIiIyIswOSMiIiLyIv8POnmrzl+9jhEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200, facecolor='w')\n", + "\n", + "# baseline: `python` id=0\n", + "baseline = data[\"0\"][:, 8]\n", + "\n", + "for simulator_id, data_ in data.items():\n", + " ax.plot(data_[:, 6], baseline/data_[:, 8], '.-', \n", + " lw=0.5,\n", + " label=desc[simulator_id])\n", + "\n", + "ax.grid(lw=0.2, which=\"both\", axis='both')\n", + "\n", + "ax.set_xscale('log')\n", + "\n", + "ax.set_xticks(data[\"0\"][:, 6])\n", + "\n", + "ax.set_xlabel(\"num_monte_carlo_samples\", fontsize=9)\n", + "ax.set_ylabel(\"speedup\", fontsize=9)\n", + "\n", + "ax.legend(fontsize=7, labelspacing=0.15, handletextpad=0.1, frameon=True)\n", + "\n", + "fig.savefig('speedup_vs_num_monte_carlo_samples.png', bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5e5cfb28", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAJOCAYAAAAj2mbaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wUdfrA8c/MltRNIw2SQCCU0DvSFBASigoiFiwnKJazoChnv98VPTt6KnoqNrALKEVACWgAQVBK6BAInYT0kJ5sm98fmywJqUAqed6vV16ZnfnOzLNDyD75VkXTNA0hhBBCCNHiqI0dgBBCCCGEaBySCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFCSCAohhBBCtFD6xg5AXN7Onj3L+vXrna/DwsJwcXFpxIiEEEKI5qG4uJhTp045X48YMQIfH586vYckgqJerV+/nuuvv76xwxBCCCGavaVLlzJp0qQ6vaY0DQshhBBCtFCSCAohhBBCtFDSNCzqVVhYWLnXS5cupWPHjnVy7cOHD9OpU6c6udblRp5N5eS5VE2eTeXkuVRNnk3l6vK5JCQklOtedf5nal2QRFDUq/MHhnTs2JHu3bvXybU1Tauza11u5NlUTp5L1eTZVE6eS9Xk2VSuPp9LfQy2lKZhIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJBIYQQQogWShJB0SxpdjsUFTm+CyGEEOKi6Bs7ACEuRNHBg2R+Np+cmBh0hYXEu7nhFR2N313TcY2MbOzwhBBCiGZFagRFs5G9YiXHbryJ7GXL0AoLAdAKC8letsyxf8XKRo5QCCGEaF4kERTNQtHBgyQ9/TRYrZUXsFpJevppig4ebNjAhBBCiGZMEkHRLGR+Nr/qJLCU1Urm/AUNEo8QQghxOZBEUDR5mt1OTkxMrcrmrF4tA0iEEEKIWpJEUDR5WlGRs09gjWULC9GKiuo5IiGEEOLyIImgaPIUV1cUN7falXVzQ3F1reeIhBBCiMuDJIKiyVNUFa/o6FqV9Ro7FkWVH2shhBCiNuQTUzQLfndNB30N017q9fhNn9Yg8QghhBCXA0kERbPgGhlJm1deqToZ1Otp88orMqm0EEIIcQEkERTNhve119B+8SK8r7/e2WdQMRgAaPvRPLyvvaYxwxNCCCGaHUkERbPiqBl8mS7bt2H78gsi1sWCTof5xInGDk0IIYRodiQRFM2Soqrg6oqhVSs8rhhEbi3nGRRCCCHEOZIIimbPFB1N/h9/Ys3KauxQhBBCiGZFEkHR7JnGjAG7nbxff23sUIQQQohmRRJB0ezp/f1x79+fnNWrGzsUIYQQolmRRFBcFkzR0eRv3oItJ6exQxFCCCGaDUkExWXBFB0FFgt569Y1dihCCCFEsyGJoLgsGIKDcevdm5zVMnpYCCGEqC1JBMVlwzR2LPkbN2LPz2/sUIQQQohmocUkgoqi1Opr5MiRNV7rp59+YvLkyYSGhuLi4kJoaCiTJ0/mp59+qpNY8/Ly2LBhA3PmzOHmm2+mffv2zvjCw8Mv+Hp79+7l/vvvJyIiAjc3NwICArjyyiv54IMPsFqtdRJzU2CKjkIrLiZvw4bGDkUIIYRoFqpYuFVUxm63c9999/HJJ5+U25+YmEhiYiJLly7lnnvu4cMPP0RVLz7Hvu6661hXR33dPvroIx5++GHMZrNzX1FRERs3bmTjxo189tlnrFy5En9//zq5X2Myhobi2q0bOatj8Bo/vrHDEUIIIZq8FpcIPvDAAzz44INVHvfw8Kjy2HPPPedMAvv27cuTTz5JREQER44c4bXXXiMuLo6PP/6YgIAAXnrppYuOUdM057afnx8DBgzg999/Jy8v74Kus2rVKv76179it9sJCgriueee44orriAzM5OPPvqIH374gT///JPJkyezbt06dDrdRcfcVJjGjiX9ww+xFxailqxHLIQQQojKtbhEMDAwkB49elzweYcOHWLOnDkADBgwgA0bNuBWkmgMHDiQiRMnMmLECLZt28brr7/O3XffTceOHS8qxttuu43777+fgQMHOq8RHh5+QYmgxWJh5syZ2O12vLy82LRpExEREc7j48aN46GHHuJ///sfGzdu5IsvvmD69OkXFW9TYoqOIu2//yVv40a8oqIaOxwhhBCiSWsxfQQv1VtvveXsTzd37lxnEljK3d2duXPnAmC1Wvnvf/970fe67777uPXWWy86kQRYsmQJR48eBeCZZ54plwSWev311/H19XVuXw5c2rfHpVMncmPWNHYoQgghRJMniWAtaJrGsmXLAIiMjGTw4MGVlhs8eDBdunQBYNmyZeWaeBva0qVLndtV1fS5u7tz8803A7B//34OHTrUAJHVP9PYseTFxmIv0y9SCCGEEBVJIlgLx44dIykpCYARI0ZUW7b0eGJiIsePH6/v0Kq0ceNGALp06UJwcHCV5cq+n02bNtV7XA3BFB2FPS+P/N9/b+xQhBBCiCatxfURXLRoEQsXLuT48ePodDqCg4MZOnQo06dPZ9SoUZWes3//fud2ZGRktdcve/zAgQO0b9++bgK/AHl5eZw6dapCPJU5P94Ldfr06WqPJycnX/A1L5VLp04Y27cnN2YNplpMBySEEEK0VC0uESyb1AEkJCSQkJDA559/zvXXX8/8+fPx9vYuV6ZsshMaGlrt9cPCwpzbpclYQ2vIeMue31QoioIpOpqz336LZvkXisHQ2CEJIYQQTVKLSQTd3d2ZOHEio0ePJjIyEk9PT9LS0li/fj0ffPABGRkZLF26lEmTJrFmzRoMZZKH3Nxc57anp2e19yk7/cyFTvdSV5pyvIcPH66zvpPp6ens3bu38oMRHdBlZ7Nv4ULo3btO7tecVPtsWjB5LlWTZ1M5eS5Vk2dTubp8LgkJCXVyneq0mEQwMTERHx+fCvujoqKYOXMm48ePJy4ujvXr1/P+++/zyCOPOMsUFRU5t41GY7X3cXFxcW4XFhZeeuAXoSHjrakWMT4+njFjxjhfd+rUie7du1/wfSqzd+/eKqcC0rp358g7c/E5dJjWt99eJ/drTqp7Ni2ZPJeqybOpnDyXqsmzqVxdPhdFUerkOtVpMYNFKksCSwUFBbF48WJnLWDpNDClXF1dndvmGkaiFhcXO7fPn2KmoTRkvKGhodV+VTdQpT6VNg/nrl2LZrM1SgxCCCFEU9diEsGadOjQgaiSCYgTEhKco4QBTCaTc7um5tP8/Hzndk3NsvWlucVbX7yio7BlZFCwfXtjhyKEEEI0SZIIltGtWzfndmJionO77ICLmkbJlm0qbayBFCEhIc7t5hBvfXHt1Qt9cLBMLi2EEEJUQRLBMqpqiy+bIB48eLDaa5Q93rVr17oJ7AKZTCZnUtcc4q0viqpiiooiNyYGzW5v7HCEEEKIJkcSwTLKTi3Tpk0b53b79u2dr9evX1/tNTZs2AA4auXCw8PrPshaGj58OOAYrFHdXH5l38+wYcPqPa6G5jU2GmtqKoW7djV2KEIIIUSTI4lgiWPHjrFmjaMJMSIiolzzqqIoTJo0CXDUoG3ZsqXSa2zZssVZwzZp0qQGGe1Tleuvv965PX/+/ErLFBQUsHDhQsBR69m5c+cGiKxhufXti87fX5qHhRBCiEq0iETwxx9/xGq1Vnk8JSWFKVOmOEfYPvjggxXKzJo1C51OB8DMmTMrTLVSWFjIzJkzAdDr9cyaNavSe02fPh1FUVAUhXXr1l3Eu6mdyZMn06FDBwBefvlljhw5UqHME088QVZWlnP7cqTodJjGjCZ39epGXftZCCGEaIpaxDyCM2fOxGKxMGXKFIYMGUJ4eDhubm6kp6ezbt06PvzwQ9LT0wFHk+pDDz1U4RqdO3fmiSee4JVXXmHbtm0MGzaMp556ioiICI4cOcKrr75KXFwc4EiqOnXqdNHxJiQkONcKLlU6+jcvL69CDd+4ceMqTNNiMBiYO3cu1113HTk5OQwbNoy///3vDBo0iKysLD766CO+//5753v+y1/+ctHxNnVeY8dy9tvvKNq3H7cedTOHoRBCCHE5aBGJIEBSUhJz586tMEdgWVOmTOHjjz8uN8lyWS+++CKpqal8+umnxMXFMXXq1AplZsyYwX/+859LinXjxo3cddddlR7LyMiocCw2NrbS+fomTJjABx98wMMPP0xKSoqzxrKsQYMGsWTJEmdtZ3Nht2sUWe3Y7RqqWn0TvPvAgeh8fMhdvVoSQSGEEKKMFpEILliwgPXr17N582aOHj1Keno6OTk5eHp6EhYWxtChQ5k2bRpDhgyp9jqqqvLJJ58wZcoU5s2bx9atW0lPT8ff35+BAwdy//33M378+AZ6V7Vz7733MmTIEN555x1++eUXkpKS8PDwoGvXrtx+++3cc8896PXN58dgf1IOH288yk97kim02HD7PonxPYO5Z3gHurXxqvQcRa/Hc8xocmNiCHj8sUbtuymEEEI0Jc0nA7gEI0aMYMSIEXV2vQkTJjBhwoSLOnf+/PlVDt4oNX36dKZPn35R169Mjx49mDdvXp1dr7Es25nI7IW7sNrP9fUrtNj4YUciy3cm8cbNvZnUJ6TSc72io8le/D3Fhw7j2uXyGxQjhBBCXIwWMVhENH/7k3IqJIFlWe0asxfuYn9STqXHPQYPRjWZyF29uj7DFEIIIZoVSQRFs/DxxqNVJoGlrHaNTzYeq/SYYjRiunoUuWti6iM8IYQQolmSRFA0eXa7xk97qp4Uu6xVe85gryJhNEVHU3w4geKjR+syPCGEEKLZkkRQNHlFVhuFFlutyhZabBRZKy/rMWwYirs7uTFSKyiEEEKAJIKiGXDV63Az1G56GzeDDld95WVVV1dMI0eQI4mgEEIIAUgiKJoBVVUY37PiPImVmdCzdbXzCpqioynefwDzqVN1FZ4QQgjRbEkiKJqFe4Z3QF/DxNF6VWHG8PbVlvG88koUV1dpHhZCCCGQRFA0E93aePHGzb2rTAYV4I2belc5qXQp1cMDzyuHS/OwEEIIgSSCohmZ1CeE5Q8PZ0q/UGefQTeDjmERrdAAT9fazY9uio6maNduLGfO1GO0QgghRNMniaBoVkprBvf9eyyLp4ax799j+fKeKxjWsRUvrTqA1Wav8RqeI0eiGAzkrlnTABELIYQQTZckgqJZUlUFV72KqiooisKzE7pyND2fb7fWPAhEZzLhMXQoOauleVgIIUTLJomguCx0b+PNDX1DeWvtIXKLLDWWN0VHU7hjB9a0tAaITgghhGiaJBEUl42/je1MbpGVD9fXvHKIafTVoNORu3ZtA0QmhBBCNE2SCIrLRmtvN+69sgMf/XaUM9mF1ZbV+fjgMWiQNA8LIYRo0SQRFJeVv46MwOSqZ87qQzWWNY0dS8HWrVizshogMiGEEKLpkURQXFY8XfTMGtOZH+JOszcxu9qypjGjQdPI++WXBopOCCGEaFokERSXnakDw+jg78FLqw6gaVqV5fStWuHev780DwshhGixJBEUlx29TuXZCV35/UgG6+KrHxVsGjuW/C1bsGVXX3sohBBCXI4kERSXpasjAxncwa/GSaZNUWPAYiE3NrYBoxNCCCGaBkkExWVJURSem9CNw6l5LNx2uspyhqAg3Pr0ITdGVhkRQgjR8kgiKC5bPUO9mdw3hDfXHCKv2FplOdPYseRv3IgtL78BoxNCCCEanySC4rL2t7FdyCmyMG/9kSrLmKKi0Mxm8tava7jAhBBCiCZAEkFxWQvxcWPG8PbM++0oydlFlZYxhobg2qOHNA8LIYRocSQRFJe9B0ZG4G7U80ZMfJVlTNHR5G3YgL2w+hVJhBBCiMuJJILisuflamDWmE4s3nGa/Uk5lZeJjkIrLCTvt98aODohhBCi8UgiKFqEWwe1pX2rqieZNoaH49KlizQPCyGEaFEkERQtgkGn8vT4SDYmpLP+UOWTTJuio8iLjcVuNjdwdEIIIUTjkERQtBhR3YIY1N6Pl1cdxGavWCvoFR2NPT+f/E2bGiE6IYQQouFJIihaDMck012JT8ll8fZTFY4bO3bE2KGDNA8LIYRoMSQRFC1K7zAfJvVpwxsxh8g/b5JpRVEwRUeR++uvaBZLI0UohBBCNBxJBEWL87foLpwttPDRb0crHPMaOxZ7djb5f/zZCJEJIYQQDUsSQdHihPm5c9ewcD5cf5TUnPKTTLtERmIICyM3JqaRohNCCCEajiSCokV6cGRHXA0qb645VG6/s3l47Vo0m62RohNCCCEahiSCokXydjPw6OhOLNx2ioPJ5SeZ9ho7FltmJgXbtjdSdEIIIUTDkERQtFi3XdGOdq08eHnVwXL7XXv2RN+6NbmrVzdSZEIIIUTDkERQtFhGvcpT4yJZfyiNDWUmmVYUBVPUGHLXrEGz2xsxQiGEEKJ+SSIoWrSx3YMYGO7LS6sOlJtk2mvsWKxpaRTu3NWI0QkhhBD1SxJB0aIpisKzE7pyMDmX73ecdu5369sXXYC/NA8LIYS4rEkiKFq8vm19ua53G96IiafA7JhkWlFVvKKiHM3DWsXl6IQQQojLgSSCQgBPju1CVr6Fj3875txnio7GkpRE0d59jRiZEEIIUX8kERQCxyTT04a244P1R0jNdUwy7T5gADofH3JjpHlYCCHE5UkSQSFKPDyqEwadyn/XHAZA0esxRY0hJyZGmoeFEEJcllpMIqgoSq2+Ro4cWeO1fvrpJyZPnkxoaCguLi6EhoYyefJkfvrppzqNuaCggNdee42BAwfi5+eHh4cHkZGRzJ49mxMnTtR4fl2+55bA293AI6M78d3WkxxKyQVKmodPnKQ4Pr6RoxNCCCHqXotJBOuC3W7nnnvuYcKECSxdupTExETMZjOJiYksXbqUCRMmcO+992Kvg7nnEhIS6NOnD0899RTbtm0jKyuLgoIC4uPjefPNN+nVqxcrVqyog3clyvrL4HaE+bnz8qoDAHhccQWql5esPSyEEOKypG/sABraAw88wIMPPljlcQ8PjyqPPffcc3zyyScA9O3blyeffJKIiAiOHDnCa6+9RlxcHB9//DEBAQG89NJLFx1jbm4u11xzDYcPO5oo7733XqZOnYqbmxuxsbG8/PLL5OTkcMstt7Bp0yb69OlT7fUu5T23NKWTTD/41Q42Hk5neCd/TKNGkRMTQ8AjjzR2eEIIIUSdanGJYGBgID169Ljg8w4dOsScOXMAGDBgABs2bMDNzQ2AgQMHMnHiREaMGMG2bdt4/fXXufvuu+nYseNFxfj6669z6NAhAF577TWeeOIJ57EhQ4YwcuRIRowYQUFBAbNmzWLdunXVXu9i33NLNb5HMP3a+vDiqgOsmDkc09hospcto/jIEVwiIho7PCGEEKLOSNNwLb311ltYrY455ubOnetMAku5u7szd+5cAKxWK//9738v6j4Wi4V33nkHgK5duzJ79uwKZYYOHcqMGTMAWL9+PVu3br2oe4nKKYrCc9d048CZHJbEJeIxbBiqu7s0DwshhLjsSCJYC5qmsWzZMgAiIyMZPHhwpeUGDx5Mly5dAFi2bNlFjTSNjY0lOzsbgGnTpqGqlf8TTZ8+3bm9ZMmSC76PqF7/dr5c07M1c1bHU6zo8Rw5kpyYNY0dlhBCCFGnJBGshWPHjpGUlATAiBEjqi1bejwxMZHjx49f8L02btxY4VqVGTBgAO7u7gBs2rTpgu8javbkuC5k5BfzycajmKKjKT5wAPPJk40dlhBCCFFnWlwiuGjRIrp164a7uzsmk4lOnToxbdo0YmNjqzxn//79zu3IyMhqr1/2+IEDBy44vtreS6/XO/sg1nSfi3nPtXX69Olqv5KTky/5Ho2lXSsP7hwSzvvrjlDU7woUV1dpHhZCCHFZaXGDRcomWuCYpiUhIYHPP/+c66+/nvnz5+Pt7V2uzOnTp53boaGh1V4/LCzMuX3q1KkLjq/0Xh4eHvj4+NR4r927d5OWlkZxcTEuLi6VlruY91xbZd/v5Wjm1R1ZtO0U7/x+ir9eeSU5q2Nodc89jR2WEEIIUSdaTCLo7u7OxIkTGT16NJGRkXh6epKWlsb69ev54IMPyMjIYOnSpUyaNIk1a9ZgMBic5+bm5jq3PT09q71P2alY8vLyLjjO0nvVdJ/K7nV+Ingp77m+HD58uM5W6UhPT2fv3r11cq3q3NTNxGd/nCS6fRcC1qxhb2wsBATU+30vRUM9m+ZGnkvV5NlUTp5L1eTZVK4un0tCQkKdXKc6LSYRTExMrLSGLSoqipkzZzJ+/Hji4uJYv34977//Po+UmTOuqKjIuW00Gqu9T9lkrLCw8ILjLL1XTfepzb0u5T3XVk21nvHx8YwZM8b5ulOnTnTv3v2C71OZvXv3Nsi0OJ0ibcQcX8+3nj15xGCgzcmT+I0aVe/3vRQN9WyaG3kuVZNnUzl5LlWTZ1O5unwuiqLUyXWq02L6CFbXzBoUFMTixYudNWKl08CUcnV1dW6bzeZq71NcXOzcPn+KmdoovVdN96nNvS7lPddWaGhotV/BwcEXdd2mxEWv46lxkaw6mktx34HkrJZ+gkIIIS4PLSYRrEmHDh2IiooCHFWxpaOEAUwmk3O7pube/Px853ZtmnfPV3qv2jQrX+q9qnvPorxreramT5gPP5g6UxgXhyUltbFDEkIIIS6ZJIJldOvWzbmdmJjo3C47QKTswJHKlG0qvZiBFKX3ys/P5+zZs7W6V0BAQJUDRWpS1XsW5SmKwt+v6cr3Lh3QVJXctTKnoBBCiOZPEsEyqmqLL5ssHTx4sNprlD3etWvXC46htveyWq0cOXLkou9TqiH6H1wuBoT7cWW/DuwL6kS2NA8LIYS4DEgiWEbZaVbatGnj3G7fvr3z9fr166u9xoYNGwAICQkhPDz8gmMYPny4c7u6e23bts3ZNDxs2LALvk+pqt6zqNxT4yKJDepJ4dZtWDMzGzscIYQQ4pJIIlji2LFjrFnjaO6LiIggJCTEeUxRFCZNmgQ4aum2bNlS6TW2bNnirMWbNGnSRdW2jRw50jmn34IFC6qcamX+/PnO7cmTJ1/wfaD69ywqF+7vQduJ49DQSF75c2OHI4QQQlySFpEI/vjjj1it1iqPp6SkMGXKFOdI3QcffLBCmVmzZqHT6QCYOXNmhelaCgsLmTlzJuBY9WPWrFmV3mv69OkoioKiKKxbt67CcaPR6JzG5cCBA8yZM6dCmc2bN/PJJ58AjmXoBg4cWKFMXbxnUbn7Jw5gf0BHDi1a3tihCCGEEJekRcwjOHPmTCwWC1OmTGHIkCGEh4fj5uZGeno669at48MPPyQ9PR1wNM0+9NBDFa7RuXNnnnjiCV555RW2bdvGsGHDeOqpp4iIiODIkSO8+uqrxMXFAfDEE0/QqVOni473iSee4LvvvuPQoUM8+eSTJCQkMHXqVNzc3IiNjeWll17CarXi5ubGW2+9VW/vWVTO18OI6+jRBHw7j4SjSXTsIE3qQgghmimtBWjXrp0G1Pg1ZcoULSsrq8rr2Gw27e677672GjNmzNBsNluV15g2bZqzbGxsbJXlDh8+rHXq1KnK+3h5eWk//vhjvb/nS7V3795y99u7d2+dXXvPnj11dq0LlXs6SdvfJVJ7c/abjRZDlWw2bW/cn5pWzc9hS9WYPzNNnTybyslzqZo8m8rV5XOpz8/QUi2iRnDBggWsX7+ezZs3c/ToUdLT08nJycHT05OwsDCGDh3KtGnTGDJkSLXXUVWVTz75hClTpjBv3jy2bt1Keno6/v7+DBw4kPvvv5/x48fXScwdO3YkLi6O9957j0WLFpGQkIDZbCYsLIwJEybw6KOP0q5du3p/z6JyniGtKezSHZ9tG9ly9E4Gd2jV2CFB8h7Y/B7sX0Z3SwGsdIduk2DIQxDcs7GjE0II0QQpmlZHC78KUYl9+/aVW2pn7969zW6JuaqkfzafM6+/wfP3vMl3s8agqo04Fc+exbDkfrBX0i9U1cPkD6HnjQ0fVxPT2D8zTZk8m8rJc6maPJvK1eVzqc/P0FItYrCIEPXBOzoKvd2K+44/+HF3I67Kkryn6iQQHPuX3O8oJ4QQQpQhiaAQF8kQEoJrz55MyT3Eaz/HU2SxNU4gm9+rOgksZbfC5v81TDxCCCGaDUkEhbgEpugoOh3fzdnMbOb/frzhA7DbYf+y2pXdv9RRXgghhCghiaAQl8ArOhqKi5nllcF7vyaQmW9u2ACshWApqF1ZS4GjvBBCCFFCEkEhLoGxXTtcIiMZnbYPgHd+OdywAejdwOBeu7IGd0d5IYQQooQkgkJcIlN0FJbfNvDw8LZ8ueUER9PyGu7mquqYIqY2ul3vKC+EEEKUkE8FIS6R19ix2AsKuIkkgrxcefXngw0bwJCHQNHVUEiBgfc0SDhCCCGaD0kEhbhELhERGCMiKFq7hifGdmH1vhS2Hs9suABUA6g6oIp5DBWd4+vnpyAvteHiEkII0eRJIihEHTBFR5EbG8t1Xf3pGeLNf1YeoEHmai/OhYV/Ab8ImBEDvW8712fQ4O54ff96x7GzJ2HeKDizu/7jEkII0SxIIihEHfAaOxZ7Tg6FW7fy7ISu7Dp1lhW7z9TvTTUNls+EnCS45QsIGwST34dnEtl3/Vp4JtHxOrgnhPaHe2PBoxV8OhYO/Fi/sQkhhGgWJBEUog64dOmCoW1bcmNWMySiFWO6BvHqzwcpttbjJNN/fAj7lsCkd8G/k3O3XYFCRcF+fkuxdwjc9TN0ioLv7oANcxzJpBBCiBZLEkEh6oCiKHiNjSZ37S9oVitPj4/kTHYRn/9+on5ueOpPiHkOBj8I3ScDEJ8Zz3Mbn2Pw14O5a+ddDP56MM9tfI74zPhz5xnd4cb5MOIp+PUF+OE+sBTVT4xCCCGaPEkEhagjpuhobFlZFGzbTsdAT24b1Ja5vx4mq64nmc5Lg4XTIGQARD0PwKqjq5i6YirLjyynsGTS6EJrIcuPLGfqiqmsOrrq3PmqCqOehRs/hQPLYf41kJtStzEKIYRoFiQRFKKOuPbogb5Na3JjVgPw6JhO2DWY+2tC3d3EboPvZ4DdAjd9BjqDsybQqlW+3rBVs1asGQToMQXuWgXZp+Gjq+HMrrqLUwghRLMgiaAQdURRFLyioslZswbNbsff04UHRkbwxZbjHE/Pr5ubxL4Ex3+DKZ+AVxsAPt//eZVJYCmrZuXz/Z9XPBDSH+6LBQ9/+HQc7F9eN3EKIYRoFvR1fcENGzbU9SUBMBqNDB48uF6uLURdMY2NJnPBAgrj4nDv358Zw9vz5ZYTvLb6IP+7vf+lXfzQavhtDoz+B3QYAYBds7PmxJpanb7mxBpeGPYCqnLe339ebeCun2DpA46paK7+O1z5N1CqmJdQCCHEZaPOE8GRI0ei1MMHSHBwMImJiXV+XSHqklufPugDAsiNicG9f39cDTqeGNuFxxfuYvuJTPq387u4C2cddwzs6DwOhj3m3F1kLXL2CaxJobWQImsR7pWtTWx0h5vmw/pX4df/QOpBx2hkg6xNLIQQl7N6aRrWNK1evoRo6hRVxRQVRU7MGufP7PV9QujexuviJ5m2FMHCO8HVGyZ/UG69YFe9K2762iVrbno3XPWu1QSvwMin4cbP4OCKkkEkyRcerxBCiGajXhLB4OBg7HZ7nX0J0ZyYoqOxnjlD0Z49AKiqwnMTuhJ38iyr9lxEYvXzU44aulu+ADffcodURSWqXVStLuOmdyP2ZCw2ew1zG/a4wdFUnJPkGESStPPCYxZCCNEsyGARIeqY+4D+6Pz8yI2Jce4b2tGfqyMDL3yS6Z1fw/b5MOF1aN270iJ3drsTvVJ9Lw9VUQl0C2TWullMXDqRbw9+W32Tckg/x0oknoElg0iW1T5mIYQQzUadJ4JeXl54e3s3+WsKUV8UvR7T6NHlmocBnhkfyemsAr7YXMtJppP3worHoM8d0O/OKot18evCi8NfrDIZ1Ct6Xh7+MosmLuLrCV/TtVVXXv7zZaIWR/HOjndIL0yv/MJerWH6Kugy3tE0vf41WYlECCEuM3U+WOTs2bN1fcl6uaYQ9ckUHc3ZRYsoPngQ165dAegUZGLqoLbM/TWBG/uH4uNurPoCRdmOEbytOsE1c2ocwTuhwwTaeLbhzp/uRK/qsdgtuOndiGoXxZ3d7qSLXxcAegb0ZM6IOSTmJfLl/i/56sBXzN83n2s7XMud3e6ko2/H8hc2ujsmng6IhNgXIe0gTHpPBpEIIcRlQpqGhagHHoOvQPX2JqdM8zDArDGdsNrsvFvdJNOaBksfhPwMuHlBrZOuIlsRGhrfXfsdn/X5jC23beHF4S86k8CyQjxDeGrQU6y5aQ0P932YTUmbmLx8Mg+sfYAtZ7aUH9SiKDDyKceo4oOr4LMJkHOmVjEJIYRo2iQRFKIeKAYDplGjyF1dPhEMNLny1xERLNh8nJMZBZWf/Ptcx6jdye9Dq4ha33N7ynZ8XHzo6NMRV51rxfkCK+Fl9OLuHnfz8w0/89Lwl0grSOPemHu5ecXN/HjkRyx2y7nC3SfD3T85RhJ/dDUkxdU6NiGEEE2TJIJC1BPT2GjMR49SnFC+9u+eKzvg52Hk1dUHK550fBOs/RcMmwWR11zQ/Xak7KBfYL+LmsfToDNwXcR1LLpuER9Ff0Qrt1Y8u/FZxn0/jk/3fkqOOcdRsE1fuPdXMAXDp+Nh35ILvpcQQoimo1ETwS+//JIJEybQtWtXBgwYwF//+lf279/fmCEJUWc8hg1D9fCo0DzsZtTxt+gurNx9hu0nss4dyE2GxXdBu6Fw9f9d0L0sNgu70nbRL6jfJcWsKAqDWw/mgzEfsGTiEoa1Gca7ce8StSiKV/98lcS8RMcgkrtWQeQEWDQd1r0qg0iEEKKZqrdE8OzZszzwwAO0bt0ak8nEgAEDWLhwofP47bffzrRp01i9ejXx8fHExcXx0Ucf0bdvXxYvXlxfYQnRYFSjEc+RIys0DwPc0C+Urq29eGlVySTTNissvhtQHOsI6y5sHNe+jH0U24rpH3SJy9iV0dG3I88Pe56YG2O4vevt/Hj0Ryb8MIEn1j/B3uwjjjhH/R3WveSI3VK7FU6EEEI0HXU+ahjAarUyZswY4uLinJ3Od+zYwa233orRaOT06dN88803AAQGBtKuXTtOnz7NmTNnsFgs3HXXXQwaNIi2bdvWR3hCNBjT2GhyVq7EfOIExnbtnPt1JZNM3/HJH/y8N5nxZ/4HJ7fA9BVgCrrg++xI3YGb3o1Iv8i6DB8Afzd/Hun3CPf0vIdlR5bxxf4vuHXlrfQL7Mf07tMZ4T8fdemD8Nl4mPqNo8ZQCCFEs1AvNYKffvopO3bsQNM0Ro8ezezZsxkzZgyapvHWW2/x/vvv4+vry/Lly0lOTuaPP/4gMTGRX3/9lTZt2lBQUMAHH3xQH6EJ0aA8r7wSxc2tQvMwwPBO/ozsEsDGFfPh93cg6t+OZuGLsD1lO30C+qBX6+VvOwDcDe7cGnkrP17/I2+NfAu7ZueR2EeYdOhTFo75G4W5KfDRKEjcUW8xCCGEqFv1kgguXrwYRVF47LHHWLNmDa+//joxMTE8/vjjbNiwgYMHD/LKK69w7bXXljtv5MiRvPfee2iaxtq1a+sjNCEalOrmhueVV1baPAzwj6GuPF30NscDR8OQhy/qHnbNTlxq3CX3D6wtnapjdLvRfDHhC76c8CWdfDvxYvznRLfx4z1fbzIWXAN7f2iQWIQQQlyaekkE95Sssfq3v/2t3P6yr89PAkuNHz8evV7P4cOH6yM0IRqcaWw0RXv3YklMLH/AXECHXx+g2KUVt6fdSXaR9aKufzjrMLnm3DrtH1hbvQN68+bIN1kxeQUTOlzLAheN6JAA/hU7m6MxT4OsFS6EEE1avSSCmZmZuLm50bp1+b5CwcHBuLu7O7crYzQa8fX1JTc3tz5CE6LBeY4YiWI0khOz5txOTYOVsyHjCMotX5Blc+V/sdVMMl2N7Snb0at6evr3rKOIL1yYKYxnrniGNTeu4YG+M9ngG8CkMyt56Ksr2Xrqt/ITVAshhGgy6iURtFgseHl5VXrMZDIBVDvXmaqq8sEhLhs6Tw88hg8nt2w/wR0LYNfXcN1btIrox/1XRfDZpuOcyqxikulq7EjdQU//nrjqXesw6ovj7eLNPb3u5edbN/Kf9lM4U5TJ3b8+yC3Lb2Dl0ZXlJ6gWQgjR6GRCaSEagCk6isK4OCwpKZC0E1Y9Cf3vgt5TAbj3qvb4uBt4fXX8BV1X0zTnRNJNiVFnZNJV/+L7a77hwxwbvqmHePq3p5nwwwQW7FtArllq/IUQoimQRFCIBmAaNQr0enJXLoOFf4GgbjDuFedxd6Oev0V3YfmuJHaeOlvr657KPUVaYVqDDRS5UEqbPgydHsuHBLM4OYNBrkG8teMtohZH8frW1zmTJ2sWCyFEY6q3uSYKCwv5/PPPK90P8MUXX1TZ/FtaRojLhc7bG4/Bg8n9bh5+o3Jg2gowlG/KndI/lE83HeOllQf47v7BtVoqbnvKdhQU+gb2ra/QL50pCKavpMvymby4bSGPDpvJN37+fHdoIV8d+Iro8GimdZ9G91bdGztSIYRoceotEczJyeGuu+6q8vj06dOrPKZp2kWtlypEU2ZqD8mb8rBe/SZ633YVjutUhWcndOXOT/8kZn8KY7tXPqCqrB2pO+ji1wWT0VQfIdcdgyvcMA8CIwn85Xke7TaJeycuZ8nJ1Xyx/wumrpjKwOCBTOs2jStDr0RVpLFCCCEaQr39ttU07aK/hLjsHF2HKe97QCX3mK3KYld1DuCqzgG88tNBLLaap17ZnrK9yfUPrJKiwJWz4ZYv4fAa3L+8gdvbjGTl5JW8MeINim3FPPzrw1y/7HoWH1pMsa24sSNuMTS7HYqKHN+FEC1KvdQIHjt2rD4uK0TzlJMEi2eg73oV7kk+5MbE4HvLzVUWf3ZCJBPe/o2v/zjJtKHhVZZLK0jjVO6pRpk/8JJ0vQ7uXg3f3AofjUI39Ruiw6OJDo9mZ+pO5u+bz/Obn2du3FymdpnKLZG34Ofq19hRX5aKDh4k87P55MTEoCssJN7NDa/oaPzumo5rZN0vVyiEaHrqJRFs165is5cQLZLVDAungd4FpnyMSR9DyksvYzt7Fp2PT6WnRAZ7cVP/MN5ae4jJ/ULwcjVUWm576naAJjtQpFqte8G9v8J3t8P8CTDpPeh5I30C+/BW4FuczDnJF/u/4NO9n/LJ3k+YGDGRv3T7C+292zd25JeN7BUrSXr6abCem8hcKywke9kysleupM0rr+B97TWNGKEQoiFIRxwh6tOaf0BSHNy0ADz8MY0ZAzYbub/GVnva49GdKbLY+V/skSrLbE/eTjuvdvi7+dd11A3DFOQYNNNtEnw/A379j3MlkrZebXlu8HOsuXEN9/W6j19P/sqkpZOY+etMtiVvky4kl6jo4MEKSWA5VitJTz9N0cGDDRuYEKLBSSIoRH3Z+wP88T6MfQnCBgJgCAzErV+/8pNLVyLIy5V7r+rAp5uOcTqr8kmmd6TuaH7NwuczuMLkD2H0P2HDHFg0Dcz5zsM+rj7c1+s+Ym6M4d9D/82pnFPctfoubl15Kz8f+xmr/eKW5WvpMj+bX3USWMpqJXP+ggaJRwjReJpEIpiYmMgff/zB8ePH6+0eiqLU6mvkyJE1Xuunn35i8uTJhIaG4uLiQmhoKJMnT+ann36q05gLCgp47bXXGDhwIH5+fnh4eBAZGcns2bM5ceJEra9z4sQJZs+eTWRkJB4eHvj5+TFw4EBef/11CgoufCULUQtph2D5TOgxBQbdW+6QV3QU+Zs2YcvLq/YS91/VAS9XA3MqmWQ6uzibw1mHm89AkeooClz5OEz9ChJ+gU/HQfbpckWMOiOTO01myaQlvD/mfTyNnjyx4Qmu+eEaPt/3OfmW/Coufo5ds1NkK8KutewBEZrdTk4Nf4iUylm9WgaQCHEBmuPvmXqbPgagqKiIpKQkVFUlPDy8wvGsrCxuv/12Vq9e7dzXp08f5s+fT8+ejbdualXsdjv33Xcfn3zySbn9iYmJJCYmsnTpUu655x4+/PBDVPXScuyEhAQmTJjA4cOHy+2Pj48nPj6ejz/+mK+++oprr7222uv8+OOP3HHHHeTk5Dj3FRQUsG3bNrZt28bHH3/MypUr6dix4yXFK8ooznNMGu0VAte940h0yjBFRZHy8ivkxa7D+7qq//08XPTMju7MMz/s4e7h7ekV6uM8tjN1Jxpa8+wfWJXIa2BG6SCSq2Hq1xA6oFwRRVEYHjKc4SHDOZh5kM/3fc5/t/+XD3Z9wI2db+S2rrcR7FF+2p34zHg+3/85a06sodBaiNteN6LaRXFntzvp4telId9hk6AVFaHVcq5WrbCQo9dPxhgWhiGkDYY2bTCEhGAMCcEQEoLq5SVTfbVQmt2O1WxGs9tRLvHz7nLQnH/PKFo9drZ5++23efzxxxk1ahRr166tcHzEiBFs3LixQn+fVq1asXv3blq3bl1nsZT+snrggQd48MEHqyzn4eFB+/aVd0h/5plneOUVx2oQffv25cknnyQiIoIjR47w2muvERcX5yz30ksvXXSsubm5DBgwgEOHDgFw7733MnXqVNzc3IiNjeXll18mLy8Pd3d3Nm3aRJ8+fSq9TlxcHMOGDaOwsBBPT0+eeeYZRo0aRWFhId9++y0fffQRAJ07d2bbtm3OdaDr0r59++jRo4fz9d69e+nevW4mDt67d2+5azcJmgbf3wPxP8F9sRBQ+S+AYzffgiEokNC5c6u9nNVmZ8I7v+HrbuTb+85NMv3m9jdZeXQla29cW+kHcZN8NrWVlwrf3eFYim/Se9DrpmqLJ+cn8/XBr1kcv5hCayHj2o9jWvdpRPpFsuroKp7b+BxWzQoa6G0KVp0GCugVPS8Of5EJHSY0zPtqAqyZmWQtWkz6W285flZrotfjPeUGrGfOYElMwpKYiFZU5DysenpiCAlxJoiOr3PJourt3ewTxWb9f6kepB4/yvaVSzn0xyasxcXoXVzofMUw+l9zPYHhHRo7vEZR7vfMeS7190x9foaWqtcawfXr1wMwY8aMCsdWrlzJb7/9htFoZN68eUyePJl9+/Zx5513cuTIEebMmcMbb7xR5zEFBgZe1H/qQ4cOMWfOHAAGDBjAhg0bcHNzA2DgwIFMnDiRESNGsG3bNl5//XXuvvvui65le/31151J4GuvvcYTTzzhPDZkyBBGjhzJiBEjKCgoYNasWaxbt67S6zz66KMUFhai1+uJiYlhyJAhzmNXX301nTp14sknn+TQoUO88cYb/Otf/7qoeEUZWz+GvYvhxk+rTALB0Tyc9u572AsKUN3dqyyn16k8M6Erd322lbUHUonqFgQ45g/sH9i/2X/IVsozEKb9CD8+Cj/cA2kHYNTfoYpah2CPYB7v/zj397qfHw7/wJf7v2TF0RX0aNWD/Zn78c7W0f1YK9olu2OwqVh0dk4EF7CvfQ7PbXyOCJ+IJv8X+6Uq3L2brK++JmfVKlAUDGFhWE6erPE872uvpc2//+18rWkatsxMLImJWJIciaElMRFzYiL5WzZjSUwqV9uouruXSRBDyieNoSHofHya9M+w1HqVd2DTen5+703stnNzoVqLi9m/4VcOblrPuIcep+uwEY0YYcOLz4wvlwQqmobRAmYDaIqCVbM2+d8z9VojGBkZyeHDh0lLS8PPr/w8YHfccQfffPMNDz/8MG+//bZz/8aNG7nqqqvo2rUr+/btq7NYSn/Z/POf/7yohOfBBx/k/fffB2Dz5s0MHjy4QpktW7Y4k60HH3yQ995774LvY7FYCAgIIDs7m65du7J3795Km5n/+te/8uGHHwLw559/MnDgwHLH//zzT6644goA7r//fj744IMK17Db7fTo0YMDBw7g4+NDamoqBkPlU5VcrBZVI3h6m6N/28AZMP7VaouaT57kSPRYQt56C69xY6stq2kaf/nkT5KyC1k96yqsWjFDvx7KU4OeYmrk1Irl7Rq7d+2lV+8eKGrT/ZCtkabBprdh7b8czcaTPwQXzxpPs9qtrD25lhe3vIjvMTNX7vJH1So+B7ui8VvvdHpeOYYXh79YD2+gcdmLi8n56Seyvvqaoj17MISE4HvbrXjfcAPWlBSOTpmCUjJpuYaCXTWg2i0oOD4SNJ1Kh++/v6D5BDVNw3b2LJbTic4ksWzSaE5MRCvTL1lxd8cY0gZDm3M1iWW/dL6+jZIoSq1XRanHj/LVs4+VSwLPp+p03P7Sf1vUM3pu43MsP7Kcdika1/5pZ2A86OxGbKqZrV1gxSCVE0EKEyMmXtTvmWZfI5icnIzJZKqQBAJs2LABgKlTy3+QDR8+nNatW9frwJELpWkay5YtAxzJbWVJIMDgwYPp0qUL8fHxLFu2jHffffeCf4nFxsaSnZ0NwLRp06rsazh9+nRnIrhkyZIKieDSpUud21Ut9aeqKnfeeSfPPPMMZ8+eJTY2lujo6AuKV5TIz3DMF9imL0S9UGNxY9u2uHTtSm7M6hoTQUVReGZCJNfO3ci3f56kS3gqVs1aYcRw+ulcdq49xZEdqVjNdrYY1xPRL5A+Y8LwD23iS9BVRlFg+Czw7+xobv9sHNz6LXiHVnuaXtUT3S6aN1b9u8okEEDVFK7c5c/PXmtZ3y4aN70bRp0RF50LLnoXx3edC0adEVedKwbV0KRrr0pZEhPJ+vY7zi5ejC0rC4/hwwl9/394XnUVik4HwBEtlXevUfhLbAhJIVeTGtAXu84F1VZMYFocbRJ/5YtRyTwaqHAhdRiKoqD39UXv64tbz4p/pDkTxZJm5rK1igXbtmNZthx7/rmBP4qbW0kNYvm+iaU1i7pWrer83+TApvX8NHdOuS5LpbVeB36LZfzMv7W4Wi+A7SuXVpsEAthtNnasWsa4Bx9roKgah12zk2/JJ7s4m9XHfmLYPjs3bmpDQutQ1nXLAqyAHg+bL7OWnWbxsCTW6FbzwrAXmuTymXWeCLZv3975HzMnJwedTkeHDhX/Ojh9+jSKonDrrbdWSHYyMzMxm83lzps1axaPPPJIXYdbK8eOHSMpKQlw9GuszogRI4iPjycxMZHjx49X2d+wKhs3bix3raoMGDAAd3d3CgoK2LRpU5XX8fDwoH//qqcYKXuPTZs2SSJ4Mew2RxOmtRBumg96Y61O8xobTca8j7AXF6O6uFRbtnsbb6b0C+W/aw9z5/h4vIxeRPhEOI8f2prML58dwG4v8+FlthO/JZnDf6Yw+q6udB5Y89rFTVLkBJgR4xhEMm+UYxBJ2MBqTymyFtExwaXKJLCUqil0PuLGw78+XKtQyiaGzqSxkn1GnRFXvStGtfzr0u3S8yp7XW5fSUJqVI3VJjyappH/++9kff0NebGxqB4e+NwwGZ+pU3Gp5HfQ59vf5kxQf7b1vwMVnXO/XedCcvBgkoIHciboSz7f/g4vRl14y0ZVyiWKPSrWamiahj0nx1l76EgSHcliYdxOcn5cgb3MaHvF1bVM/8Q2zgSxNGHU+ftfUKKYevwoP819vcruk5qm8dPc12kVEtZotV52uw2bxYLNaj333WrBbrVitTi+l91vs1rOe20td77dVvN5VouZxAO1a6Hbv+FX9C4uGF3dMLi6YnBxdWy7uGBwdcPg4urY7+qKseS4wdUVvdGlQf/QKrYVk2vOJac4hxyz4yvXnOvYV7Jd9ntO8bntPEuec1RwuxSNMbu6syu0CEgrcwcr+bo0doW6MWZXd07776fIWoS7oequQI2lzhPB0mZXTdO49957cXNz45///Ge5Mjt27GDu3Ll06tSJZ555psI1XnvtNQ4dOlTuvKoGRFyoRYsWsXDhQo4fP45OpyM4OJihQ4cyffp0Ro0aVek5+/fvd25H1tBMUvb4gQMHLjgRrO299Ho9HTt2ZPfu3Rw4cKDC8dJ9HTt2RK+v+p/5/Hgv1OnTp6s9npycfMHXbHbWvwZHYuEvS8A7pNanmaKjSXvrbfI3bcJ09dU1lp8d3ZkVu5NYefh3+gX2c/5lmX46t0ISWJbdrvHLZwfwa+3RPGsGAYJ7lKxEcgfMvwYmvQu9ql6mz0U1Ep7sUatLhyd78H//+gobdoptxRTbiym2FlNsK8ZsMzv2lfk6f5/zdck5hbZCss3ZztelZYpsRc6yFrvlgh+BUTVWqKn0NhvovyOXAb+n0yq1kIwQT+Jv68HpoRHo3G24pC/GJav8OUadkT8OH2ViwmxnEuio/XLUYiiKgoqOUQl38KPbmyQNScKgGtCpOnRKyZeqQ6/o0am6Oq3hUBQFnbc3Om9vXLt1q7SMrSRRPL/JuXDXbnJW/YS9zAwJiovLuUSxkgEten//cn3/fv3otRrH0Gga/Dz3P4y6e5YjUbJZK03MKiZqFqwWK/bqErMyr+1WK1breQmaxYJ2idOS6PR6dAYDqt6AXq9H1RvQGQyO/XqD87hOr0fV63Fxc8fFvXb/lxzPR+P03l1YLRYsxUVYiouxmM01D05SwGAwYDDoMRj1ju8GneNLrzq/jAYVvQ70OrDrbFhVGxbVQrFioVi1UqhaKFDN5CtWcnVmclULOVjJ1azkYCNXs5GLneIqck69puGlgclux8uuYbLZ8LXbaGezleyzO77b7HjYNXbH9eKETxFQ1b+LnRM+RUzY3gZXtXaVBA2tzhPBadOmObeffvpp0tLSuOqqq8olRPHxjnnRxowZU658qXfeeQcvL69Kj12qsokWOKZpSUhI4PPPP+f6669n/vz5eHt7lytTNtkJDa2+WSosLMy5ferUqQuOr/ReHh4e+FSxBFnZe+3evZu0tDSKi4txKalVKioqIj09vVbx+vr64uHhQX5+/kXFW/b9NrS0tDR27NhRbp+vry/t27enqKiowr81QL9+julW4uPjyc8vP/dceHg4fn5+pKWlVXgWJpOJTp06YbPZ2LVrl3O/V+qfRGx5FfuIp9FFjOLIkSPOpv1SISEhBAUFkZWVVWEdbrewMHJXr8Z09dXExcVVGEHftWtX3NzcOHHiBBkZGUzo6EJM0UEGFE4mMTGRkJAQtv50tMoksJTdrvHrwp10HOn4hd6pUydMJhOJiYmkpKSUK9uqVSvatWtHYWFhhT8OFEWhb9++gOMPh8LzpiFp3749vr6+pKSkkJiYWO6Yt7c3ERERWCwW9uzZUyHG3r17o9PpOHz4MLm5ueWOhYWFERAQQOZ189F+fJRWP9xL8p5YkiJn4OFpoksXRwNm6c+DzWxGb6td7YLeprD4kVnojC7oXVzRuTi+u7h7ENi6De7uHhRlZ+NqMOLp4orOxR29ix8dIyPx9Q8gPessGVlZ5Woz/P39adu2LQUFBRw8b3UOVVXp1bsXxbZi9uzfQ25hLhbNgtluxqJZCAgOwOhuJDktmZSMFOd+i92CzlWHp7cnuqOJtFr2Jx23H0W12kno0Yqfrg8no0cAZs1CdlY8RWlFzvMsmgUrVse17BZGnbkdnabDbk3DWrwdu/kQpYmgauyM3qU/On0AXc9cxdjva+i6AOhQ0aGglm4rSsl3FaPeiF7RYbfaUEr2qYoOHSrubh4YdAasFht2m4ZO0aMqOlRFj5urOyZPLzS7Qm5uPjpFh4qKTtGh1+kJDgxG56cjM7gYrW8rdASiKv1wKbIRajXgmVmI7WQK9uRMDDmJ6LYdQd1QjGa1YVUVLDodFr0Os5sLFhcDZr2OfJutwnRPlUk7ncrC55+t/HmoKoqioup0KKqKqqqoqg4XV1f0Oj1WmxU0zVFGUVEVBVdXF9yMLmg2KC62oqKgqnpUgw69i4qXhzuq3U5eTjY6ux1Vs6FqGqrdhsnVFT1gLijAbilGtdocZew2jKqKi6KAxYK1qBDFZkex2Rwr+Ng19KqKZrNjM1vQbI592O1odg1FU8Cuodk1bFaNwz06oSk1J6GKpjLwp98o+xQ1wK4oWHUKNlXFpipY1XPbNp2C1blfdewv2VesqhSo547bSo+XbGtV/nvpcUOPGxBst6NqGjq7HZ295LumVbLt+FI10Gl2VDuods3xrDVKjmkommO/ommo7UNBl1ZFDKXsqLYQtOICcPeq8Rk2tHrtIzho0CBWrlzJY489xsKFCzEajRw9epQPPvgARVGYNGlShXMsFgv79++v80EA7u7uTJw4kdGjRxMZGYmnpydpaWmsX7+eDz74gIyMDJYuXcqkSZNYs2ZNuUETZT+UPD2r76zu4XHuL6e8GiYMrkzpvWq6T2X3Kk0ELyTe0uvk5+dfVLwX6vDhw3W2PNiCBQtYsKD8ygfXXHMNr7zyCidPnuSaayquk1qagNx+++3s3r273LGXXnqJ6667jm+++abC9D9Dhw7lww8/JC8vzzkgqK23wo77PFh12oZp1GD89u5l5syZFUZx/+1vf2PatGmsXr2av/3tb+WO/atLJDdlZJA5NY4rrrgCi6V8TdGSJUvo2LEj//znP/nhhx9w7+JDh2dCmf/dcdKW/pNHH32Uo3Fp1GZu+NP7cpg6ewQaGp9++ikDBw7krbfeqjAv5g033MC///1vEhISmDx5crljBoPBmWzdfPPNFRLFOXPmMHbsWBYsWOAcZV9q5MiRzJ07l8zMzEq7PWzevBlPT0/uv/9+fv/993LHnn32WW699VZ+/PFHnn12EX8bauRV7Ss2L1/Aq4cj+PjzbwCc3SAU4MUp4zDqdOffpiJVhdbtWLlyBa4GPW4GA64GPd6ennTpGIG1qJCzGRm4Gsr/uiz7J4jNbqfQbKHIYqXIYsXLz4+OXSLJKyri5zVrKbJYKLRYKbJY0FQdc978L3pXNx557DEOHTlKocWKrWTi5nfeeYdRo0ax7tN15QbS6YFZw4YxISgYZd8+0qxW5p09y8KzZ0k7cAAWwfbt2zEajdx1113s37WNSH+VSH+Vrv46briqOx1MNsg5zQcZvbGZD2LJ/5nyNRlW7Ob9mM0HMXiMIyK9Lx0yF9O2fSiqXiMtIxlzcQGoNtBpKKodNw8X9C4KFlsxxZZC0Gug2kEHNhRsSvnvVgVsgE1RsAHWku82RcGqgWbTgVWHZteRY1XBpqJYddhtKppVh92qYrOpJNp06Kw6VKuC3qqiWlUUq4pmVUmq0CVABZM7mNyxqnZsqgaKHVWzo7fZMFotuObbwK32H9JDD57ExW5H1comCxqX2ripAZqiw67q0RQ9Fr2KXafHrtPhrTq+23WO43adniy1CE3Voen02BWPku86NFXv2K/qsat6bO4qmuI4Zlcc19YZXLAreixWDVvJPju6kmOuKKoBi13BaldRiv9As9TcaqS4RLJu5KxLfAo13APH/wc9oGk20MyAFU0rBrsFTTOjYXXs16xoWECzYMWC1W52vkazlN/WLFD6mur7Q56LpKYk0CFfl8X2uL24e19YIpiQkHBB5S9GvY4aXr16NePHj0dRFPz9/WnXrh379u2jsLCQ3r17O+fdK2vFihVMnDiRhx9+mHfeeafOYjl79myVNWwpKSmMHz/eGc/bb79drj/iCy+8wD/+8Q8AfvnlF66uphnv119/ZfTo0c7z/v73v19QnBERERw9epSwsDBO1jC9w5133skXX3wBOGofS2v/Tp06Rdu2bQH4y1/+wueff17tddq2bcupU6eIiIi44B+6mpqG4+PjGTNmjPN1XY54io2NrVB721A1gorNTOdNj6A3Z3Pwqg/p1n8YBoPhwmsEU1LgsccJm/chh02mGmsEV6WtYnHyErIP/JNPbunKld06MO/R9bV+Zl2i3PFqo6drjy7Ns0YwM9M5kMw7+XfCt/8HiykU1+lLwCfMmaSa8/PY8dXHFGZl1vhMuo8YzdA7ZlT42XdxcXH+rO7evRuLxYzNbMZaVIS1uIjWgQGomsaZ06fITEvFWlyErbgYa3GRo4ZBgcLcXHLPZjmP2SzmKuNQ9Xr0Lq64eXri5mkCvQEbCnpFwZCcgsuJExjyCnAPa4vX8OFkBgejd3PHRS3G05KGZ/EZ2nkUoaQfxnJmH4aCc90yzK7+4N8ZfXB3ThR0YEVMK8y5X1F1cxaAitF0O6o+oMZn6Pi5tYBWjKaZnd8VzFDypdmLgGLQzI4PbM1csm1Gsxdjt5tLPoCroqCqBhTVgE41oNe7oNPpARWdqkdVdeh1KjpVh4vRgEGnR8GOotnRqQo6HaiKHb0OdDoNTbNgtRajKVbQLBRbLBw4noOjZrQmekJMoaA3YlcM2BU9NsUAOgM29Ni0kqQLvSPpQg+KI3WxayqapgNNh4YORdODpkMp83Wp7NiwqVbsig2basOuWLEpNuxqyXfFWsX+0vNKj9uwKVYUTaP3qb61/pnZ2PEXjEYXDIoBo2LAqDj6ubqoRnw8fDC5mcACtiKb85hRNeLt7k1ocCiKplT62RIWGoaqqqSkpFBUZj5LAF8/P0yenuQXFJBR0iJWymh0ITjYMfWW83O1zK/a1q1bozcYyMhIpyDfMardbrdjt1nwdHfB3c2FgrwcMtJSsdvM2K0W7DYzNnMhqfsrzpFclfve/xqT34Ulgs1+1PDYsWN56aWX+Mc//kFaWhppaY7MOSwsjG+//bbSc+bOnVtlbeGlqK6ZNSgoiMWLFxMZGYnFYmHu3LnlEkFXV1fnttlc9S9ygOLiYud26TyDF6L0XjXdp7p7XUi8Za9zMfHW1PR8flJUlwICAqqsOXZ1dXUmfZUpbUqs6roBAZV/+Ol0Osd1VzwOucfg7tX0Djl3n4iIiErPA0eS6uvrW26fpmkceestcmJi6Puf/1R5brt27WjXrh2f/foZ/YP7ciLDm4+2ZjCyVwR6o4rVXLt+Q/FrHL/kDgftIyjci6D2XoS270irUE90uvK1im5ubtU+w65du1Z5LCgoiKCgoEqPGQyGaq/bqVOnKo/5+fmVmYWgH/Qfhe6bqfCRYxBJ7159ifvpR7Z+/y2aZkdR1Gr7VKk6Hf0mTMLLy6vamHr16lXlsYj+g6o8dj67zUZxYQHF+fkUF+RjLsinuKCA4oL8Ml+O1wWJieQfP07B2UysOhWbrwmLnyc2WwFsqHyJOINqx8Wow+jaExePIehcfbDrvLBmu1B8RqVws4LdVoTN/AvVf6AD2LEUxNBr9FVYigoxFxZgLirEUlSApbgQc1EBlqJCrOZCLMWF1fYB0xlc0Bvc0Bld0Rlc0etd0Rk80RncUPUu6PSuqDpXVL0rOp0Lit4FVXV8KTrHdw09aAr2kuZKza45t53fbRqaBhabhlkreX3+cbOGZqfSc1Xjz9jNFf+APJ9q7Eye9zXo9TpUvYpOr2LUKej0Kjq9gqor+a5X0elUVH3JMV3FfarzvHPbql4577yK5cudV6a8qlNB0bDZbVg1K1a7tfy2ZqtwzKbZsNqt5JuL2XIsjQ2HU9mflIVO1egV5knvMHfUb7wweIyrpBbZ+VQweIxD1Xnx8aw3MLleWn/knlTd7agbbWo4u+rfId2prh937ft4A9itNv57+zpq+8eDh1ft+1o2pHpNBMHRT3Dq1Kn8/PPPZGVl0aFDByZOnFhp0pGdnc2wYcO46qqrnLVqDaVDhw5ERUWxatUqEhISSEpKok0bxw9b2RU3amo+LVvLVJtm2fOV3qs2zbRV3etC4i17nYuJt0Xa9R1s+wSufQtCqk4eakNRFLyix3J20SK0f/0LpZqBPXbNzo6UHdzR9Q5ubxfJ3fO3se5wGhH9AonfUvOgnC6DgxkwPpyUY9mkHMsh5XgOh7emYLdr6AwqAWEmgtp7Ob9Mfq5Nf7qUoO5wbyzat3dwbO7trMsdwNmsfHpFjWfoTbdxYs/OChPgllJ1OsY99HiDjv5UdTrcPE2OGr9K2HPPkrPoczKXLqX42BkMrVzx7abiE5yITueofbWp7hT7dKLYqwPFHm0pdg3C7BJArsWdjDPZnE3OIicjh4yzuVjNhaCloeosqKoFTSvGZi6o9frBmi2FQ1ticHF3DBgwurnj4eOO0a2V87WLu/u57+7uuLh5OL6X7De6uaGql17LVd80u8Z79yVRbD5ITbVeBpdezHj9qiY8T6cjITRQ87ywNrvGpoR0lsYl8vO+LArMCoPCu/J8dAgTerbG282AXbPzj5Wv0zp3IIraqsp+pao+gCTTVjxcqu9XerlQ9To8/CLJz9xbY1mPVpGo+qb5/6DeE0FwNLn99a9/rbGct7e3swm2MXTr1o1Vq1YBjvWDSxPBsrVeNTWFlm1SvJiBFKGhofzxxx/k5+dX25xd9l4BAQHO/oHgqA1r1aoVGRkZNcablZXlTAQbc+BHs5Gy37HiRe9bof/0OrmkKTqajI8+omDrVjzKrP5yviNnj5BjzqF/UH8GBgcyNKIVL606yJc39KkxEVRVhT5jwvAJcscnyJ0ugx3LN1rNNtJO5TmSw+M5HN2Zxq5fHD9Xbl5GZ61hUHsvgtp5YXRrkF8ZFyQjq5B1yQM5fkJPW/dTXDd5KAE33Q+qStdhI2gVEsaOVcuI37LROTlwl8HD6TdhUuNNfFt4FtIPQ3o8pMVjPrSHrN8SOHvAgt2s4NmmmMBoFY/e7VACuzjmUvTvAgGd0XmFYrBonD2ZS8rxHFKPO5L63IwiwB1Xj7YEdvAiKNxEYLgXge28cPc6N1rRXFjI3OnVL9tX1r1zP8FQppXhcqWoCq3be5J4pOZarzYdPJtwElgzTdPYfyaHpXGJLNuZRGpuMR0CPHhwZAST+oQQ5ld+ihNVUdFdZUdbaUPVB2DUj0NzH0vZkeYAGjb0V9mb5Fx59eXqu+7gxzeepaY/Hq6efkdDhXTBmt5v9UZUVe1HtzLTGJw/AvB8ZY9X13RWlW7duvH99987r1XV5NVWq5UjR45UeZ9u3brx22+/kZCQgNVqrXIKmUuNt0UpyoGFfwG/DnDNm7UaXVgbrj26Y2jThpyYmGoTwR0pO9CrenoG9ERRFJ6d0JXr3t3Iql+PA45wKmudU1WF0Xd1rXTqGL1RR+sIb1pHnOtrWZBjLldruGP1CSxFNlDAr7VHueTQr7WHoymqERTl5bF58dfsjFmJyT+AibOfpaNlG8qaf8B3p+GGeeDiSWB4B8Y9+Bhj75vJ7h1/0KvfFdXWvNYZTYPcM5AWD+mHHF+l23kpaBrkn3Eh87g/+Sc1VHcDPlGD8b3pBow9h4NHKwBsNjuZifmOpG9LDqnHt5KZlI+mgd6oEtDWRIe+AY5/l3AvTK2qr8k1uLigd3HBWqZrSVX0Li7ojU1zyov6MGLaaL77zx811Hq14qo7r2jsUC/KmexClu1MYsmOROJTcmnlYeS63m2Y3DeEXqHVrwt927AbePbQq4w8fKtjjLiiQJkaRzs21nX6hpeGPdUA76Tp6DyoB/2umcGOlZ9Q1R8P/a6ZQedBTWgVrPNIIlhG2cEFpbWB4OgA36ZNG5KSkpzrJ1eldMWUkJAQwsPDLziG4cOHO7fXr19fZSK4bds2Z03esGHDKr3Ob7/9Rn5+Ptu3b3cuN3e+su+nsuuIEpoGyx6CvFS4bx0Y625SUEVRMEVHk71yBcF//7tz9YfzbU/ZTrdW3XDTO7pV9AjxZmqHQPL/TKfHyFB6Dm/DrrWnSChZWURvVOnYL5DeF7iyiLuXkfa9A2jf29FPUrNrZCUXkFxSa5hyLIeDm884EhEXHYFtyzQph3vj6Vv95NiXym63seeX1Wz87ktsZjNDb76D/hMmlSQsQx1rPC+eAZ+OhVu/gaJs2Pweyv5l9LYUwBp36DYJhjwEwT0vPSCbFbKOVZLwHQZzyaAXnRH8IiCgM7bIqZzdnUvW2jgsSSm4dIuk9Yu34zVhAoqrK9mphRzfl0PK8UOkHs8h7VQeNosdRVVoFeJBUAdveo0KIzDcC7/W7heciCuqSucrhrF/w681lu0yeHiLWmPXP9RE1IwerP10H2oltV6KojHm7u7Naj7OvGIrP+05w9Kdifx+JAOjTiW6ezBPje/ClZ0CMNTy56eLXxdmTL6RN1b/l+5JV9Ihow8GuwsWtZijrXayr81vzB77cJNdT7c+jbpzEiGREWz8dhFZibso/ZnxDenN8Kk3NekkECQRdDp27Bhr1qwBHB3+Q0LOdRotHbzy/vvvc/DgQbZs2VLlWsOlNWyTJk26qP5VI0eOxNvbm+zsbBYsWMCTTz5Z6XXmz5/v3D5/ig+A66+/npdffhmAzz77rNJE0G63O0cU+/j4VDmhtgC2/A8OLIebv4BWVQ8IuVim6Ggy58+nMC4O9wEDKhzXNI3tqdu5psO5KXEKc810PFzMUb2G2UdjVKiJ0dO7cfWdXet0rWFFVfBr44FfGw+6DXP8gWQptpF2MofkY47E8NCfKcTFOEbjefq6EBTuRWB7L4LbexHQ1guDS930jTm5dzfrFswj7eRxuo8Yw/Bb78TT97wlLDuPhXvWwNe3wP+GgqUAtDJ9BC0FsOsb2LPIsX5xzxtrd3Nzfkmid7gk0StJ9jKOQOkE0S5ejmbcwK7QbWJJc24X8GlH0aHDZH39Ndk//ohms+E1bhw+L9xCjkdb4k/mkvJRPKnHcygucHQ89wpwIyjci479gwgM98I/zBODsW6eo++gKGwb1qGrpjnLhorPwDFVHr9cdR4YjF9rjzJ/VCkX/UdVY7Ha7Px2OJ0lcYnE7E+m2GpncPtWvDqlF+N7BGNyvbg15Sd0mEDELRF8vv9zvj7+LyxmKwajnqjwMfyv239bZBJYqvOgHnQe1AO71cbO7Tvp079Pk+0TeL46TwR9fX1p3bp1pVN3NNY1f/zxR8aPH19l82hKSgpTpkxxjrB98MEHK5SZNWsW8+bNw2azMXPmTDZs2FBuwEthYSEzZ84EHKt+zJo1q9J7TZ8+3Tn3XWxsLCNHjix33Gg08sgjj/DCCy9w4MAB5syZwxNPPFGuzObNm51zv40YMaLCOsPgmMPxyiuv5LfffuOTTz5h2rRpzvnvSr3xxhvO6UEeffTRcnMnijJObIY1/4ChMx0f7vXArU9v9IGB5MTEVJoIJuYlklqQSv9Axzx5drtGzCf7UDQN3zGt+WjTMW4b0o7W3m4oqoLOoNRrHyaDi442nXxp0+ncKOi8rGJSjpc0KR/LYeuKY1jNZWqyws/VGvoGu19QfNmpyaz/4lMO//k7rTt14fYX3yS4Y+eqTwjsCpPegwXXUW6eiLLsVlhyvyNRK1szmJ9+LtFLO3Suli+7zJRCptaOhC/8Shh4j2M7oAt4BpXrMqCZzeSsWUPWV/8gd9d+Ctr2xjz5aXJ9I0g7U0zeF9nAHtxMBoLae9N7dJgjiW7nhatn/f1/XHjMxp6Aq4lK+7XSZNCGypqAq0k5Zmdw9av5XZb86+mPqvqkaRp7ErNZEpfIj7uSSM8z0znIk0dHd2ZSnza08bnwWSEq08WvCy8Of5EXhr3Ajt076NerX4vqE1gTVa/D6OHSbJJAqIdEMDs7+6KmIanPa86cOROLxcKUKVMYMmQI4eHhuLm5kZ6ezrp16/jwww+dK3EMHz6chx56qMI1OnfuzBNPPMErr7zCtm3bGDZsGE899RQREREcOXKEV1991TkP4RNPPFHtFBg1eeKJJ/juu+84dOgQTz75JAkJCUydOhU3NzdiY2N56aWXsFqtuLm58dZbb1V5nbfffpthw4ZRWFhIdHQ0zz77LKNGjaKwsJBvv/2WefPmOd/b7NmzLzrey1peKiyaDqGDYPS/6u02iqpiiooiN2YNQU8/XaE5bnvKdhQU+gT2AWDrimMkxmcx8dE+eIeb+GZPEm/EHGLOTb2x2zWKrHbsdg21AT+8PH1d8PQNJKJvIAB2m53MM/nOxPDMkWz2bUwCDYyuOgKdfQ29CQovP6ChlLmokD+XLmLbiiW4mbyY8PBsIoePrF1t+86vqDIJLGW3wvKZjkSwNOkrLJl7UNGBX3tHktdjiiPR8+8M/p3A1bvayxYlJnPiyx85vekAZ1V/8gKnkHfl3YCCIVNHoEml08AgAts5noGnb8Ots5qeV8zK3Wco9uxElsGXPjm76Zh/BINmxaLoSfCIYKdXL9Jd/Dm95wyv39irQX+OmpKG+KPqUp3OKmDZziR+2HGaI2n5+Hu6MKlPCJP7htC9jVe9/VypioqrzlWSwMtAi2kaTkpKYu7cucydO7fKMlOmTOHjjz8uNwK3rBdffJHU1FQ+/fRT4uLimDp1aoUyM2bM4D/VzAdXGyaTiZUrVzJhwgQOHz7MvHnznElbKS8vL7766qtq12Du27cv3333HXfccQc5OTk8+2zFJZE6d+7MypUry005I0rYrLD4btDscNNnoKvf/y6m6GiyvvqKoj17cOvdu9yxHak76OTbCW8Xb07szWDbquNcMakDoZGOZtFZUZ35v6V7yco38/uRDAotNty+T2J8z2DuGd6Bbm0aflkjVafiH2rCP9RE9ysdXS3MhVZSTuQ4k8P9m86w/acTAJhauRJckhgGtvMk/eQ2Ni38guK8PAZOnMKgiTfWfvSq3Q77l5XbpWkKVs2IXjGjKGUSxKQ4x791YCR0HONI9AK6OAYF6Wvu76jZNc6mFpB8LIekPxNIPphKts2EpkagtGlPqyAXwrsEOhLfcC98gt3rPbGy2zUSzxaSkJbHkdQ8jqTlkZCax5G0fDLzz80tmu7iz9qAq1nrPwq9ZsWq6MvVaBZabLwbm8AV7f3oGeqNu7HFfGQ0admFFn7ac4YlcYn8cSwTN4OOsd2D+Md13RkW0Qp9Iw3gEs1TvfyvTklJQVebpZ0ayIIFC1i/fj2bN2/m6NGjpKenk5OTg6enJ2FhYQwdOrTSptPzqarKJ598wpQpU5g3bx5bt24lPT0df39/Bg4cyP3338/48ePrJOaOHTsSFxfHe++9x6JFi0hISMBsNhMWFsaECRN49NFHadeuXY3Xue6669i9ezdvv/02K1eu5PTp0xiNRjp27MhNN93Eww8/jLt73Q18uKzE/gdO/A7TloMpuN5v5z6gPzo/P3JiYiokgttTtjOk9RByMgpZ89k+wnu2ov/Yc//+HiV9x345mOrcV2ix8cOORJbvTOKNm3szqc+FTZZaH4xuesIi/QgrSWA1TSM3o8g5CCXlWA6Ht22kOOcXNFsy7j7d6DbqBvzbhZOfbcfbRatdDYe10NEXEEi3hLMzfyJHiodg1VzRK0VEuGymj8dy/A3HHeVnrAZjzZO9appG/tliUo87pm5JOZ5D2okczEWOPojuBcn42DOI6BlK22sHE9g5EL2h/n4XFllsHM/IdyR5qfnOxO9oeh5FFkeTr6tBpYO/Jx0DPRneMYAOAR78bdEuiq1lmoQVBatSsSlaVeD9dQm8ucaxOkdksIm+bX3o19aXvm19CW/l3vTnmrxMmK121h9KY2lcImsOpGC12RnW0Z83b+7N2O7BeLhIki4uTp0vMafW0wiz4OBgkpKS6uXaov7U5/I4e/furfM1qZ0OroJvb4Wo52HYo/Vzj0qc+cc/yf/9dyLWxDg/YNML0xm1cBSvDX2dvMWtKMyzcPOzA3H1cHxw70/KYeK7G7Haq/6vrFcVlj88vFFqBmsrNzOdjV8vYP9vsfi2bkfEoClYioNJOZ7D2RRHUufioS/pa+hd0t/Qy/kcyrHb4eUQDuX045fsR7FX8jevipXR3m/T2WsHPJPoWHP4PEX5FtJOlMzXd8KR+BVkO2rU3D11+NjScDv8B6bMI7Tu246g22/CfciQOk+OsgssJKTllkv2EtLyOJVZQOk/u5+HkY4BnkQEehAR4ElEoCcdAzwJ8XGrUAP5+MKd/LAjsZI7lTelXyivTunJoZQ84k5lEXfyLHEnsziS5pixwMfdQN8wH/q29aVvWx96h/ngdZEDEZqqev09UwNN09h56qyz319WgYWurb2Y3LcNk/qEEOTVuPM7Nuazacrq8rk0yyXmYmNj6/qSgGMQhRANIvMYLPkrRF4LQx+puXwdMo2N5uzChRQfOIBryfyVO1Ic6+cqm4NJT8xiyhP9yyU/H288Wm0SCGC1a3yy8Rhv3Ny72nKNwWo2s33lUv5YshC90UjUfQ/TY1RUudUoivItzomTk4/msDv2FMUrHKNrvQPdCGrvRXBJctgqxBOdXiU99E5+2Ty60iQQwI6eX7Ifxa/br/irKlaLjfRTec5JmlNP5DoTUKObnsB2JiKvCMIr/xT6dUuwr1iLztcXn5tuwnfqYxjKTDl1MTRN40x2EQmppc2455pz0/Mcc/4pCoT4uNEx0JOorkGOZC/Qk4gAT/w8av878p7hHVi+M6nGPx5mDG+PXqfSrY0X3dp4cfsVjlro7AILO087ksK4k2f5+Lej5BRZURToGOBJ37bnksNOgSZ0TbiPXVN0MqOAJXGJLN2ZyLH0fIK8XLh5QBiT+4UQGdx0/5gTzVOdJ4IjRoyo60sK0XAshY5Jo939HKNOG7jZy2PQIFRvb3JiYpyJ4PaU7VyRF82RPZmMuK0Lge3OfRDY7Ro/7al5eTmAFbuTeCyqE/6eLrjWY3NlbWmaxuE/f2f9F5+Sl5lO33HXMXjKVFw9Ki516OphoG33VrTt3sp5bnZaoXPS65Sj2SRsS8Vu09DpVQLaelKcMwE7FZeWK8uOntWHxmF4aSsZp/McA2z0CgFhJsK6+TFgfDsCw73wNBSTs+QHst79BktSEsZevfB79RVM48ahVtGnuCpmq50TGfnORK802TuSlkeB2RGvUa/Swd+DiEBPrujQqiTZ86CDvydudTCFTLc2Xrxxc29mL9xVaTKoVxXeuLl3lTXI3u4GRnQOYERnx1yTdrvGsYx8Z41h3MmzLN5+Grvm6LbQO8zHkRyG+dKnrQ/+nvU712RzdLbAzIrdZ1gal8i2E1l4GHWM69Ga/1zfg8EdWkkyLeqNdCoQoqxVTzjmhrtnLbj5NPjtFYMB09VXk7s6hoBHH0VRFA4eOcaA/TfR5Ypgul9ZvtapyGqj0FJ9slOq2Gpn+KuOGntPFz2tPI34eRhp5eFCKw+j87W/p0u5bV93I0Z93Xb5SD1+lHULPuLU/j106DeQKc/+G782oTWfWEJRFHwC3fEJdKfLFY7+m84avWM5JB/LJvloTq2udTbTTpdO7nQb1prA8HM1igCFe/aS9fZcUlauBMBrwgR8b78Nt541T0SdW2ThSFp+uRq+I6l5nMgswFaSfHm56ukY6EnX1iau692aiABHDV+or3u9f/BP6hNCp0ATn2w8xqo9ZxwDjAw6JvRszYzh7S+oG4GqKo7m6ABPbuzv+HfML7ayJzHbmRx+t/U078U6VkNq6+dekhg6ag67tvaq85+x5qDYaiP2YBpL4k4TezANm6ZxZSd/3p7ah6huQTI4RzQI+SkTotSOLyDuC5j0v7pZceIimcZGk71kCeaEBPKDAuj05yiMvjDi9i4V+p656nW4GXS1SgZd9Crv39GPrHwLmflm0vOLycwzk5Fv5mBKLhlHisnMNztrpcryctXTytORMPp5GJ3bZRNGv9LX7sYqRy0W5GTz+8Iv2b12NT6t23DD0/+ifd+K8yZeDL1BR3AHb4I7eNOtuA0J21JrPglAgxG3RjonvbabzWQv/5nMr76iaNdu9G1a4z/zYXxuvBG9r2/5UzWN1Nzick25pdspOeeWcGvj7UpEoCdXdQ6gY5nmXH9PY6MOtiitGXz9xl7s2L2Hfr161tmIZg8XPYM7tGJwh3O1uIlnC0sSw7PEncripz3JmG12jHqVniHe5fobtvaufqm85krTNLafyOKHuERW7j5DdqGFniHePDU+kom92xBgktpS0bAkERQC4MxuWPU36DcN+t7eqKF4DB2K6ulJ9s8xxGjd8LB4c+Vd7StdVUJVFcb3DK5Vx/9re7Xh6sigGssVmK1k5JnJzDeTkV9MRkmymJlvJj3PkSzuTcx2vi43+rSEj7vBkSh6lNQuuunwO7kVZUcMigLtJtxC9zETMHm5Y7NrdV77pTeo6I0qVnN1C8GXlDWq6A0qlqQksr5byNlFi7BlZuIxdCih/3sPzxEjsKFwIrOAI/uSSSjTd+9oah65xY6+igadQngrx0CNm/qHOZO9DgEeTX5Ep6oquOrVep3WRlEUQn3dCfV157rejprtYquN/Uk5JYnhWX7el8zHG48BEOTlQt8wX2d/w54h3nXSLN5YjqXns2THaZbsTORUZiFtvF25/Yq2TO4bQqcgmb5LNJ6m/dtJiIZQeNbRLzCgC4x/rbGjQTUa8Rw1ir2/p5Dt3ZXtPVYwq8N7VZa/kI7/teFu1OPupyfMr+ZphTRNo8BsK0kWi50JZHqZ7eLj+3A5sBqtMIt9Xt343WcgRfvdYP/vgKMbpq+70VnbWLZ20VnzWPrawwVvN0ONCYuiKvhH+pK8O6PG9+AfaCPx0UfI/eVXFHd3bFETOD58HAf0fiQk5pHw9kZOZORjsTmer8lFT4eSEbnjugcTEeBBx0BPwvzca71uq3Bw0etKagDP1bSm5haxsyQxjDuZxdu/HKbAbEOnKnRtbSqXHDb16Wsy8838uCuJJXGJ7Dx1FpOLngk9W3P9lBCuaO/XYifqFk2LJIKiZbPbYekDUJgFdy4DQ+NOx1CqqH8UB7Mhq/UugntW/2F3qR3/L4WiKHi46PFw0dO2VfnEMTPpNOs+/5hjcdsI69aTkdP+RUC79uQWW0uapCuvbczIM3MkLY/Mkv3nvyedqjgTx8qapluVNF3vyjxGsN0DTa26Fkmx2whb8ipH3eCnQTexxL8XRZoL/JZJkFc+HQM9GRrRijuHtCuZmsWTQFPDrQLSEgWaXInuHkx095K+nzZ7uelrfj+SzhdbHJOQ+7ob6FOP09dczCo9RRYbvxxIZUncadbFpwEwonMA797WlzFdg5rEQC0hypJEULRsv78N8avg1u/AN7yxowGgMNfMbzvd8MqPJ+XMfPoFPlXjOXXZ8f9SFeXnseX7b4n7+Uc8/fy57vFn6DRoqDN58nI14OVqINy/dhM45xRaHf0Z881k5BWTUZIslk0eD6fklSSUxc559WZvX0zXYjgQOa3SZFCx2+h6cAHxHp6sv/tZOgV78WJJshcR4IHpMpsPr7lqjOlr9ifl8PHGo/y0J7lWq/TY7Rp/Hs9kyY5EVu05Q26xld5hPvzftd24tldrWskoadGESSIoWq5jG+CX5+HK2dBlXGNHAzg+UGI+2YfdptHFtA2fg2Y6BfWv1bn12fG/Nux2G3t/XcPG777AWlzMkBtvo/+112MwXvyHoKIoeLsb8HY3EBFQmxg0sgstnM7MwzruGVxtFjzykzkVdjWpAX2x61xQbcUEpsURdupXTPmJ+OgM3DC1Dx6uMldpc3Eh09d4uujpHebtbFLuE+ZTbWK2bGdihdr1qlbpSUjN5YcdiSzbmUTi2ULC/Ny4a1g4k/qGEBFQcRokIZoiSQRFy5RzxrGOcPiVMOq5xo7GaeuKYyTGZ3Hdo33YGutG13UQXuAOfrW/RkN0/D/fqf17iJ0/j7QTx+h25SiG3zYNk59/g92/lKoq+HoYMWkuHLZZADDlJ9Lt4Bd0PfgldtWAaregcO5D3tVmwcVqASQRbK5qM33Nt1tP8W5sAgDtWrmXG6EcGeyYvmZ/Uk6VXSzAMTH74wt3sTcphy1HMtiTmI2Xq55rerXhhn4hDGjnK90GRLMjiaBoeWwWWHwXqAaY8glU04esIZ3Ym8G2Vce5YmIHwiL9eOXQWTrpVfJi1uJy912NHV6lctJSWf/lpxzaspHgjp259YU5tOkc2dhhoXN3w6o3oLdanPsUNHR2c4WyFoMLOne3hgxPNIDaTF+zqmT6GpeS6WuyCy01rtJjs2t8/NtRoroG8dCoCEZFBuKibxq/Q4S4GE0iEUxLS2Pjxo2oqsqIESPw8fFp7JDE5Wztv+D0Vpi+Cjxr0d7YAHIyClnz2T7a9WxF/3HtsNqtbMvdR07fDphiYmjVxBJBS1ERfy5fzLblP+Di6cn4hx6n6/CRKPW01vgFxZaaSurrc8olgdXRXz2mScQt6ldN09fsOJnF9hNZtbqWi17lgzv6y6hfcVlokERw27Zt/O9//6N79+7Mnj273LFvv/2WGTNmUFRUBICHhwcLFixg8uTJDRGaaGn2L4PN78K4V6DtFY0dDQA2i53V8/ZidNUzZno3FFUhPj2eAmsBpuhoCl/8H5bkZAzBwY0dKpqmcXDjOjZ8PZ/C3BwGXDuZQdffhNG18WvUNIuFzK++In3uuyhGI/4PP0za+++j2KqebFvT6ejwwD0NGKVoSspOXzPVHMaK3WdqdV6RxU6R1SYrf4jLQoP8Gfz111+zYMEC1PP+6k5KSmLGjBkUFhaiaRqappGXl8dtt93GkSNHGiI00ZKkJ8DSh6D7ZLjir40djdPGxYdJT8xj3H09cPVwjFTdlrINV50rna+9DQwGctesbeQoITnhEN/84wlWvfsGrTt14a4332f41DubRBJYsHUrx26YQuprr+M9aRIRP/9EwMMPEfLqq2i6ypvtNJ2OkFdfxTWy8ZuyReMrXaWnNtwMOlylOVhcJhokEdywYQMAEydOLLd/3rx5FBYW0qtXLw4fPsypU6cYMWIEZrOZd955pyFCEy2FOd8xabQpGCbOdcxi3AQc+jOZvesTufLmzgS2OzctxY6UHfQK6IWrbys8hgwmNyam0WLMy8rk5/+9xVfPPY61qIib/u8lJj7+LN6BjV9DaUlNJfHJJznxlztR3d0JX7SQ4H/8HzpvbwC8r72GDt8vxvv661HcHAmr4uaG9/XXO/Zfe01jhi+akNJVempjQs/W0iwsLhsNUq995swZFEWhXbt25favXLkSRVH4z3/+Q0REBABvv/02ffr04ddff22I0ERLoGmw4jHIOg73/gouTWM5p4ykPGK/PEjnK4LofmUb5367ZmdH6g6mRk4FwCs6mjP/9w+s6eno/RtuJK7VbGb7qmX8sWQhOoOBMfc8SM+rx6JWUcPWkDSrlayvviLtnbkoRiOtX3wR78nXV9rXzzUykjavvEzrl15k344ddO/XT/oEikrV9So9QjQHDfLbMCMjAx8fH/T6c3lnYWEhO3fuxMXFhejoaOf+Xr16YTQaOX78eEOEJlqCbZ/C7u/guncgsGtjRwOAucjKzx/uxcvfjZG3RZabcuJY9jHOFp+lX2A/ADxHjwZVJXftLw0Sm6ZpHN66mfl/e5DfF35Jz6ujmfHWPHpHTWgSSWDB1q0cm3wDKa++hvekiUT8/BM+U26oMblTVBVcXSUJFFUqnYtTX0VtX32u0iNEY2mQGkG9Xk9OTk65fVu3bsVmszFkyBCMxvLzd3l6epKfn98QoYnLXeIO+PlpGHgv9LqpsaMBHIlW7BcHyc8u5qanB2BwKZ9cbU/Zjl7R0zugNwB6X1/cBw0kN2Y1vlNvqdfY0k8eJ3bBR5zcu4vw3v2Y/OQ/aRUaVq/3rC1Laiqpc+aQs/xH3Hr3JnzRQty6d2/ssMRlpimt0iNEQ2iQRDA8PJwDBw6wdetWBg4cCMDy5ctRFIVhw4aVK2uz2cjOzqZNmzaVXUqI2ivIhIXTILgnjH2xsaNx2rPuNAnbUxl7bw98gysus7Y9ZTtdW3XF3XBu7V6v6GiS//Mi1qws9L6+dR5TYW4OmxZ+xe41P+ETHMzkp/5J+74DmsTkuBWbgf+D9+TJUrMn6k1jr9IjRENqkEQwKiqK/fv389BDDzF37lzOnDnDvHnzALjuuuvKld2zZw82m43Q0NCGCE1crux2+OE+MOfBTatA3zTW+kw+ms2mxQn0vjqMjv0DKy2zI3UHY9uNLbfPNGYMyc+/QN6vsfhMuaHO4rFZrexa8xObF32F3W7nqjvuou+4a9Hpm8Y6uwVbt5L8wn8oPnwY31unEvDII+hknlHRQBpjlR4hGlqDJIJ/+9vfWLBgAdu3b2fo0KGAo3ns6quvdr4uVTqAZMiQIQ0Rmrhc/TYHEtbCHd+DT9No2izMNbP6o70EtvNiyJSISssk5SWRnJ9M//PWF9YHBODWvx85MavrLBE8vmsH6z7/mIzEU/S8Oprht/wFd2+fOrn2pbKmpZHy+uvkLP8R1969CF+0CLce0gwshBB1rUESwZCQEGJjY5k9ezabN2/Gx8eHa6+9ltdee61cOU3T+Oyzz9A0jVGjRjVEaOJylPALxL4EI5+BjqMbOxoA7HaNNZ/uw2a1M/beHuh0lTdrbk/ZDkDfwL4VjnlFjyXl9dex5eaiM1U98lmz27GazWh2e6XNp1lnEln3xScc3f4noV17cMfLbxHUvvLEtKE5m4HnvotiMEgzsBBC1LMGmxa9d+/erF1b/aS4drudX35xjIwMCQlpiLDE5Sb7NHx/jyMBvOqJxo7GaevKY5w6mMXER/vg6Vt1M/X2lO109OmIj6tPhWOm6ChSXnqJvHXr8D6vSwVA6vGjbF+5lEN/bMJaXMx6Fxc6XzGM/tdcT2B4B4oLCtjyw7fsWLUcD19frp31NJ0HD2sS/QABCrZtI/n5Fyg+fBifqbcQ+Oij0gwshBD1rEmtj6PT6SrMNShErVnNjsEhRg+44SNoIrVIJ/ZlsG3Vca64rj1hkX7Vlt2RuoNBwYMqPWYIDsa1dy9yVq+ukAge2LSen997E3uZ5dSsxcXs3/ArBzetp/vIMRzZ9gfmokIGT7mFAdfdgMHYNPpNSjOwEEI0niaRCFqtVvbs2YOqqvTq1avJ1FCIZibmOUjeDXf/DO7VJ1wNJSejkDWf7qNd91b0HxdebdmMwgyOZR/jr72qXv7OK3osae+8gz0/H9XDMeI49fjRCklgWXabjT2/rKZ9nwFE3fcwplYNNyl1dTSrlayvv3aMBtbraf2fF/C+oeb5AIUQQtSdBvmNGx8fz/PPP8/nn39e4di6deto27YtAwYMoF+/frRv357ff/+9IcISzZndjmItdIwOBtizGP6cB+NehpD+1Z/bQGwWO6vn7cXoomfMXd1Qahh5GJcaB0C/oH5VljGNjUYrLiavZNlGgO0rl1aZBJbl7u3dZJLAgm3bOHbDFFJefgWv6651TAp9442SBAohRANrkN+6n3/+Of/+9785efJkuf1ZWVlMmTKF5ORkNE1D0zROnjzJNddcQ3JyckOEJpqb5D2w5K/wcgjdl46Bl0Pgm1th2UPQ6xYYMKOxI3TatPgw6Yl5jLu/B64eNU/Hsj1lOyGeIQR7VL3eqTE0FJduXckpWXtYs9s59MemWsUTv2UjWmni3EisaWkkPfUUJ+74C4qbK+GLFtH6n/+UvoBCCNFIGiQRLF03eMqUKeX2f/LJJ2RlZdGuXTvWrFnDxo0b6dmzJzk5ObzzzjsNEZpoTvYshnkjYdc3YClw7LMUQPwqsBZB+6ugiXQrOPRnMnvWJ3LlzZ0JbFe7lQi2p2yvMG1MZbyix5K3fgP2oiIsxcVYi4trdX1rcTFWs7lWZeuaZrWS+fnnHBk/gbz1G2j9nxcI/+Yb6QsohBCNrEESwcTERAAiIspPUbFs2TIUReHll19m9OjRDB06lPfffx9N01i9enVDhCaai+Q9sOR+sFurLvPjo45yjSwzKZ/YLw/S+Yogul9ZuxVy8sx5xGfF1yoRNEVHk2O3sv6t1/nimVm1jkvv4oL+vOUcG4I0AwshRNPVIINF0tLS8PHxKbemsMViYevWrej1+nKriwwdOhS9Xk9CQkJDhCaai83vVZ8EguP45v/B5PcbJqZKmIus/DxvD17+boy8LbLWA592pe3CrtnpF1h1/8CM06eI3/wbh7ZsJKNLGIadW+l81dV4tfLn5N5dNd6jy+DhDZp8WdPSSJ0zh+xly3Ht1YvwhQtx69mjwe4vhBCiZg2SCKqqSn5+frl9cXFxmM1mBgwYgIdH+fVWvb29yc3NbYjQRHNgt8P+ZbUru38pTHqvUaaO0TSN2C8PkpdVzE3PDMDgoqv1udtTtuPn6kc7r/LTJ2UmnXYkf5s3kn7qBEY3dzoOHExvL39cVvxM5OcPkp50mq+efazaASOqTke/CZMu+r1dCMdo4G9Ie+cdGQ0shBBNXIMkgqGhoSQkJHDgwAG6du0KOJaSAxg2bFi5spqmkZOTQ0BAQEOEJpoDa+G5PoE1sRQ4yhs9ai5bx/asO03CtlTG3tsD3+ALu39p/0BFUcg6k0j85o0c2vwbaSePY3B1o+OAKxg29U7Ce/dDbzBQFH+IY98somDzZgJHjGDcQ49XOYWMqtMx7qHHCQzvUFdvtUoF27c7JoU+dAifW24mcNYsGQgihBBNWIMkgiNGjODw4cPMnj2b+fPnk5SUxAcffICiKEyYMKFc2fj4eCwWC23a1K5vlWgB9G5gcK9dMmhwd5RvYMlHs9m0OIFeV4fSsX/gBZ1bbCvm2In9DFWj+eKnR0k9fgSDiysRA65gyM23E967X4XJn106d8IYHk5OTAyeI0bQddgIWoWEsWPVMuK3bMRaXIzexYUug4fTb8Kkek8CrenppL4+h+xly6QZWAghmpEGSQRnz57NF198werVq2ndujXgqPnr06cPUVFR5cr+/PPPAAwaVPnqCqIFUlXoNskxWrgm3a5v8Gbhwlwzqz/aS2A7E0Nv6Fjr87JTk4nfvJG432KYdCqIQuN+QvoPZvANtxDet3+1K38oioIpOpqz332H9q9/oRgMBIZ3YNyDjzH2r4+ya+dOevfpU+/Nsec3Awe/8Dw+U6ZIM7AQQjQTDZIIdunSheXLl/PAAw9w9OhRVFVlzJgxfPzxxxXKfvbZZwCMGjWqIUITzcWQh2DPouoHjKh6GPJgw8UE2O0aaz7bj9ViZ+y9PdDpq0+ActJSid/iaPZNPnIYvdEFOrRi84BcvnxoFa7utW9SNkVHkzFvHgVbt+IxdKhzv6Kq6I3Gek/Gzm8GDnj0UfS+vvV6TyGEEHWrwZaYi4qKIiEhgbS0NEwmE66urhXKWCwW5/yBAwcObKjQRHMQ3BMmf1j1FDKq3nE8uGeDhrVt5TFOHchk4iN98PSt+DMNkJOexuE/NhG/+TfOHI5HbzDSvu8A+l87mQ79BvLIb48RoHS7oCQQwLV7NwwhIeTExJRLBOtbuWbgnj2lGVgIIZqxBl9ruLpBIAaDgREjRjRgNKJZ6XkjBHRxTBGzf6mjz6DB3dEcPOTBBk8CT+zLYOuq41xxXXvCupZf2zg3M53DWzYRv3kjSYcOoDMYaN+nPxMeeYKIfgMxurkDYLPb2Jm2k3t63nPB9y9tHs5evpzg//s/FF3tRylfDGkGFkKIy0+DJ4JCXJLgno55Aie9x77d2+neq3+jTBWTm1nEmk/30bZbK/qPCwcgLyuTQ1s2cWjLbyQe3I9Or6dd736Mf3g2Ef2vwMXdvcJ14rPiybfk12oi6cp4jY0m87PPKNyxA/d6rEUv1wx8880EzJJmYCGEuBw0aCKoaRpLlizhm2++Ydu2baSmpgIQGBjIwIEDue2225g0aVKtJ+EVLZiqoundGiUJtFns/DxvLwYXHcNuaMOuNauI3/Ibpw/sQ1V1hPfuy7gHHyNiwBW4enhWe63tKdsxqka6t7q4pdZce/VCHxRETsyaekkEpRlYCCEubw2WCKakpHDjjTfy+++/A46ksNSJEyc4efIk33//PcOGDWPhwoUEBwc3VGhCXJB1X+3gzOGN+AUlMX/2QRRVoW3PPoz966N0HDAYV8/qk7+ydqTsoGdAT4y6i1v6TVFVTFFR5MbEEPTM03XWTKtZrWR98y1pb7+NotMR/Py/ZVk4IYS4DDVIImg2mxk7dix79uxB0zQGDRpEVFQUoaGhAJw+fZq1a9fyxx9/sGnTJsaPH8+ff/6JwWBoiPCEqFFBTjYJWzcT9/MvpJ88iKIouHr0Juq+h+k4cDBuJq8LvqamaexI3cGNnW+8pNi8xkaT9eWXFO3ejVufPpd0LZBmYCGEaEkaJBF8//332b17N15eXnz55Zdce+21Fcq88MILrFq1ittuu43du3fzwQcfMHPmzIYIT4hKFebmkLB1C/Gbf3Os5atpqIa2hHSbzMRZN+Du7XNJ1z+Wc4zMokz6B15c/8BSbv36oWvVipzVMZeUCFrT00md8wbZS5eWNAN/h1vPhh2AI4QQomE1SDvPwoULURSF9957r9IksNSECRN477330DSNb7/9tiFCA+Cpp55CURTn17p166otf+zYMR577DF69OiByWTCw8ODTp068eCDD7Jv3746jW3FihXceOONhIaG4uLigr+/P4MHD2bOnDkV1m+uTNn3Vd3XyJEj6zTu5qooL4+9sWv4/uV/8sH9f2HNvHex22yM+Mt9BHScRVCnO5ny9LRLTgLB0SysKiq9A3tf0nUUnQ7TmDHkxsSU63JRW5rVSuYXX3Jk/ATyYmMJfv7fhH/3rSSBQgjRAjRIjeCBAwcwGAzccsstNZa95ZZbmDFjBgcOHGiAyGDnzp28+eabtS4/b948Zs6cidlsLrc/ISGBhIQEPvnkE9544w0efvjhS4orNzeX22+/nR9//LHc/oyMDDIyMvjjjz/48MMPWb58uXP9ZnFxivLzOLLtD+I3/8aJ3Tux222Edu3OqGn30emKobh7+7Dmk30U5mZw0zM9MLjUzTQtO1J20NWvKx6GS18X2WusY5WRov37cete+4EnBTt2kPzv5x3NwDfdRMBjs6QZWAghWpAGSQQLCwtxd3dHr6/5dnq9Hnd3dwoLC+s9Lrvdzn333YfVaiUwMNA5irkq3377Lffffz8A3t7ezJ49m6uvvhoXFxfi4uJ47bXXSEhI4JFHHiEwMJCbb775ouLSNI2bb77Zudxe//79eeyxx4iMjCQ3N5eVK1cyd+5cEhISGD9+PNu2bcPf37/aaz7wwAM8+GDVq254eFx6MtKcFBcUcGT7H8T/voHju+Kw222EdOnGyDtn0OmKYXj6npsXcHfsaQ5vS2XsvT3wDa6757Q9ZTuj242uk2u5DxyIztub3NUxtUoEyzUD9+ghzcBCCNFCNUgiGBQUxKlTpzh58iRt27attuzx48c5e/ZsjeXqwjvvvMPWrVuJjIxk8uTJvPzyy1WWLSgo4NFHHwXA09OTjRs30qPHuWk0BgwYwC233MLw4cPZs2cPjzzyCBMmTMDzAkaQlvr++++dSWBUVBQrVqzAaDw3qnTkyJGMHTuWcePGceLECf71r3/x7rvvVnvNwMDAcvE2d5rdjtVsRrPbaz2S1VxYwJHtfxK/eSPHd23HZrHQpnNXRtxxF50GD8PkVzGZTj6azabFh+l1dSgd+wfWWfzJ+ckk5Sddcv/AUorBgOeY0eTGxOD/6CNQVFTps3GOBn7nHRRVJfjf/8bnxin1Phm1EEKIpqlBEsGrrrqKL7/8kscee4zFixdXOU+gpmk8/vjjKIpS7yuMnDx5kv/7v/8D4IMPPiA2Nrba8qtWrXLWGD766KOVJlVeXl68+eabREVFkZKSwvz58y+qiXj+/PnO7ffee69cElhqzJgxTJ06la+++op58+bx/PPP4+fnV6Hc5Sb1+FG2r1zKoT82YS0uZr2LC52vGEb/a64nMLxDhfLmokKOliR/x3Zuw2ax0LpTF668dRqdrhiGl3/VK90U5plZ/dFeAtuZGHpDxzp9H9tTtgPQN6hvnV3TtWs3sr//gUP9+qMrLibezQ2v6Gj87pqOa2Skoxn4+Rcojo+XZmAhhBBAAw0WKU3uli5dytVXX80vv/yCxWJxHrdYLKxdu5ZRo0axdOlSFEXhscceq9eYHnroIfLy8pg2bVqtks5t27Y5t8ePH19luZEjRzrXUV68ePFFxVZ6r44dO9KpU6cqy40bNw5wPL/ly5df1L2akwOb1vPVs4+xf8OvWIuLAbAWF7N/w6989exjHNi0HgBLURHxmzfy45sv8/69d7DyndfJy8pg+C1/4d53P+W2/7xB/2uurzYJtNs11ny6H6vFzth7e6DT1+1/le0p2+ng3QE/17pJ3rNXrCTllVcA0EqejVZYSPayZRybciPH7/gLJ267HUWvJ/y7b2n9/L8lCRRCCNEwNYJ9+vRhzpw5zJ49mw0bNhAdHY1er3f2a0tPT8dqtTpHPM6ZM4c+dTAfWlUWLlzIihUr8PPzY86cObU6JyMjw7kdFBRUZTm9Xo+fnx9JSUls3rwZq9Vaq76Rld2ruvucf3zDhg1Mnz79gu7TnKQeP8rP772J3War9LjdZuOnd99g37q1JMbvx1pcTFCHjgy58Va6DBmOd+CFTVC+beUxTh3IZOLMPnj6utbFWyhnR8qOi15W7nxFBw+S9PTTYLVWXsBmo3DbNlo98AABDz8kzcBCCCGcGmxlkccee4xOnTrx5JNPcvDgQSwWC2fOnClXplu3brz66qtcc8019RbH2bNnnX39Xn311RoHWZQq29cvOzu7ynKappGTkwM4JtJOSEggMjLygmL09PTk7Nmz1d7n/Dj2799fbdlFixaxcOFCjh8/jk6nIzg4mKFDhzJ9+nRGjRp1QfGVdfr06WqPJycnX/S1y9q+cmmVSWApzW4n5UgCg2+YSpfBw/EJbn1R9zqxL4Otq44z6Nr2hHWr++b2rKIsjmQf4Z5e99TJ9TI/m191EliG9cwZSQKFEEKU06BrDV977bVce+217Nmzp8JawwMGDKBnA4xafPLJJ0lOTmbYsGHMmDGj1ueVnaJl/fr19O9feW1OXFwceXl5ztcnT5684ESwa9eubN68mQMHDpCWlkZAQOVNmBs2bCh3n+qcnyiWTnfz+eefc/311zN//ny8vb0vKE6AsLCwCz7nQml2O4f+2FSrslarmUETp1z0Umi5mUWs+XQfbbu1YsD48Iu6Rk12pO4AqJOBIprdTk5MTK3K5qxeTeuXXpRl4oQQQjg1aCJYqmfPng2S9J3vt99+4+OPP0av1/PBBx9UOWilMuPHj0ev12O1WnnzzTe58847K9Qm/j979x3X1PX+AfxzQ9gbAQFBUBRxL1wFBdyzYm1dHYJ11j2rrRbst9Y9se6Bo9Y9q1XrwK1VEAURARmuEhQUUGbI+f3BLykxCRAISYDn/XrlJd577r1PDiF5cu4ZIpEIP/74o9S2rKwspeP89NNPcevWLRQWFmL+/PnYvHmzTJm4uDjs3Lmz1OsYGRnh008/Rbdu3eDu7g4TExO8fv0aV65cwaZNm5CWlobjx49j4MCB+Pvvvyt9Wb+4uDilJz0W5udL+gSWWjYvDw8iIsCXM8CmNKJChoijbwGeCI4dOTyKVu3k4GLnn5+HtZ410pLSkIa00g8oSW4udMo41RLLycGj8HDAQPW3uquKN2/eICoqStNhaCWqG/moXhSjupFPlfUSHx+vkvOURCOJoCbk5+dj7NixYIxJVgVRhpOTE8aPH4/169fj5cuX8PT0xLJly+Dr6ws9PT1EREQgKCgI586dg56enmTC6fLMhzhhwgTJdbZs2YLs7GzMnj1bMo/gmTNnMGfOHHz48AG6urooKChQeJ2XL1/CwsJCZnuPHj0wefJk9OnTB/fv38eVK1ewceNGTJkyRalYnz9/XuL+J0+eoHv37pL/N2zYEE2VmPAYKGr1uqKvX6ZkkK+vj5atWpWr1evq/lh8SCvEZ7PaoraL8msHl1VyUjI6OnZUyXQ+TCTCE0NDsDK8zjhDQzRt06ZGtwhGRUVVq2mUVInqRj6qF8WobuRTZb0o02BVXjXmE+HXX39FTEwM6tati8DAwHKdY8WKFejbty8AIDY2Fn5+fjA3N4ehoSE6deqEc+fOwcPDQ+qWs6mpqdLXMTc3x4kTJ2BrWzRv3d69e9GyZUvJEnPffPMNUlJS8Ouvv0qSPEXXkZcEitWuXRuHDx+WtAIGBwcrHaujo2OJDzs75QZpyMPxeHDr4Fmmso06epUr0Ym7K0Bk6At0/qJhpSaB2QXZiEmPQZvabVRyPo7Hg1nPnmUqa9arV41OAgkhhMhSeYtg165dVXIejuNw8eJFlZwrJiZGMll0cHBwuVfR0NfXx6lTp7Bjxw789ttvePDggeQ2p62tLcaMGYP58+dLTX1jWc4pOtq2bYuIiAj8+uuvOHToEAQCgWRfu3btEBgYiH79+mHhwoUVuk79+vXRo0cPnDlzBvHx8Xj16hUcHBzKda7K1LafH2JuXClxwAhPRwdt+g5U+tzprz7g0t4YNGxXG0271KlImKWKeB2BQlaoshHDAGAV4I+M06dLHjDC58PKf6TKrkkIIaR6UHkiGBoaqpLzqLI5dPXq1cjPz0f9+vWRnZ2N/fv3y5Qpfj//0qVLktGuAwYMkEoceTweRo8ejdGjRyMrKwsCgQBGRkaws7MD7/9bW+Li4iTlmzRpUu647e3tERwcjODgYKSkpCAzMxO1a9eWDOp48eIFcnNzAUDp263FNWnSBGfOnAFQdCtZGxNBW5f66D1xhsIpZHg6Oug9cYbcSaVLkp8rxNktkTC1MoDvV+6V3gwfJgiDlYEV6pnVU9k5Ddzd4bBkieIpZPh8OCxZAgMlBy0RQgip/lSeCJb3tmtlyvv/vmUJCQkYPnx4qeX/97//SX5OTExU2IJoamoqc0u2sLAQERERAIpa28o6PU1p7OzsZG6zhoWFSX5u3759uc+tjj4IqtDY0xu16jgh/MwJPLl9HcK8PPD19dGooxfa9B2odBLIGEPo3hi8f5uHL+Z5QFe/8qdWCReEo7Vta5XXuXn/ftBv4Ir0kF3IPHcOLCcHnKEhzHr1gpX/SEoCCSGEyFUjEkF1unz5smRC6KFDh1bqtQ4dOiT5uSLXKj61jDa2BhZn61Ifvb+bjl7jp+JBRES5B4YAQGToS8TdS0XP0U1haVe+7gLKyC/MR+SbSExtM7VSzl/UMrgY9r8uwqPw8Bo/MIQQQkjpasSnREhICBhjJT6KJ7CXL1+WbHdxcSnzdRhjCAoKAgDo6upizJgxKn4m/4mOjsaBAwcAFK077ObmVq7zJCYm4u+//wYAuLq6ok6dyu0jpyocjwe+nl65E52UhAzcOByHFr6OaOhR8gouqvIo7RHyCvNUNlBEEY7HAwwMKAkkhBBSKvqkUEJaWprkNvPHCgsLMWnSJNy4UTTx8bx581Cvnvx+YP7+/uA4DhzHKexT+fLlS4VxPH/+HAMHDoRQKIS+vr7C0b6nTp2CsIQBBAKBAIMHD5ZMdfPdd98pLFud5LzPx7mtUbB1NsUngxuo7bphgjAY8Y3QyLKR2q5JCCGElKTGzCOoCpcvX8akSZMwbNgweHt7o27dusjNzcXDhw+xZcsWSd/APn36yEwsrazx48fj9evXGDx4MDw8PGBhYYHXr1/j4sWL2LRpEzIzM8Hj8bBlyxaFK5dMnjwZBQUFGDx4MDp16gQXFxcYGhrizZs3CA0NxebNm/HmzRsAgJeXFyZOnFihmKsCkYjhwo5oCAtE6DWmGXT46vsuJO4fyOfRnx0hhBDtQJ9IShIIBFi7di3Wrl0rs4/jOAQEBGDDhg3QK8fKFsUxxnDnzh3cuXNH7n4rKyts2LCh1L6Br169kow8VmTw4MHYtm0b9PX1KxRzVXDvTBKePU7Hp5NbwcRSfStsFIoKcT/1PgKaBajtmoQQQkhpKBFUQufOnbF8+XJcunQJMTExEAgE4PF4cHBwgK+vLwICAtChQweVXGvevHlo1KgRrl27hufPnyMtLQ0WFhZwdXXFwIEDMXr06FJHJO/atQtXrlzBrVu3kJCQgDdv3iAzMxMmJiZwcnLCJ598gpEjR6JTp04qiVnbPXuUhrunE9G+fz04NbFS67Xj3sXhfcF7tLGt3P6BhBBCiDIoEfx/QUFBkoEeitSuXRuzZs3CrFmzKnStkJAQhISElFjG09MTnp5lW01DEW9vb3h7e1foHNVFVnou/t4RjbpNrODRx0Xt1w8ThEGXp4vmNupfY5sQQghRhAaLkGqvUCjCua1R4Ovz0COgKTie+udNDBOEobl1c+jrVP/b74QQQqoOSgRJtXfjcDxeP8tC7zHNYWCiq/brM8YQLgiv9GljCCGEEGVRIkiqtbi7AkSGvoDXFw1Ru56ZRmJIzkxGWm6aStcXJoQQQlSBEkFSbaX/+wGX9sagYbvaaOatuYmyw1PDweN4aGXTSmMxEEIIIfJQIkiqpfxcIc5ujoSplQF8vmyk0fWUwwRhaGTZCCZ6JhqLgRBCCJFHbYkgYwwhISHo1asX7O3toa+vDx0dHYUPPp8GNJPyYYwh9PcnyHqbh95jm0HPQLOvpTBBGN0WJoQQopXU8gmZl5eHfv36SdbwJaQyRV15ibi7AvQc3RRW9sYajUXwQYCX71/SQBFCCCFaSS2J4NKlS3Hp0iUAwGeffYaBAwfCwcGBWv2IyqUkZuD6oTg093VEQ4/amg4H4anhAEATSRNCCNFKasnE9u/fD47j8NNPPyEwMFAdlyQ1UM77fJzbEgWbuqbwHNxA0+EAKLot7GLmglqGtTQdCiGEECJDLX0EExMTwXEcZs6cqY7LkRpIJGK4sCMawgIReo1pBh2+doyDov6BhBBCtJlaPi1NTU1hbm4OExMaNUlUg4kYCgsYmKioz+m9M0l49jgdPUc1hamVgYajK5KRl4H4d/GUCBJCCNFaark13K5dO5w7dw7p6emwsrJSxyVJNfXmRRYiLjzH0/BUCPNFuK13BXb1zfEi5i3aD6gHpyba8/oKF/x//0AaKEIIIURLqaVFcMaMGWCMYfXq1eq4HKmmYu+m4NCv9/DkdgqE+SIAgDBfhBcxbwEA5taGmgxPRnhqOGob1YaDsYOmQyGEEELkUksi2K1bNyxduhRLlizB//73P2RnZ6vjsqQaefMiCxd3PoZIpHj6oYu7HuPNiyw1RlWycEE42tZuq9HJrAkhhJCSqOXWcNeuXQEU9RUMCgrC4sWL0bRpU5iamio8huM4XLx4UR3hkSog4sLzEpNAoGjAyIMLz9HNv4maolIsuyAb0WnRGNhgoKZDIYQQQhRSSyIYGhoq9f/c3FyEhYWVeAy1ohAxJmJ4Gp5aprLx4ano+k1jcDzNvn4evnkIIRPS/IGEEEK0mloSQZo7kFSEsEAk6RNYatl8EYQFIujq61RyVCULF4TDQt8C9S3qazQOQgghpCSUCBKtx9flga/HK1MyyNfjga+r+TkEwwRhaG3bGjxO87EQQgghitCnFNF6HI+DaxvbMpVt0MZW47eFCwoL8PD1Q5o/kBBCiNajRJBUCa26O4FXSoLH43Fo2d1JTREp9ijtEXILcykRJIQQovUoESRVgrWjKboFNFaYDPJ4HLoFNIa1o+KR6OoSnhoOQ74h3K3cNR0KIYQQUiK19BEUe/DgAX777Tdcv34dL168wIcPHxSW5TgOQqFQjdERbefWzg5W9sZ4cOE54v9/ZRG+Hg8N2tiiZXcnrUgCgaKBIi1tWoLPU+ufFyGEEKI0tX1SrV+/HjNmzEBhYSEYK3k+OEIUsXY0RTf/Juj6TWM8fBCFFi2babxPYHEiJkJ4aji+afKNpkMhhBBCSqWWW8N37tzB1KlTUVhYiO+++w5nzpwBAFhZWeHChQvYu3cv/P39oaenB2tra+zbtw+XLl1SR2ikiuJ4HHR0Oa1KAgEg7m0csvKzqH8gIYSQKkEtLYLr1q0DYwzTpk3DqlWrJNv19PQkq46MGDECU6ZMQa9evbBgwQKEh4erIzRCVCo8NRx8Hh/NrZtrOhRCCCGkVGppEbxx4wY4jsPUqVOltn98i7hVq1YIDg7G06dPsXz5cnWERohKhQnC0KxWMxjwDTQdCiGEEFIqtbQICgQC6Ovrw9nZWbKNx+MhNzdXpuygQYOgq6uLo0eP4ueff1ZHeISoBGMM4YJwDHAdoOlQSBWQk5ODzMxMfPjwAYWFhZoOBwUFBYiLi9N0GFqH6kUxqhv5ylIvOjo6MDY2hpmZGQwNDdUUmXxqSQSNjIxk1g42NTVFZmYm8vLyoK+vL9muq6sLIyMjJCcnqyM0QlTmRdYLvM55Tf0DSakyMjLw6tUrTYchhcfj0UwNclC9KEZ1I19Z6kUoFCIvLw/p6elwcHCAubm5mqKTpZZEsE6dOoiJiYFQKASfX3RJV1dX3L9/H3fv3oWXl5ek7KtXr5CRkQEjIyN1hEaIytwT3AMHDq1sW2k6FKLFcnJyZJJA8fuiJvF4PPB4NLXsx6heFKO6ka8s9VI8UXz16hX09fVhYKCZLkVqefdp3LgxHj16hMjISLRu3RoA4OPjg/DwcPz88884efIkDAwMkJ+fjylTpgAAmjenzvakaglPDYebpRvM9Mw0HQrRYpmZmZKfzczMYGdnBx0dHQ1GVCQnJ0fjt6i0EdWLYlQ38pWlXgoLC5GSkiJ5P8jIyNBYIqiWVL5nz55gjOHUqVOSbRMnToS+vj4uXrwIR0dHeHp6ok6dOjh27Bg4jsOkSZPUERohKhMuCKfbwqRUxSfS15YkkBCiXjo6OrCzs5P8v6QFNiqbWloEBw8ejBcvXsDBwUGyrV69eti3bx8CAgKQnp6OW7duAShqUp09eza+/PJLdYRGiEq8zn6NZ1nP0KZ2G02HQrSceGAIn8+nJJCQGkxHRwd8Ph9CoVCjA8bUkghaWFggMDBQZvugQYPg7e2NM2fO4Pnz5zA3N0fPnj3RoEEDdYRFiMqEpYYBALUIEkIIqVI03kPZysoKX331labDIKRCwgXhcDZzhrWhtaZDIYQQQsqMhvsQogJhgjC0saXbwoQQQqoWtbcIPnz4EOfOnUNycjJycnKwfft2yb6CggK8fv0aHMfB3t5e3aERUi4ZeRmIexuHr5t8relQCCGEEKWorUUwIyMDgwcPRuvWrTF37lxs2LABISEhUmUKCgrQsmVLODk54dGjR+oKjZAKiUiNAAOj/oGEkEoVGhoKjuMQFBSk6VAQGhoKIyMjrYiluOzsbNSpUwdjx45V63XT09Nhbm6OOXPmqPW6qqCWRLCgoAB9+vTB8ePHYWRkhH79+smdL8fIyAgBAQEQiUQ4fPiwOkIjpMLCUsNga2gLRxNHTYdCCNEAjuPg4+Oj6TAIgOXLl+PNmzeYP3++1PagoCBwHKfwkZSUJPd8586dg7e3N0xNTWFmZgZfX19cvHhRppyVlRWmTJmCdevW4dmzZ5Xx1CqNWm4Nb9++Hbdv34arqyuuXLkCBwcH2NvbIzU1Vabs4MGDsWLFCly9elUdoRFSYeGCcLSp3UZmGUVCCCHqk5mZiRUrVmDo0KGoW7eu3DIjR46Ei4uLzHYLCwuZbXv37sXXX38NGxsb+Pv7AwAOHDiAHj164ODBg/j888+lyk+bNg1Lly7FkiVLsHPnzoo+HbVRSyL4xx9/gOM4rF69WmouQXlat24NHo+HmJgYdYRGSIXkCHPw6M0j9K/fX9OhEEJIjbZnzx68f/8e33zzjcIy/v7+ZWq9ffv2LSZPngxra2uEh4fD0bHojs/333+P1q1bY8KECejVqxdMTU0lx9SqVQt9+vTBoUOHsHbtWpiZVY1VptRyazgyMhIcx6Fnz56lltXT04O5uTnS0tLUEBkhFRP5OhJCJqSJpAlR4OrVqxgwYACsra2hr6+Phg0bYv78+cjOzpaUiY+Ph6mpKRwdHWXe++XtS0pKAsdx8Pf3x6NHj9CvXz9YWFjAxMQEPXv2RFhYmNxYsrKyEBgYiKZNm8LQ0BAWFhbo1asXrl+/rrD8okWL0KJFCxgZGcHc3BytW7fGggULUFBQIOmzBwBXrlyRutX4cR/4EydOoFu3brC0tISBgQGaNWuGFStWyJ1IOCcnB3PnzoWTk5Ok7NatW8tc5wDQrVs38Hg8JCcny90/ZcoUcByHv//+GwCQn5+P4OBg9OrVC05OTtDX14etrS0+++wz3L9/v8zXLek2uYuLi9zWuPz8fKxatQpt2rSBsbExTE1N0blzZ5w8ebLM1wWAnTt3wsrKCl27dlXqOHkOHTqEd+/eYfLkyZIkEAAcHR0xadIkvHnzBseOHZM5bsiQIfjw4QMOHTpU4RjURS2JYHZ2NkxNTaGnp1em8gUFBVqxCDshpQlLDYOZnhkaWNAk6IR8bOPGjfDx8cGNGzfQr18/TJkyBY6Ojli0aBF69OiB/Px8AECDBg0QHByMly9fYvTo0ZLjCwoKMHz4cGRnZ2PPnj2oVauW1PkTEhLg6emJnJwcTJgwAZ9++ikuX76MLl264M6dO1Jl09PT0alTJ/z888+wtLTE+PHjMXjwYISFhcHX1xfHjx+XKp+amor27dtj0aJF0NHRwYQJEzBq1CjY2dlh6dKl+PDhA1xcXCSLJTg7OyMwMFDyaNWqleRc8+bNg5+fH548eYLPPvsM3333HQwNDTF79mwMGzZM6roikQiffvopli5dCktLS0ydOhUdO3bE9OnTsXLlyjLX/ddffw3GGH7//XeZfUKhEPv374eDgwO6desmqZ9p06YhLy8Pffv2xfTp0+Hj44MzZ87gk08+wd27d8t8bWXk5eWhV69emDlzJhhj+Pbbb/HVV18hOTkZAwcOxPr168t0nrdv3+L+/fto3749eDzFqc3Vq1exdOlSLF++HMePH8f79+/llgsNDQUAuQ1YvXr1AlCU/H+sU6dOACC3H6HWYmpQp04dxuPxWFZWlmSbnZ0d4/F4MmUTEhIYx3GsYcOG6giNzZkzhwGQPC5fvlxi+YSEBDZt2jTWtGlTZmJiwoyMjFiDBg3YhAkTWFRUlEpjO3XqFBs8eDCrU6cO09PTY7Vq1WIdOnRgy5cvZ+/fvy/zeZKSktiMGTNYo0aNmJGREbO0tGQeHh5s2bJl7MOHDyqN+WNRUVFS9avKOoqMjFTZucrr23PfskkXJmk6DBnaUDfaSBvqJTY2lkVHR7PY2Fi5+1+9esXCwsKkHgkJCYwxxnJycmT2hYWFSY6NiYmR2ZeWlsYYYyw1NVVmnzgGoVDIbty4IbM/Pz+fMcZYfHw8CwsLY69evSrz83z06BHj8/msZcuW7M2bN1L7Fi9ezACwFStWSG0fNmwYA8A2bNjAGGNs9uzZDACbN2+eVLnExETJe8rcuXOl9p09e5YBYM2bN5faPmLECAaAbd26VWq7QCBgTk5OzMbGhuXk5Ei2Dx48mAFgs2fPlnluKSkprKCgQPJ/AMzb21tuPZw/f54BYL169ZJ63xaJRGz8+PEMADt8+LBk+86dOxkA1rt3byYUCiXbHz58yPT09BgAFhgYKPdaxWVmZjJDQ0PWpEkTmX2nTp1iANisWbMk23Jzc9mLFy9kykZFRTETExPWvXt3qe2XL1+WG0tJdeHs7MycnZ2ltv3www8MAFuwYAETiURS8Xt4eDA9PT328uXLUp4tY6dPn2YA2I8//ih3f2BgoNRnkfhhYWHBdu3aJVPew8ODAZB57TLG2Js3bxgA1rlzZ7nXsrS0ZHXr1i01ZsZKfz+ozM9QMbUkgp999hnj8Xhs//79km2KEsHp06czjuPYqFGjKj2u+/fvMz6fX+ZEcPPmzZI/RHkPPT09FhwcXOG4MjMz2YABAxReBwBr0KABi46OLvVcJ0+eZGZmZgrP4+bmxuLi4iocsyLVORHML8xn7fa2Yzsid2g0Dnk0XTfaShvqpbQ3fnkfWF9++SVjjLG4uDi5f8diHTt2lNm3Z88exhhj69evl9nXs2dPxhhjGRkZcs+bmprKGGOS96OyJCBiU6ZMYQDY1atXZfYVFhYyGxsb1rZtW6nt7969Yy4uLszQ0JCtW7eOcRzH2rdvL5V0MfZfImhhYSHVwCDWrVs3BoDdu3ePMcbY69evmY6ODuvatavcWNetW8cAsFOnTjHGGPv3338Zx3HM1dWVZWRklPpcS0p+Pv30UwaAJScny+x79+4d4ziODR48WLLN19eXAZBK8MW+/fZbpX4Pw4cPl3uuIUOGMAAsIiKiTOcZMGAA09PTk3wxYEw1iWBhYSGztLRkrq6uUkmg2MmTJxmAMn2ubt68mQFg69atk7v/6NGjbMeOHSwhIYHl5OSwxMREFhwczCwtLRnHcezEiRNS5Rs2bMgAyLz2GGMsPz+fAWAtWrSQe61GjRoxPp8v9zl9TBsSQbXcfx01ahSOHTuGBQsWoHPnzgoHjGzevBlr164Fx3GVPgeQSCTC2LFjIRQKYWtrK3cEc3H79+/HuHHjAADm5uaYOXMmunbtCn19fdy/fx/Lli1DfHw8pkyZAltbWwwZMqRccTHGMGTIEJw9exYA0LZtW0yfPh3u7u7IysrC6dOnERwcjPj4ePTp0wf37t2DtbX8Zc3u37+PoUOHIicnByYmJpg3bx58fX2Rk5OD/fv3Y+vWrYiNjUW/fv1w7949qU6vpHQxaTHIEebQ/IFEpcaNG4dPP/1UapulpSWAov5Jivq/AUBISAg+fPggtU3cJ2vIkCGS21Zi4r95Y2Nj3LhxQ2ZaL/FIytWrVyMoKEipif5v374NoGj6DXm3yXR1dWUGBZqbm+P3339Hly5dMGXKFJiammLfvn0Kuwq1bt0aJiYmMts7d+6Mixcv4v79+2jbti3u3r2LwsJC5OXlyZ33Li4uDgAQExOD/v374969e2CMwdfXF7q6umV+zvLcvn0bxsbG2LFjh9z9hoaGUvXw4MEDGBsbo00b2X7HnTt3llqEoTRff/01/vjjD+zZs0dyvszMTJw6dQrNmzdHy5YtpcpHRERg2bJluH79OlJSUlBQUCC1/82bNypd7OHJkyd4+/YtHBwcsHDhQpn9r1+/BoAyDR4V9x+VN/oXAAYNGiT1fxcXF0yaNAmNGzdGjx49MH/+fJm/u/KytLSEUCjEu3fvJH+72kwtiWC/fv0wePBgHDlyBB4eHhgxYgRycnIAAFu2bEFycjL+/PNPREVFgTGGMWPGoEOHDpUa07p163D37l24u7tj0KBBWLx4scKy2dnZmDp1KgDAxMQE169fR7NmzST7PTw8MHToUHh5eSEyMhJTpkxB37595b5BlebIkSOSJLBHjx74888/pfpW+vj4oFevXujduzeSk5MRFBSksA/F1KlTkZOTAz6fj/Pnz0t9CHTt2hUNGzbEnDlzEBsbi5UrV2rdxKDaLkwQBkO+IRrXaqzpUEg1Ym9vr/DD1sDAQG6CINaoUSOF+2xsbGBjYyN3n46ODlq3bg1DQ0O5+11dXUuIWL709HQAwKJFi5Q6rk2bNnB2dkZCQgL69OlT4rVr165d4vaMjAypWG7cuIEbN24oPJ84iRYfV6dOHaVilyc9PR1CoVBuovPxdcXXdnJykltO0fNVpGfPnqhduzb279+PFStWQEdHB4cPH0ZOTg6+/lp6JaSbN29KBln07NkTDRs2hImJCTiOw/Hjx/HgwQPk5eUpdf3SiH8vjx49KnERiY+/3Mgjfu3m5uYqFUO3bt3g6uqKyMhIZGZmSkb6mpubAyj6fXzcNzUzM1OqzMfE+Y2RkZFSsWiK2lYW2bNnD7788kukpKRg9erVyMrKAgBMmDABS5YsQWRkJBhjGDVqFH777bdKjeXZs2dYsGABAGDTpk2lDmI5c+aMpMVw6tSpUkmgmJmZGVatWgUAEAgEMiPGyqr4cb/99pvc2Lp37y7pYLxlyxbJH1Nx//zzD65duwYA+Pbbb2VaAgBg5syZaNy4KIlZu3atzLc/UrKw1DC0sG4BXV7FWgwIqY7EH6iZmZlgRd2Q5D4+Nnv2bCQkJKBWrVo4ePAgzpw5o/AaAoGgxO3iD2pxLOIBCYoe4oEf4lally9flu/JF2NmZoZatWqVeN3ExERJeXNzc0lLWFmfryI6OjoYPnw4UlJScOHCBQBFn8U8Hg8jRoyQKrto0SLk5eXhwoULOHnyJFauXImFCxciKCgIdnZ2Zb4mx3EQCoVy94kTbDHx72Xw4MEl1k9Z5uQTf8mR93lYGvFdteIj2Rs2bAjgv9bi4sTbxGU+9vbtW5iamkJfX1/pWDRBbYmggYEB9uzZg6tXr+Lrr7+Gq6srDA0Noaenh7p162LEiBEIDQ3Ftm3bKn3E8MSJE/H+/XuMHDkS3t7epZa/d++e5Oc+ffooLOfj4yO5tVLelVHE12rQoIHCFxkA9O7dG0DRqDp5Q+yLj4ALCAiQew4ejyeZb+ndu3e4fPlyuWKuiURMhPup9+m2MCEKiO/qiG8Rl8Xp06exfv16eHt74969e7C0tERAQIDCBOj+/ftyR32KvwS3bt0aANCuXTtwHIdbt26VKQ4PDw/weDxcvny5TF+QeTye3GlggKJ6SEtLk5tQyNOyZUt8+PAB4eHhMvvEz0sZ4pa/vXv34vnz57hy5Qp8fX1lWjufPn0KKysreHl5SW3Pzs6WG4silpaWchPopKQkvHv3Tmpb48aNYWZmhnv37lW4IaJ58+YAim43K+PDhw949OgRjI2NpbpZiXOD8+fPyxxz7tw5qTIfn+/ly5eSeKoCtSWCYl5eXggJCUFsbCzev3+PnJwcJCYmYu/evejSpUulX//gwYP4888/YWVlhRUrVpTpmOLzWpXUNM/n82FlZQUAuHXrlsJvRWW5Vmm3AIrvl7cKi3heLGNjY7RtqzhZKf5CLumWCZH29N1TZORl0PyBhCjw3Xffgc/nY/LkyXKX3Hr37p3U/HQpKSkICAiApaUl9u7dCxcXF2zZsgWpqakYOXKk3NbDd+/eydx6FvdJbNasmeS9z87ODkOGDMHNmzexfPlyuee6c+eOpEWodu3aGDx4MJ4+fSr31nZqaqrU+7uVlRVevHghtx6mTJkCoKivvLz5cVNSUvD48WPJ/8WJ248//iiVXEZGRmLPnj1yr1GSNm3aoEmTJjh27Bg2b94MxpjMbWGgaPqbt2/fSt2iLSwsxKxZsxS2UMrTrl07JCUlSU2tkp+fjxkzZsiU5fP5mDBhApKTkzFr1iy5yWBUVFSpffiBokTQyspKZtogoGg+yNjYWJntOTk5GDNmDLKysjBkyBCpRqghQ4bA3NwcwcHBUr/bFy9eYP369bC2tpbpdwgAYWFhKCwsLFMjk7aoUZP1vXv3TtLXb+nSpQoHWXyseF+/j5u2i2OMSfoO5OfnIz4+Hu7u7krFaGJignfv3pV4nY/jiI6OltkvfmNp0KBBiS2sxeMr/mZEShYuCAef46OFTQtNh0KIVmrWrBk2bNiACRMmoFGjRujbty9cXV2RlZWFhIQEXLlyBf7+/ti0aRMYY/jmm2/w+vVrHD58WDKB7+eff45vv/0W27dvx6pVqzBz5kypa3Tu3BkbN27EnTt30LFjRyQlJeHQoUMwNDTEtm3bpMpu2LABT548wZw5c7Bnzx506tQJFhYWeP78Oe7du4e4uDj8+++/kn5dGzZsQFRUFJYtW4a///4bXbt2BWMMsbGxOH/+PAQCgeQWcteuXXHw4EH4+fmhdevW0NHRwaeffooWLVqgd+/eWLBgAf73v/+hQYMG6N27N5ydnZGWlob4+Hhcu3YNv/zyi6SbzsiRI7Fv3z6cPXsWrVu3Rp8+fZCeno4//vgDPXv2xJ9//qn07+Lrr7/GvHnzsGzZMhgZGWHw4MEyZSZPnozz58/Dy8sLQ4YMgYGBAUJDQ/Hy5Uv4+PhI5tUrzYwZM3D+/Hn07dsXw4cPh5GREf7++29YWFjI7fu6cOFChIeHY926dTh9+jS6dOkCW1tbvHz5EpGRkXjw4AFu3boFW1vbEq/LcRwGDhyIkJAQvHjxQmoS6LS0NLi7u6Ndu3Zo3Lgx7OzsIBAIcOHCBbx48QLNmzfH8uXLpc5naWmJ9evX4+uvv0abNm0wdOhQAEVLzKWlpeHAgQNyB1iKJ+j28/MrU31pBZWPQ9ZiY8aMYQCYp6en1LDu4tM1yJs+RjwsHQBbuXKlwvOHhYVJDfM+d+6c0jF26tSJAWA6OjqSqRvkmTx5suQ69vb2UvtycnIk+/r161fqNY2NjRkA1rFjR6Xjff78eYmPCxcuVMvpY2Zfmc1GnB6hseuXRhumSdFG2lAvpU0XoSnZ2dmVct5//vmHDRs2jDk4ODBdXV1mbW3N2rRpw+bOncseP37MGGNs+fLlDAAbPXq0zPHv379nbm5uTE9Pj4WHhzPG/ps+ZuTIkSwqKor17duXmZmZMWNjY9a9e3fJtDHynuOyZctY27ZtmbGxMTM0NGT16tVjfn5+bPfu3TJThWRkZLC5c+cyd3d3pq+vz8zNzVmrVq3YTz/9JDWVyr///suGDBnCrK2tGY/HYwDYzp07pc71999/swEDBjAbGxumq6vL7OzsWKdOndj//vc/9uzZM6myHz58YHPmzGF16tRh+vr6rEmTJmzLli0Kp2wpzbNnzyRxDR8+XGG5w4cPszZt2jAjIyNmbW3NhgwZwp4+fcpGjhzJALDExERJ2ZJiOXToEGvevDnT09NjdnZ2bPLkySwrK0vuPIKMFc1juXnzZubp6cnMzMyYvr4+q1u3LuvduzfbuHFjmefNvXPnDgPAli5dKrU9IyODTZw4kbVr147Z2NgwPp/PTE1NWfv27dmyZctKfO3/9ddfrHPnzszY2JiZmJgwb29v9vfffyssX69ePYXTysijDdPHVEoimJycrJKHKl29epVxHMf4fL7Mh0FpieCzZ88k8w3WqVOHvX79WqZMYWEh6927t9QvrPgkoWUlnmgVABs7dqzcMrGxsczExERSzsTERGp/amqqZN/QoUNLvaatrS0DwJo1a6Z0vMWfb1ke1SERFIlErOvBrmzlXcVfCjRNGxIebaQN9VLTEsHKUDwRrGxVqV7UTRvrxsvLizVq1IgVFhaq/dp///03A2QnLS+JNiSClXJr2MXFRbL+YnmVNPJIWfn5+Rg7diwYY5g+fbrcUb8lcXJywvjx47F+/Xq8fPkSnp6eWLZsGXx9faGnp4eIiAgEBQXh3Llz0NPTkyybJB5CrowJEyZIrrNlyxZkZ2dj9uzZknkEz5w5gzlz5uDDhw/Q1dVFQUGBzHWKD58vy7J+4pFN5YlXWXFxcXL755THmzdvEBUVpZJzKSM1LxWp2amolVtLI9cvC03VjbbThnopKCgAj8cDj8dTy99cWQmFQq2KpyTi97jCwsJKj7kq1Yu6aWPd/PLLL/Dx8cHu3bslt3PVJTAwEC1atMAXX3xR5noRiUTIz89Hbm6u3Pem+Ph4VYcpo9L6CKrqw14Vfv31V8TExKBu3bqS6QGUtWLFCiQkJODMmTOIjY2Ve//fw8MD7dq1w8aNGwGgXBM0m5ub48SJE+jbty9SU1Oxd+9e7N27V6bc4sWLsWrVKrx+/VrmOsUnhRUnpSURzw2laA6xkjx//rzE/U+ePEH37t0l/2/YsCGaNm2q9HXkiYqKUjqpV4UT8SfAgYNfOz+Y68ufR0rTNFU32k4b6iUuLg5CoRA8Hq9cf3OVJScnR6viKYn4PU5HR6fSY65K9aJu2lg33t7e2Lx5s1peG8Wlp6ejR48eGDBgAPT09Mp8bR6PBz09PfD5fLkzhVS0Ua0sKi0R5DgOLi4u8Pf3V8toYEViYmIkk0UHBwfD2Ni4XOfR19fHqVOnsGPHDvz222948OCBJNm1tbXFmDFjMH/+fEyfPl1yTHlnFG/bti0iIiLw66+/4tChQ1JTJ7Rr1w6BgYHo16+fZILSj69TPDFUtKB2ceLJOsszAXbxDrnylDbopSoKTw1HA8sGWpsEEkJITVbZK5PJY2VlJVmUQdtaSUtTKYlgnz59cP78eSQmJiIoKAj169dHQEAARo4cqZKZ2pWxevVq5Ofno379+sjOzsb+/ftlyhRvjr106RJSUlIAAAMGDJBKHHk8HkaPHo3Ro0cjKysLAoEARkZGsLOzA49XNBNP8bmimjRpUu647e3tERwcjODgYKSkpCAzMxO1a9eWTJD64sULye2Rj1vYDAwMUKtWLaSlpSmc0kDs7du3kkRQ0Wz2RFq4IBwd7Ct35RtCiGIuLi5addeJkKqsUhLB06dP499//8WuXbskcwYuWLAAgYGB6N69O0aNGoWBAweWqf9aRYlveyYkJGD48OGllv/f//4n+TkxMVFhC6KpqanMLdnCwkJEREQAAOrXr1/m6WlKY2dnJzOze/H1Rtu3by9zTJMmTXDt2jXEx8dDKBQqnEKm+BqO4ukLiGJvct4gKTMJE1tN1HQohBBCSIVV2oTS9vb2mDt3LmJiYnDt2jX4+/vD0NAQ586dw7Bhw+Dg4IApU6YoNWO5trt8+bJkwtDK7qR66NAhyc/yriWeHf7Dhw8lLlJffNJPT09PFUZYPYULil6vNJE0IYSQ6kAtK4t4enpi+/btSElJwfbt2+Hp6Yn09HSsX78e7dq1Q8uWLbFu3Tq5s65XVEhISIlrGLJi60sCRcmceLuLi0uZr8MYk/QP0NXVxZgxY1T8TP4THR2NAwcOAChad9jNzU2mTPHBLIrWaRSJRNi9ezeAorU1fX19VR9sNROeGg5HE0fYGpU8uSkhRLN8fHzU0tGekKpOrUvMGRkZISAgAFevXkVcXBzmzZuHOnXqIDIyEtOnT8fSpUvVGY5S0tLSJLeZP1ZYWIhJkyZJlmibN28e6tWrJ7esv78/OI4Dx3EKZ2ovaaHz58+fY+DAgRAKhdDX10dwcLDccu3bt0fnzp0BANu3b5e7xubKlSslq4lMnToVurq6Cq9LioQJwmh9YVJliEQM2flCiETVrz9dSEgIOI5DSEiIpkMhpErT2BJzrq6uGDVqFAoLC7FmzZoKLzhd2S5fvoxJkyZh2LBh8Pb2Rt26dZGbm4uHDx9iy5Ytkr6Bffr0wY8//liha40fPx6vX7/G4MGD4eHhAQsLC7x+/RoXL17Epk2bkJmZCR6Phy1btpS4hN3atWvh6emJnJwc9OzZEz/88AN8fX2Rk5OD/fv3Y8uWLQAANzc3maWbiKys/Cw8SX+CEe4jNB0KISWKfpWJbdcT8FdkCnIKCmGoq4M+ze0w2qs+mjiYaTo8QogWUXsimJ2djYMHD2LHjh2SFjTGGJo3b45u3bqpOxylCAQCrF27FmvXrpXZx3EcAgICsGHDhgoPgmGM4c6dO3IXzwaKhqlv2LCh1H6IrVu3xoEDB/DVV18hMzMTP/zwg0wZNzc3nD59ulxzHtY0EakRYGDUP5BotRMRLzHz4AMIi7UC5hQU4mj4S5yMeIWVQ1piYCv1zt5ACNFears1fP36dYwaNQp2dnb49ttvcf36dVhYWGDChAm4e/cuHjx4gF69eqkrHKV17twZy5cvR58+fVCvXj0YGRnBxMQEbm5uGDduHG7duoXt27dLVumoiHnz5mHGjBlo164d7OzsoKurCxsbG3Ts2BGLFy/GkydPyjwYZcCAAXj48CGmT58ONzc3GBkZwcLCAh4eHli6dCnu37+PBg0aVDjmmiBMEAZrQ2vUNa2r6VAIkSv6VaZMElicUMQw8+ADRL/KVEs8oaGh4DgOQUFBuH79Onx8fGBqagoLCwsMHjxYsmqCSCSCs7MzatWqpbALTpcuXcDn8/HixQv4+/sjICAAABAQECDpbiOvT2BBQQGCgoLg4uICfX19uLm5YcOGDXKv8eHDBwQGBsLd3R0GBgawsrLCoEGDJI0WxQUFBUm6+Ozbtw+tWrWCoaEh7O3tMXXq1Co3lxypuSq1RfDVq1cICQlBSEgInj59CsYYeDweevTogYCAAAwaNEgtU8iUJigoSDLQQ5HatWtj1qxZmDVrVoWuJa6Pknh6eqp0BK+zszNWrVqFVatWqeycNVF4ajja2LahDuhEa227nqAwCRQTihi2X0/EyiEt1RQVcPv2bSxevBi9e/fG5MmT8ejRIxw7dgzXrl3D7du3Ub9+fYwePRo//fQTjhw5ghEjpLtfPHnyBNeuXUO/fv3g6OgIPz8/vHv3DidOnMDAgQPRqlUrhdcePnw4/vnnH/Tp0wc6Ojo4ePAgJk6cKDOoLzc3F127dsU///yDNm3aYNq0aRAIBDhw4AC8vb3xxx9/4IsvvpA5//r163H27FkMHDgQXbt2xdmzZ7Fu3Tq8efMGv//+u8rqkJDKUimJ4MGDB7Fz505cuHABIpEIjDG4urrC398fI0eOLHU1CkK0Ta4wF1FvojDTg/pSksqTk1+Ip69LXw1IHhFjOP3w3zKV/fPhK4z8xBm8Yl9qcvPyYKBf+pKUrjYmMNTTUSq2c+fOYdOmTRg3bpxk2+bNmzF+/HhMnToVp06dwrfffouff/4ZW7dulUkEt23bBgCSxK14Iujn5wd/f3+F137x4gWioqJgZlbUN3Lq1Klo1qwZVq5cKZUILlu2DP/88w++/PJL7NmzR/KFb+zYsfDx8cHYsWPRu3dvmW40Fy5cQFhYGBo1agQAWLRoEVq1aoX9+/dj+fLlcHBwUKquCFG3SkkEhw0bBo7jYGRkhC+++AIBAQGSEayEVEWRbyJRICqAR20PTYdCqrGnr9+jf/D1Sr9OnlCET9fL3u4siz8ne6FZHeWWV3Rzc5OZUmvMmDFYuXIlTp8+jdevX8PBwQEDBgzA8ePHER8fL+myUlBQgN27d8Pe3h79+vVTOt7FixdLkkAAaNSoETw9PXHlyhVkZWVJErtdu3ZBV1cXS5YskWr1b9WqFUaOHImtW7fi+PHj+Prrr6XOP3XqVEkSCBSt2T58+HAsXLgQYWFhlAgSrVept4aNjIwQGhqqcJqUknAch6dPn6o+KELKIVwQDlNdUzSwoP6UpPK42pjgz8le5TpWxBi+2HQLeUJRqWX1+TwcGt9JTotg6X2cXW2UX5Pc09NTsgynGI/Hg6enJ+Li4vDgwQN0794d48aNw7Fjx7Bt2zYsWbIEAHDy5Emkpqbihx9+ULhCUknatpWd7kl8V+rdu3cwNTVFZmYmEhIS0LhxY7l3rHx9fbF161ZERETIJIKlnZ8QbVdpiSBjDK9fv8br16/LdTz1wyLaJDw1HK1rt4YOT7lbYoQow1BPR+nWtuL6tbDH0XDF85CK9W/hgBaOFlLbcnJyYGhoWO5rl6R27dolbs/IyAAA9OzZE/Xq1cOuXbvwyy+/gM/nY9u2beA4Dt9++225rl28NVBMnFAWFhYCADIzM0uM097eXqqcsucnRJtVSiJYfKUOQqo6oUiIiNQIjG0xVtOhEFKi0V71cTLiVYkDRvg8Dt96yZ/wvrIIBIISt5ubFyW/HMdh7NixmDdvHk6dOgUPDw+cP38e3bp1Q/369SstPnEypyjOlJQUqXKEVCeUCBJSiifpT5AtzKYVRYjWa+JghpVDWiqcQobP47BySEu1Typ948YNiEQiqdvDIpEIN2/eBMdxaNnyvxHMAQEB+Omnn7Bt2zY8fPgQIpFI7pKdOjpFrfOqaHUzMzND/fr1ER8fj5cvX6JOHel5FsXdm0oanUxIVaXWJeYIqYruCe5BX0cfTWs11XQohJRqYKs6ODnJC4PbOMJQtyhZMtTVweA2jjg5yUsjk0nHxsZi69atUtu2bt2K2NhY9OvXDzY2NpLttWvXhp+fH86ePYuNGzfC2tpaau10MSsrKwBFy26qwsiRI1FQUIB58+aBsf+S6MjISISEhMDc3FxuHIRUdRpbYo6QqiJcEI4WNi2gq0NrMZOqQdwyuPzzFsgVFsKArwMeT3P9rnv16oUpU6bgzJkzaNq0KR49eoRTp07B2tpa7kpN48ePx6FDhyAQCDBz5ky588126tQJhoaGWLNmDd6+fStJJufPn1+uGOfMmYPTp09jz549ePz4Mbp164bU1FQcOHAAQqEQW7dupRWYSLVELYKElIAxJplImpCqhsfjYKTH12gSCAAdO3bExYsXkZGRgXXr1iE0NBR+fn64deuW3L5/vr6+qFu3aAWf0aNHyz2nlZUVDh8+DDc3N2zduhULFizAggULyh2jgYEBLl26hAULFiAzMxOrV6/GsWPH4OXlhdDQULmTSRNSHVCLICElSMhIwLu8d9Q/kJAKEidUZZGSkoJXr16hc+fOcHd3V1iub9++6Nu3r9x9JV1L0QpPxsbG+Pnnn/Hzzz9LtikaTV3SilT+/v4lTnJNiDahFkFCShAmCIMOp4OWNupbjouQmm7NmjUQCoWYMGGCpkMhpNqjFkFCShCeGo7GVo1hpGuk6VAIqdYyMjKwceNGJCcnY9u2bWjSpAmGDBmi6bAIqfYoESSkBGGCMPRy7qXpMAip9t6+fYt58+bBwMAAXl5e2LRpk2SKGEJI5aFEkBAFXr1/hZQPKWhTmwaKEFIePj4+UlOxlMTFxaXMZQkhqkN9BAlRIEwQBgA0YpgQQki1RYkgIQqECcLQwKIBLAwsNB0KIYQQUikoESREAZo/kJCKSUpKAsdxUlOp+Pv7g+M4JCUlaSwuQsh/KBEkRI60nDQkZiRS/0BStYlEQP6Hon+1WGhoKDiOUzgvHyGk8tBgEULkuJ96HwBoImlSNaVEArd+A6JPAAXZgK4R0GQg0GkiYNdcbWHUqVMHjx8/hrm5uWTb4sWLMXfuXNSpo/41jwkhsigRJESOMEEY6pjUgZ2xnaZDIUQ5kYeBY+MAkfC/bQXZwIM/gMhDwKDNQPPP1RKKrq6uzMog9vb2sLe3V8v1CSGlo1vDhMhB/QNJlZQSKZsEFicSFu1PiVRLOGXpIxgUFARfX18AwMKFC8FxnORB/QgJqXzUIkjIR97nv0dMegyGuNGqBqSKufWb4iRQTCQEbm0ABm1UT0yl8PHxQVJSEnbt2gVvb2/4+PhI9llYWGgsLkJqCkoECfnIg9cPIGIiGihC1C8/G3gTW75jmQh4dKxsZR8dBdqPAbj/bgpxeXmAvn7px1q7AXqqW3JRnPjt2rULPj4+NGCEEDWjRJCQj4QJwmBlYAUXMxdNh0JqmjexwBbvyr+OMBfY6iu1yaCsx469Aji0UnVEhBANoUSQkI+ECcLQtnZbcByn6VBITWPtVpRolQcTATv7FCV5peEbAAF/SbUI5ublwaCsLYKEkGqDEkFCiskrzEPUmyhMbztd06GQmkjPqGKtbU0HFY0OLrXcZ0Ad6a4PLCcHMDQs/7UJIVUSjRompJioN1HIF+XT/IGkauo0EeCV8v2exwc6faeeeAghWo8SQUKKCReEw0TXBG6WdPuLVEF2zYvmCVSUDPL4RfvVOKl0Wejo6AAACgsLNRwJITUP3RompJiw1DC0tG0JHZ6OpkMhpHyafw7YNCqaIib6eLGVRfyKWgK1LAkEACsrKwDA8+fPNRwJITUPJYKE/L9CUSEiUiMwuvloTYdCSMXYNS+aJ3Dgb4AwB+AbAjztvQHk7u4OBwcH7N+/H/r6+nB0dATHcZg8ebLU8nSEENWjRJCQ//fk7RN8KPhAK4qQ6oPHA/SMNR1FqXR0dHD06FF8//33+OOPP5CVlQUA+OqrrygRJKSSae9XRELULFwQDj2eHppZN9N0KIRUC7m5RVPZ6BebliYkJASMMbi4uEiV7dChA0JDQ5GZmQnGmNwyhBDVo0SQkP8XJghDc5vm0NPR03QohFQL8fHxAABHR0cNR0IIUYRuDRMCgDGG8NRwDG44WNOhEFLlxcbGYseOHdi3bx94PB4GDhyo6ZAIIQpQiyAhAJIyk5Cem07zBxKiAtHR0Vi7di0sLS1x5MgRtGjRQtMhEUIUoBZBQlB0W5jH8dDKtpWmQyGkyvPz80NOTo6mwyCElAG1CBKCooEi7lbuMNbV/hGWhBBCiKpQIkgIgPDUcJo2hhBCSI1DiSCp8VI+pODl+5fwqO2h6VAIqVaSkpLAcRz8/f0l2/z9/cFxHJKSkjQWlybJqxNANfWi6NyElIQSQVLjhQnCAACta7fWcCSEqJaIiZBdkA0RE2k6lBKFhoaC4zgEBQVpOhRCahwaLEJqvDBBGOqZ14OVgZWmQyFEJZ6kP8Hu6N34O/lv5AhzYMg3RA/nHvimyTdoZNVIbXHUqVMHjx8/llodZPHixZg7dy7q1KmjtjgIIYpRIkhqvHBBOE0bQ6qNMwln8OP1HyFkQsm2HGEOTj49iTMJZ7DIaxH61u+rllh0dXXh7u4utc3e3h729vZquT4hpHR0a5jUaG9z3+JpxlMaKEKqhSfpT2SSwOKETIgfr/+IJ+lP1BJPWfoIBgUFwdfXFwCwcOFCcBwneZSlv1xQUBA4jkNoaCi2b9+O5s2bw8DAAHXq1MH06dMl6xYXt2PHDgwcOBAuLi4wMDCAlZUVevXqhcuXL8uUvXr1quS29c2bN9GzZ09YWFiA47hyna88rl69igEDBsDa2hr6+vpo2LAh5s+fj+zsbJWcn9RslAgC+P7776XefEJDQ0ssn5iYiOnTp6NZs2YwNTWFsbExGjZsiO+++w6PHj1SaWxnz57FsGHDUL9+fRgZGcHAwABOTk4YOHAgDhw4AJFIcd8f8ZtwWR41tXNxeGo4ANBAEVIt7I7erTAJFBMyIXZH71ZTRKXz8fHByJEjAQDe3t4IDAyUPCwsLMp8nlWrVmHKlClo164dpk2bBnt7e6xZswY9e/ZEQUGBVNmJEydCIBCge/fumD59Ovr3749bt26he/fuOHHihNzz37x5Ez4+PuA4DmPHjsXQoUMrdL6y2rhxI3x8fHDjxg3069cPU6ZMgaOjIxYtWoQePXogPz+/QucnpMbfGo6IiMCqVavKXH7Lli2YPHmyzB9ffHw84uPjsX37dqxcuRKTJk2qUFx5eXn48ssvceTIEZl9L168wIsXL3Dy5En89ttvOHnypFJvmOQ/4YJw2Bvbw96EblURzcsR5iAxI7Fcx4qYCOeSzpWp7LmkcxjuPhw87r+2gLy8POhn65d6bD3zejDkG5YrRnl8fHwAALt27YKPj0+5B4ycO3cOd+/elaxiwhjDV199hX379mHdunWYOXOmpGx0dDTq1asndfy///4LDw8PzJ49W+6SeH///Td27NiBgIAAmX3lOV9ZREdHY8qUKWjRogUuXryIWrVqSfYtWbIE8+bNQ3BwsNRzI0RZNToRFIlEGDt2LIRCIWxtbZGamlpi+f3792PcuHEAAHNzc8ycORNdu3aFvr4+7t+/j2XLliE+Ph5TpkyBra0thgwZUu7YpkyZIkkCbW1tMWfOHLRp0wa6urqIjIzE0qVLkZycjGvXrmHYsGE4e/Zsief75ZdfSnwzsrS0LHesVVm4IBxtatNtYaIdEjMSMfTPoaUXrKC8wjwMPz28XMce6H8ATWo1UXFEFffNN99ILWXHcRx+/fVXHDhwACEhIVLJ0sdJG1DUd3Hw4MEIDg5GcnIynJ2dpfa3adNGbhJY3vOVxebNmyEUChEcHCyVBALAnDlzsGrVKvzxxx+UCJIKqdGJ4Lp163D37l24u7tj0KBBWLx4scKy2dnZmDp1KgDAxMQE169fR7NmzST7PTw8MHToUHh5eSEyMhJTpkxB3759YWJionRcAoEA27ZtA1CUoIWFhcHR0VGy38vLC19++SVatmyJpKQknDt3Dvfu3YOHh+Lbm3Xq1JGKlwDZBdl4nP4Yn7l9pulQCAFQ1Np2oP+Bch0rYiL4n/VHXmFeqWX1dfQR0jtEtkVQv2wtguoUERGB48ePS21zcXGR6c7SuXNnmWOdnZ3h5OSER48eIT8/H3p6egCAhIQELF68GJcuXcLLly+RlyddZ69evZJJ3Nq1a6cwxvKcryxu374NoKi18+LFizL7dXV1ERMTo/R5CSmuxiaCz549w4IFCwAAmzZtKrVT75kzZyQthlOnTpWbVJmZmWHVqlXo0aMHBAIBQkJCynWL+M6dO5K+fwEBAVJJYPFrTZ8+XZKc3rp1q8REkMiKeB2BQlaItrY0YphoB0O+YYVa23q59MLJpyfLVK6ZtfR7WE5ODgwNVXfLV1UiIiKwcOFCqW3e3t4yiWDt2rXlHl+7dm0kJSUhKysLtWrVQnx8PNq3b4/MzEz4+vpiwIABMDMzA4/HQ2hoKK5cuSKTyJV0/vKeryzS09MBAIsWLSrX8YSURY1NBCdOnIj3799j5MiR8Pb2LjURvHfvnuTnPn36KCzn4+MDAwMD5Obm4vDhw+VKBIv3P6xfv77Ccq6urnKPIWUTLgiHpb6l2ls4CKks3zT5BmcSzpQ4YITP8fFNk2/UGFXF+Pv7l2kwm0AgULid4ziYmpoCAFavXo23b99iz549+Oqrr6TKjh8/HleuXJF7nuKjhIsr7/nKwszMDACQmZkpiZ8QVauRo4YPHjyIP//8E1ZWVlixYkWZjklLS5P8rOibIQDw+XxYWRVNTHzr1i0IhSWP4JOnUaP/JnxNSEhQWO7p06dyjyFlEyYIQ5vabRS+wRNS1TSyaoRFXovA5+R/x+dzfCzyWqTWSaXLQkdHBwBQWFhY7nNcu3ZNZltycjKeP3+Opk2bSm4Li983P+4zzRjDjRs3lL6uqs9XXIcOHQD8d4uYkMpQ4xLBd+/eSW6nLl26FNbW1mU6rnhfv4yMDIXlGGPIzMwEUNRKFx8fr3SMzZs3xyeffAIACAkJwatXr2TKZGVlYc2aNQCKWg179uxZ4jmDg4PRoEEDGBgYwNzcHE2bNsX48eMRHh6udHzFiUcwK3qkpKRU6PyVJb8wH5FvImn+QFLt9K3fF/v778enrp9KRvca8g3xqeun2N9/v9omk1aG+Mvz8+fPy32O3bt34+HDh5L/M8bwww8/oLCwUKpFUdxX7/r161LHL1myBFFRUUpfV9XnK+67774Dn8/H5MmT8ezZM5n97969w/379yt0DUJq3K3hOXPmICUlBZ6envj222/LfFzjxo0lP1+5cgVt28rvV3b//n28f/9e8v9nz57JzKxfFjt37kTv3r2RmJiINm3aSEYN8/l8REVFYdmyZUhMTIS1tTV+//13ybddRYonfHl5eYiOjkZ0dDQ2b96McePGYe3atWXqKP4xJycnpY/RBtFp0cgrzKMVRUi1JG4Z/J/n/5ArzIUB30BqYIi2cXd3h4ODA/bv3w99fX04OjqC4zhMnjxZanm6kvTq1QudOnXCsGHDYGNjg4sXL+LevXvo2LEjJk+eLCk3fvx47Ny5E4MHD8aQIUNQq1Yt3L59G+Hh4ejXrx9Onz6tVOyqPl9xzZo1w4YNGzBhwgQ0atQIffv2haurK7KyspCQkIArV67A398fmzZtKvc1CKlRieC1a9ewbds28Pl8bNq0Salbgn369AGfz4dQKMSqVavwzTffyLQmikQi/Pjjj1Lb5M1qXxZubm64e/cuNm7ciKVLl8pMD6Crq4tZs2Zh6tSpcgeTiFlYWGDQoEHw8fFBw4YNYWBggH///Rfnz5/H9u3b8f79e2zevBlZWVn4/fffyxWrMuLi4sAYU8m53rx5U+5v3KdTTsOAZwDhv0JEpVTsW7s2qkjdVGfaUC8FBQXg8Xjg8XjIycmp9Otx4JAnLH2wglAoVHk8ubm5AIpu+YrPLb79m5ubK3W9ffv2YcGCBfjjjz8k75uff/55qV9yxZNFT5w4Eb1798Zvv/2Gp0+fwtLSEhMnTsRPP/0kdX13d3ecOnUKCxcuxNGjR6Gjo4MOHTrg4sWLOH36NE6fPo28vDyZeAsKCuTWj7Lnk1cnJdXLV199BXd3dwQHB+P69es4deoUzM3N4ejoiMmTJ+PLL78s9dyVpTJeM9WBMvUiEomQn5+P3Nxcue9N5bmrqDRWQ+Tl5TF3d3cGgM2ePVtmf2BgIAPAALDLly/LPcekSZMkZdzc3Njx48dZRkYGy8nJYbdu3WK9evViAJienp6k3J49e8od886dOyUxy3vUrVuXLV26lIlEIoXP+cOHDwrPHxsby+rWrSs534kTJ5SO8fnz5yU+Lly4IBVzVFSU0tdQJDIystzHTvh7Aht7fqzKYtE2Famb6kwb6iU2NpZFR0ez2NhYTYciJTs7W+XnfPz4MQPAxo6tvL818Xu3ovftiqqMeqkuqG7kU6ZeSns/iIqKqrTPUDHtvVegYr/++itiYmJQt25dBAYGluscK1asQN++Rf1rYmNj4efnB3NzcxgaGqJTp044d+4cPDw8pG45l3ek18yZMxEQEICYmBj4+fnhxo0beP/+PXJychAeHo6AgAA8e/YM33//PT7//HO5naz19PRgZGSk8BoNGzbE3r17Jf8PDg5WOk5HR8cSH3Z2dkqfs7IVigoRkRpB/QMJqWTi1oyS7loQQjSrRiSCMTExksmig4ODYWxsXK7z6Ovr49SpU9i6dStatWoldWvZ1tYWP/74I65duyZ167M8K3acPn1asuydv78/jh07hk8++QTGxsYwMDBA69atsWPHDsk8iEePHsWGDRvK9Zw6d+6MJk2K5i27fv16iWsXVxdx7+KQVZBF/QMJqSSxsbGYO3cuvvvuO/B4vHIvsUYIqXw1oo/g6tWrkZ+fj/r16yM7Oxv79++XKVP83vylS5cko10HDBgglTjyeDyMHj0ao0ePRlZWFgQCAYyMjGBnZwceryivjouLk5QXJ1nKEK8qwnEcfvnlF4XlfvjhB6xevRrv37/Hjh07pDpEK6NJkyaIjo5Gbm4u0tLSYGNjU67zVBVhgjDo8nTR3Ka5pkMhpFqKjo7G2rVr4ebmhnXr1kkt/UYI0S41IhEUz+qekJCA4cNLX1/zf//7n+TnxMREhS2IpqamMrd+CwsLERERAaBoWpeyTk9T3OPHjwEUtTLWqVNHYTkDAwM0bdoUd+7cqdAyQzVtHr0wQRiaWTeDvo7yo6QJIaXz8/NT2yCCoKAgBAUFqeVahFRHNeLWsDpdvnxZMvn00KHlWzyezy/Kz8syGbV4xJz4mPKIjo4GUHTr++OFzasbxhjCBeF0W5gQQghBDUkEQ0JCwBgr8VF8AMnly5cl211cXMp8HcaY5Juprq4uxowZU65469UrWvIsLS1N0jooT3p6uuSWtvgYZd24cQOPHj0CAHh5eUlub1dXz7KeIS03jQaKEEIIIaghiaCqpKWlKVw8vLCwEJMmTZIsKTRv3jyFyZm/vz84jgPHcQgNDZXZP2DAAMnP06ZNk7uOsEgkwpQpUyT7+vfvL1Pm+PHjJc7ZFx8fjxEjRkj+/9133yksW12ECcLAgUMr21aaDoWQai8pKQkcx0mt7CF+/0tKStJYXMpITk6WeQ6EVCc1oo+gqly+fBmTJk3CsGHD4O3tjbp16yI3NxcPHz7Eli1bJH0D+/TpIzOxtDL8/f2xZs0aPH78GOfPn4eHhwcmT56Mli1bQkdHB9HR0di4cSNu3boFoGjt4xkzZsicZ9CgQWjQoAE+++wztG/fHo6OjtDX18e///6Lc+fOSSaUBoAhQ4bgs88+K3fMVUWYIAzuVu4w1aMF3En1x0QisNxccAYG4LS4tT80NBS+vr4IDAyk/n6EqBklgkoSCARYu3Yt1q5dK7OP4zgEBARgw4YNpc6GXxI9PT389ddfGDhwIB48eIDIyEiMHTtWbtl69erh6NGjCgelxMfHY9myZSVeb8KECVi9enW5461KwgXh8Hby1nQYhFSq3JgYpO8MQeb582A5OeAMDWHWsyesAvxhUI4lL8urTp06ePz4sdQycYsXL8bcuXNLHAhHCFEfSgSV0LlzZyxfvhyXLl1CTEwMBAIBeDweHBwc4Ovri4CAAHTo0EEl13J2dsbdu3exf/9+HD58GOHh4Xj9+jUYY7CyskKLFi3g5+eHb775RuGo5pMnT+LWrVu4c+cOkpOT8ebNG3z48AFmZmaoX78+OnfujFGjRqFZs2YqiVnbCT4I8OL9CxooQqq1jD9P49XcuUCxwWYsJwcZJ04g4/RpOCxZAvP+/dQSi66ursxa6/b29rC3t1fL9QkhZaDytUoIKaYyl8dRdrmwMwlnWLOQZux19muVxaCttGEpNW2kDfVSmUvM5Tx+zKKbNmPRjdwVP5o2YzmPH8scWxnLhSUmJjIAbOTIkZJtI0eOZABYYmIiY0x6ec+PH+IyJSm+xNzvv//OWrZsyQwMDJidnR2bMmWKwue1Y8cO1r59e2ZsbMyMjY1Z+/bt2c6dO2XKiZfJK/4cxJKSktioUaOYg4MD09XVZXXq1GGjRo1iycnJcq+pTHlvb28GgOXk5LDvv/+eOTk5MX19febu7s7WrVsns7RoYWEh27p1K2vXrh2ztLRkBgYGrE6dOqx///60/J6aVbUl5qhFkNQYYYIwuJi5wNpQ+bkdCakK0neGSLUEyiUUIj1kFxyWLFZLTKXx8fFBUlISdu3aBW9vb/j4+Ej2WVhYlPk869evx9mzZzFw4EB07doVZ8+exbp16/DmzRv8/vvvUmWnTJmC4OBg1KlTR7Ik6JEjRxAQEID79+/L7frzsdjYWHh5eeH169cYMGAAmjZtiqioKOzYsQOnTp3C9evX4ebmVu7yYkOGDMH9+/cxePBgSZxTpkxBUlISVq5cKSk3b948LFu2DK6urhgxYgRMTU3x8uVLXL9+HRcuXJCqV0KKo0SQ1BhhgjC6LUy0mignB3kJCeU6lolEyDx7tkxlM//6CxZfjpAaQJKXlwfolz7Jun79+uAZGpYrRnnECcquXbvg4+NT7sEiFy5cQFhYGBo1agQAWLRoEVq1aoX9+/dj+fLlcHBwAABcvXoVwcHBaNy4MW7duiXpvxgUFISOHTti3bp1+Pzzz9G5c+cSrzd+/Hi8fv0amzdvlurDvWHDBkycOBETJkzAxYsXy11eLDY2FlFRUZI4Fy5ciA4dOmD16tUYPnw4PDw8ABStSOXg4ICHDx/KrDGfnp5e5nokNQ8lgqRGyMjLQPy7eAQ0C9B0KIQolJeQgKTBn1f6dVheHpK/GFKuY12OHIZh06Yqjqjipk6dKkkCAcDQ0BDDhw/HwoULERYWJkkEd+3aBaAo8Ss+iMXS0hKBgYH48ssvERISUmIi+OzZM1y+fBlNmjSRmS92/PjxCA4OxqVLl/D8+XM4OTkpXb64BQsWSMVpbm6O+fPn4+uvv8auXbskiSBQNNBQR0dHJl4rKyuFz4UQSgRJjXA/9T4A0ETSRKvp168PlyOHy3UsE4nw7KuvwRTMdVocp6+Punv3yLQI6pexRVCdIiIicPz4caltLi4uMvP6tW0r29rv6OgIAHj37p1k2/37Re8F8m6V+vr6Sq5ZWkwA4O3tLbNEJ4/HQ5cuXRATE4OIiAg4OTkpXb44eQmpeJv4uQDAsGHDsGHDBjRr1gzDhg2Dr68vOnXqBEMVtt6S6okSQVIjhAnCUNuoNuqY0JQVRHvxDA0r1Npm1rs3Mk6cKL1cnz4wat5cemNOjlYmDREREVi4cKHUNm9vb5lE0MzMTOZY8dKbhYWFkm2ZmZng8XiwsbGRKV+7dm1wHIfMzMwSYxLvr127ttz94lHR4nLKlv84JkXbMjIyJNvWrl2LevXqYefOnfjll1/wyy+/wMDAAEOGDMHKlSvLte49qRm0d4ZRQlQoXBCONrXbyHwbJ6Q6sQrwB0pbd5zPh5X/SLXEowr+/v4yS4LKW5GprMzMzCASifD69WuZfampqWCMyU0qPz4HUDSvrDwpKSlS5ZQtX5y8Y8Tbit8y5vP5mDVrFh49eoSXL19i37596Ny5M3bv3o0vv/yyxOdDajZKBEm1l12Qjei0aLS1pYEipHozcHeHw5IlipNBPh8OS5aodVLpshD3ayvecldZWrduDQByk0nxtlatWpV4DvH+q1evyizjyRjD1atXpcopW764a9euKdwmfi4fc3BwwPDhw3H27Fk0aNAAFy5cQE5OTonPidRclAiSau/hm4cQMiGNGCY1gnn/fqh3+BDM/fzA/f+tXs7QEOZ+fkXb1TSZtDLEgxmeP39e6dcaObKoNXThwoVSt2IzMjIkt6DFZRSpW7cufH198ejRI+zYsUNq35YtW/D48WN07dpV0t9P2fLF/e9//5O6BZyRkYFffvkFHMdJ4szLy8PNmzdljv3w4QPev38PXV1d8LR4iUGiWdRHkFR74YJwmOubo76Feju5E6IpRS2Di2H/66Iqsdawu7s7HBwcsH//fujr68PR0REcx2Hy5MlStz9VoUuXLpg8eTKCg4PRrFkzDB48GIwxHDlyBC9evMCUKVPQpUuXUs+zceNGeHl5YcyYMTh16hSaNGmCR48e4eTJk7CxscHGjRsrVF7Mzc1NEicASZwzZsyQjBjOycmBp6cn3Nzc0LZtW9StWxfv37/Hn3/+iZSUFMyaNatMA4FIzUSJIKn2wgRhaG3bGjxOez8ICakMHI8H7qM55bSRjo4Ojh49iu+//x5//PEHsrKyAABfffWVyhNBAFi3bh1at26NjRs3YsuWLQCApk2b4ueff0ZAQNmmmGrUqBHu3buHhQsX4uzZszh9+jRsbGwQEBCAwMBAODs7V6i82MGDBxEYGIg//vgDAoEA9erVw7p16zBp0iRJGWNjYyxduhQXL17EtWvXkJqaCktLSzRq1AiLFy/GsGHDyllTpCbg2McdFghRoUePHkmtZRwVFYWmKpqDLCoqqtR1kgsKC/DJH59gUutJGNm06nSQr6iy1E1NpA31EhcXB6FQCD6fj4YNG2o0luJyKmHUcExMDBo3boyxY8di8+bNKj23ulRGvZSFj48Prly5ItOnUJtoqm60nTL1Utr7QWV+hopREwmp1qLTo5FbmEvzBxKiAfHx8QD+m8+PEKJ96NYwqdbCBGEw5BvCvZZ2jZIkpDqLjY3Fjh07sG/fPvB4PAwcOFDTIRFCFKAWQVKthQvC0dKmJXR5upoOhZAaIzo6GmvXroWlpSWOHDmCFi1aaDokQogC1CJIqi0REyE8NRxfN/la06EQUqP4+fnRvHUVVJFJswlRBrUIkmor7m0csvKzaCJpQgghRAFKBEm1FZ4aDj6Pj+Y2zUsvTAghhNRAlAiSaitcEI6mtZrCkE/TGxBS0/j4+NDa4sVQfRBFKBEk1RJjDGGCMFpWjtRoTMRQkFcIJtLeuejKKyQkBBzHISQkRNOhEFKl0WARUi29yHqB1zmvKREkNdKbF1mIuPAcT8NTIcwXga/Hg2sbW7Tq7gRrR1NNh0cI0SKUCJJqKSw1DBw4tLJtpelQCFGr2LspuLjzMUTFWgGF+SI8uZ2CuH8E6BbQGG7t7DQYISFEm9CtYVIthQnC4GbpBjM9M02HQojavHmRJZMEFicSMVzc+RhvXmSpJZ7Q0FBwHIegoCBcv34dPj4+MDU1hYWFBQYPHixZeUQkEsHZ2Rm1atVCXl6e3HN16dIFfD4fL168gL+/v2RN4ICAAHAcJ3l8rKCgAEFBQXBxcYG+vj7c3NywYcMGudf48OEDAgMD4e7uDgMDA1hZWWHQoEG4ceOGTNmgoCBwHIfQ0FDs27cPrVq1gqGhIezt7TF16lSlps9JSkoCx3Hw9/dHfHw8Bg0aBEtLSxgbG6N79+548OCB3OOioqIwZMgQ2NraQl9fH/Xq1cO0adOQlpZW5msLhUKsWrUKLVu2hKGhIczNzeHr64tTp06VWt7KyqrE8sVv3584cQLt27eHkZERbGxsMGrUKAgEApljwsPD8fnnn6Nu3brQ19eHjY0N2rVrh0WLFpX5ORHlUCJIqqVwQTja1KZl5UjNEnHhucIkUEwkYnhw4bmaIipy+/ZtdOvWDebm5pg8eTK8vb1x7NgxfPLJJ0hISACPx8Po0aORnp6OI0eOyBz/5MkTXLt2Db1794ajoyP8/Pwkq5UMHDgQgYGBksfHhg8fjh07dqBXr1749ttvkZ6ejokTJ2Lr1q1S5XJzc9G1a1f8/PPPMDY2xrRp0zBw4EBcvXoV3t7eOHTokNzntn79eowdOxZNmzbFhAkTYGlpiXXr1mH06NFK11NSUhI6duyI9PR0jBo1Cj169MDFixfh6+srkzRdv34dHTp0wLFjx9CtWzfMmDEDzs7OWLt2LTp06IA3b96Uej3GGD7//HPMnDkTubm5mDhxIkaMGIEHDx7g008/xerVq0ssP27cuBLLix05cgRffPEFGjRogGnTpqF58+bYuXMnvLy88PbtW0m5iIgIfPLJJ/jrr7/g5eWFGTNm4PPPP4eRkRG2bNmidH2SMmKEVKKoqCgGQPKIiopS2bkjIyPlbk/9kMqahTRjfyX+pbJrVTWK6qam04Z6iY2NZdHR0Sw2NlZmX36ekKUmZ5brIUjKYBsnXWbrx10s9bFx0mUmSMqQOv7Zk9QyXSc/T1jm53r58mXJ3/6mTZuk9m3atIkBYP3792eMMfby5UvG5/OZj4+PzHlmzZrFALDjx49Ltu3cuZMBYDt37pR7bW9vbwaAdejQgWVkZEi2x8TEMD6fzxo1aiRVfuHChQwA+/LLL5lIJJJsv3nzJtPT02MWFhYsMzNTsj0wMJABYObm5iwmJkayPTs7m7m5uTEej8devnxZhlpiLDExUVJPS5Yskdo3f/58BoAtXrxYsq2wsJC5uroyAOzs2bNS5WfPns0AsFGjRsmtj+J27drFADBvb2+Wl5cn2Z6cnMysra0Zn89nT58+VVg+Ozu7xPLi35G8OOfOncsAsEmTJkm2zZgxQ+b3LPbmzRv5laeFxPVSFiW9HzBWuZ+hYtRHkFQ7YalhAEATSZMq511KNg7+erfSr1NYIMKhxffKdeyQH9rBpq5yA07c3NwwZswYqW1jxozBypUrcfr0abx+/RoODg4YMGAAjh8/jvj4eDRo0ABA0a3d3bt3w97eHv369VM63sWLF8PM7L8uIo0aNYKnpyeuXLmCrKwsmJoWPZddu3ZBV1cXS5YskbrF3KpVK4wcORJbt27F8ePH8fXX0isVTZ06FY0aNZL839DQEMOHD8fChQsRFhYGBweHMsdar149zJ49W2rbt99+i19++QV37/73urhx4waePn2KPn36oFevXlLlf/rpJ2zfvh379u3Dxo0boaenp/B6u3btAgAsW7ZMqlzdunUxffp0/Pjjj/j999+xYMECueXFt78VlRfr3r27TJw//vgjNm3ahN27d2Pt2rXg8f67QWloKDvlV61atRQ+D1IxlAiSaidcEI66pnVhY2Sj6VAIUYqFnRGG/NCuXMcyxnB0RTgKC0SlltXR5eGzWW2kEp7c3FwYGBiUKUZleXp6Sn3QAwCPx4Onpyfi4uLw4MEDdO/eHePGjcOxY8ewbds2LFmyBABw8uRJpKam4ocffgCfr/xHVtu2sl8IHR0dAQDv3r2DqakpMjMzkZCQgMaNG0v2Fefr64utW7ciIiJCJhEs7fxiQUFBMuWmTZsGCwsLyf9btWolU0/yznX//n0ARXMDfszExAQeHh44f/48njx5gubNFU+of//+fRgZGaF9+/Yy+3x9fQEU3a4tb3mxzp07y42zVatWCA0NRUJCAho0aIAhQ4ZgzZo1GDRoEIYOHYoePXqgS5cuqFOnjsLnQCqOEkFS7YQJwqh/IKmSdPV0lG5tK65BW1s8uZ1SarmGbW1h6yw9kConhy+3JUYVateuXeL2jIwMAEDPnj1Rr1497Nq1C7/88gv4fD62bdsGjuPw7bffluvaxVsDxcQJZWFhIQAgMzOzxDjt7e2lyil7fgBYuHChTDl/f3+pRLCs56pIvMVlZmbCycmpzOdQtrxYWX//HTp0QGhoKH799Vfs27cPO3fuBAC0a9cOS5culSSbRLVosAipVjLzMxH3No7mDyQ1UqvuTuDxSl49gsfj0LK7/A/zyiJvdGjx7ebm5gAAjuMwduxYpKSk4NSpU3j+/DnOnz+Pbt26oX79+pUWnzgBUxRnSkqKVLnyYIzJPFxcXMp1LlXFa2ZmhtTU1DKfQ9nyYmX9/QNFrYd//fUX3r59i8uXL2PGjBmIjIxEv379kJCQUOLzIeVDiSCpViJSI8DAqH8gqZGsHU3RLaCxwmSQx+PQLaCx2ieVvnHjBkQi6VvWIpEIN2/eBMdxaNmypWR7QEAAdHV1sW3bNuzYsQMikUimfyEA6OjoAJBuKSsvMzMz1K9fH/Hx8Xj58qXM/tDQUABFt261QevWrQH8F1dxHz58wL1792BoaCjVd1HRebKzs/HPP//I7JP3nJUtL3bt2jWZbe/fv0dERISk7j9maGgIHx8frFy5Ej/88ANycnLw999/l/h8SPlQIkiqlXuCe7AxtIGjqWw/H0JqArd2dvjiBw+4d7QDX6/oLZ6vx4N7x6LtmphMOjY2Vma6lq1btyI2Nhb9+vWDjc1//Xlr164NPz8/nD17Fhs3boS1tTX8/PxkzmllZQUAeP5cNVPhjBw5EgUFBZg3bx4Y+28KnsjISISEhMDc3FxuHJrg6ekJV1dX/PXXX7hw4YLUvl9++QVpaWkYPnx4iQNFgKLnDADz5s1DQUGBZPvz58+xatUq8Pl8fPnll+UuL3bhwgWcO3dOatuiRYvw7t07fPPNN5J+kbdu3UJubq7M8eKWw7L0YSXKoz6CpFoJF4Sjbe22tLg6qdGsHU3Rzb8Jun7TGMICEfi6PHCl3DKuTL169cKUKVNw5swZNG3aFI8ePcKpU6dgbW2NtWvXypQfP348Dh06BIFAgJkzZ8pNaDp16gRDQ0OsWbMGb9++lSST8+fPL1eMc+bMwenTp7Fnzx48fvwY3bp1Q2pqKg4cOAChUIitW7dKRhhrGo/HQ0hICHr16oW+ffviiy++gLOzM27duoXQ0FC4urpKBtuU5Ouvv8bRo0dx4sQJtGjRAv3798eHDx9w4MABpKenY+XKlVKtdR+X7927N/Ly8hSWF+vfvz8GDBiAzz//HC4uLrh9+zYuX74MV1dX/Pzzz5JyS5cuxeXLl9GlSxfUq1cPBgYGCA8Px8WLF1G/fn0MGjRINRVIpFCLIKk2coQ5eJT2iAaKEPL/OB4HXX0djSaBANCxY0dcvHgRGRkZWLduHUJDQ+Hn54dbt27JTRx8fX1Rt25dAFA4MbOVlRUOHz4MNzc3bN26FQsWLJCZtkQZBgYGuHTpEhYsWIDMzEysXr0ax44dg5eXF0JDQ/HFF1+U+9yVwcvLC7dv38bAgQNx/vx5rFixAomJiZg6dSpu374t1cqqCMdxOHz4MFasWAFdXV0EBwdj7969aN68OU6cOIEZM2aUWH7jxo0llhcbPHgwDh06hPj4eKxZswYPHz6Ev78/rl+/DktLS0m5CRMmwM/PD3FxcQgJCcHGjRvx77//4ocffsCdO3cq1EeTlEDlMxMSUow6J5S+8+oOaxbSjMWkxSg4oubQhomTtZE21EtpE8hqijKT4JaVeELpwMBApY579eoV4/P5rHPnziqPSVmVUS/VRWl1U9qk39VVVZtQmloESbURlhoGUz1TNLRsqOlQCCEVsGbNGgiFQkyYMEHToRBS7VEfQVJthAvC0ca2DXgcfb8hpKrJyMjAxo0bkZycjG3btqFJkyYYMmSIpsMipNqjRJBUCwWiAjx4/QDjW47XdCiEkHJ4+/Yt5s2bBwMDA3h5eWHTpk2SKWIIIZWHEkFSLcSkxSBHmEMTSROiRXx8fKSmYimJi4tLmcuSqsHf3x/+/v6aDoOUgu6hkWohPDUcBjoGaGLVRNOhEEIIIVUGJYKkWrgnuIeWNi2hq6Or6VAIIYSQKoMSQVLliZgI91Pv0/yBhGiZpKQkcBwndXvQ398fHMchKSlJY3Fpkrw6AVRTL4rOXZq4uDgMGjQI9vb24PF4sLCwKHcM1Vl1fe1SIkiqvIR3CcjIy6BEkJCPMJEIBbm5YB+t86ttQkNDwXEcgoKCNB1KjVNYWAg/Pz+cOXMG/fr1w08//YS5c+dW6jW1NaGqqa9DGixCqrwwQRj4HB8trFtoOhRCtEJqUgLCTh9H7J0bEOblga+vD7cOnmjbzw+2LrIreVSWOnXq4PHjxzA3N5dsW7x4MebOnYs6deqoLQ6iWGJiIqKjozFmzBhs2bJF0+EQDaAWQQDff/89OI6TPEJDQ0ssn5iYiOnTp6NZs2YwNTWFsbExGjZsiO+++w6PHj1SaWxnz57FsGHDUL9+fRgZGcHAwABOTk4YOHAgDhw4AFEZv+lHRUVh3LhxcHV1haGhIWxsbNC5c2ds2rQJQqFQpTGrW1hqGJrUagIjXSNNh0KIxj2+cQW//zAd0VcvQZiXBwAQ5uUh+uol/P7DdDy+cUVtsejq6sLd3R329vaSbfb29nB3d4euLvXn1QavXr0CADg4OGg4EqIpNT4RjIiIwKpVq8pcfsuWLXB3d8eaNWvw6NEjvH//HtnZ2YiPj8fGjRvRpk0brF+/vsJx5eXl4fPPP0efPn1w4MABJCYmIicnB3l5eXjx4gVOnjyJYcOGwcfHB+/evSvxXFu3bkXbtm2xZcsWJCQkIDc3F2/evMH169cxYcIEeHp64s2bNxWOWRMYYwgThNFtYUJQ1BJ49rdVEBUWyt0vKizE2d9WITUpQS3xlKWPYFBQEHx9fQEACxculPpSXpZbh0FBQZIv8Nu3b0fz5s1hYGCAOnXqYPr06cjKypI5ZseOHRg4cCBcXFxgYGAAKysr9OrVC5cvX5Ype/XqVcntwps3b6Jnz56wsLAAx3HlOl95XL16FQMGDIC1tTX09fXRsGFDzJ8/H9nZ2RU6r4uLC7y9vQFI17341mhsbCzmzJmDNm3aoFatWjAwMICbmxvmzp2L9+/fy5zv33//xdSpU9GwYUMYGhrCwsICjRs3xvjx45GRkSG55q5duwAA9erVk1zTx8dHch7x/1++fIkRI0bA2toapqam6NevHxISil67jx8/hp+fH6ysrGBqaorPP/8cAoFAJqay/m6UeR0yxrBu3Tq4u7tDX18fzs7OWLhwYZkbZrRNjb41LBKJMHbsWAiFQtja2iI1NbXE8vv378e4ceMAAObm5pg5cya6du0KfX193L9/H8uWLUN8fDymTJkCW1vbCs2KP2XKFBw5cgQAYGtrK/lj1NXVRWRkJJYuXYrk5GRcu3YNw4YNw9mzZ+We58yZMxg/fjxEIhFq166NH3/8ER06dEB6ejq2bt2Ko0eP4p9//sGgQYMQGhpa5SZwffn+JVKzU2n+QEIAhJ0+rjAJFBMVFiL8zAn0/m66mqIqmY+PD5KSkrBr1y54e3tLJQTKDFpYtWoVLl68iKFDh6Jfv364cOEC1qxZg9u3b+Pq1atSLZATJ05Ey5Yt0b17d9jY2ODly5c4fvw4unfvjqNHj2LgwIEy57958yZ+/fVX+Pr6YuzYsXj27FmFzldWGzduxMSJE2FhYYEBAwbA1tYW9+7dw6JFi3D58mVcvnwZenp65Tr3tGnTEBERIVP34n+PHj2K7du3w9fXFz4+PhCJRLh9+zaWLl2KK1eu4Ny5czA0NAQAZGdnw9PTE0lJSejZsycGDRqE/Px8JCYmYs+ePZg1axbMzc0xbdo0hISE4MGDB5g6darkd+zi4iIV29u3b+Hl5QU7OzuMHDkSsbGx+PPPPxETE4MTJ06gc+fOaNu2LUaNGoWwsDAcOXIE6enpuHTpktR5yvq7UeZ1OHv2bFy5cgX9+/dHr169cPz4cQQFBSE/Px+LFi0q1+9Co1S+enEVsnr1agaAubu7s3nz5kkWdb58+bJM2Q8fPjBbW1sGgJmYmMhdvD4jI4M1b96cAWC1a9dmWVlZ5YorJSWF8Xg8BoBZWlqy58+fy72Wi4uLJOa7d+/KlMnPz2f169dnAJiZmRmLj4+XKfPdd99JzlEZC4NX5oLZkZGR7ET8CdYspBl7l/tOZeetDuS9Pol21EtJi8zn5+awlKdx5Xr8G/eErf5yEFsxpF+pj9VfDmL/xj2ROj45OqpM18nPzSnzc01MTGQA2MiRIyXbRo4cyQCwxMREybbLly8zACwwMFDp+gwMDGQAmJ6eHnvw4IFku0gkYiNGjGAA2IoVK6SOSUhIkDnPq1evmIODA2vYsKHU9rNnz0rev3bs2CE3BmXOJ69OGJNfL48ePWJ8Pp+1bNmSvXnzRqr84sWLZZ6bonOXpKS6f/HiBcvLy5PZvnDhQpn6OHnyJAPApk2bJlM+KyuL5ebmlvhcixPX9/Tp06W2T5gwgQFgFhYWbM2aNZLtIpGI9e3blwFgYWFhUsco87sp7XUojrtevXrs1atXku2vX79mFhYWzNTUlOXl5bHs7Gy5x8tT0vsBY5X7GSpWY1sEnz17hgULFgAANm3aVGoT/pkzZyQthlOnTkWzZs1kypiZmWHVqlXo0aMHBAIBQkJCMGnSJKVju3PnjqSJOSAgAI6OjnKvNX36dEydOhUAcOvWLXh4eEiVOXbsmKQZfd68eXB1dZU5z/Lly/HHH3/g7du3WL58eZWbBT5MEIYGFg1grm9eemFCtFz6yxfYO29apV+nsCAfv/84o1zHfrV4DWrXb6DiiCrum2++QYsW/w0Y4zgOv/76Kw4cOICQkBDMnDlTsq9evXoyx9vb22Pw4MEIDg5GcnIynJ2dpfa3adMGAQEBcq9dnvOVxebNmyEUChEcHIxatWpJ7ZszZw5WrVqFP/74Q+q5qZKiAT2TJk1CYGAgLl26JFMn4hbC4kxMTJS+tomJCX755RepbcOHD8fGjRtRq1YtTJkyRbKd4zgMGzYMZ86cwYMHD9CmzX9dhSrjd7NgwQKpfq/W1tYYOHAgdu3ahSdPnqBBA+37+yhJjU0EJ06ciPfv32PkyJHw9vYuNRG8d++e5Oc+ffooLOfj4wMDAwPk5ubi8OHD5UoE8/PzJT/Xr694hF/xxK74MWLHjx+X/KwowTMyMsKQIUOwefNmREdHIzY2Fm5ubkrHrG4iJkJuYS7CUsLQ0aGjpsMhRCWs6jjiq8VrynUsE4mwP2guCgtk3ws+pqOrh2FBS8Dx/usmnpeXB319/TLFqE4RERFS72VA0W3Ej9/TOnfuLHOss7MznJyc8OjRI+Tn50tuoSYkJGDx4sW4dOkSXr58ibz/H1Qj9urVK5nkoF27dgpjLM/5yuL27dsAgHPnzuHixYsy+3V1dRETE1PiOUJDQ2UGQLZq1Qp+fn6lXp8xhp07dyIkJARRUVHIyMiQ6geXkpIi+blLly6wt7fHkiVL8ODBA/Tv3x/e3t5o3LixVH/KsmrYsCGMjKQHAIqTrxYtWsicU7xPPPhFrDJ+N23bynZFEjfYlNZnXxvVyETw4MGD+PPPP2FlZYUVK1aU6Zi0tDTJz7Vr11ZYjs/nw8rKCq9evcKtW7cgFArB5ytXzY0aNZL8LG7Rk+fp06dyjxG7fv26ZJ+dnZ3C83h7e2Pz5s0AgBs3bmh1Ivgk/Ql2R+/G38l/I0eYAwCwfmuNJ+lP0MhKtg4IqUp09Q0q1NrWqJMXoq9eKrWc+yedYddA+u88JydHbmuOpkVERGDhwoVS27y9vWUSQUXvy7Vr10ZSUhKysrJQq1YtxMfHo3379sjMzISvry8GDBgAMzMz8Hg8hIaG4sqVKzLJQknnL+/5yiI9PR0AKtTvLDQ0VKb+Ro4cWaZEcMqUKVi/fj2cnJzw6aefwt7eXvJlYeHChVLPy9zcHLdv38ZPP/2EU6dO4cyZMwAAJycnzJ07F999951ScZuZmclsE3+WlrSvoKBAsq2yfjclXb+wlD662qjGJYLv3r2T3E5dunQprK2ty3Rc8aZt8egneRhjyMzMBFDUShcfHw93d3elYmzevDk++eQT3Lx5U3JL4+Oh/VlZWVizZg2AolbDnj17Su1///49nj9/DgClXr/4/sePHysV64sXL0rcX/wbY0WdSTiDH6//CCGTnu4mLDUMw/4chkVei9C3fl+VXY+QqqZtPz/E3LhS4oARno4O2vQt/+AFdfP39y9TlxV5I0bF2zmOg6mpKQBg9erVePv2Lfbs2YOvvvpKquz48eNx5Yr86XUUtWqV93xlIU44MjMzJfErKygoqFwTJKempuK3335DixYtcOvWLanWuZSUFJnkEgDq1q2LkJAQiEQiPHz4EOfPn8e6deswceJEWFpaYvjw4eV6DuVVmb+b6qTGTR8zZ84cpKSkwNPTE99++22Zj2vcuLHk55JePPfv35caVl98ZJkydu7ciXr16iE9PR1t2rTBqlWrEBoaiuvXr2PTpk1o2bIlEhMTYW1tjd9//11m1FjxBE1eH8PinJycJD+Lk8eycnJyKvHRvXt3pc6nyJP0J3KTQDEhE+LH6z/iSfoTlVyPkKrI1qU+ek+cAZ6C0f88HR30njhDrZNKl4V4toKKtKZcu3ZNZltycjKeP3+Opk2bSt4jxXdSPh7JyxjDjRs3lL6uqs9XXIcOHQD8d4tYnRISEsAYQ/fu3WVu0cqr6+J4PB5atWqFOXPm4I8//gAAnDx5UrJfFb/vslD2d6OuuLRNjWoRvHbtGrZt2wY+n49NmzYp1W+hT58+4PP5EAqFWLVqFb755huZ1kSRSIQff/xRapu8OazKws3NDXfv3sXGjRuxdOlSmc7Aurq6mDVrFqZOnSo30St+3dI66hobG0t+ljc3lCrFxcWBMab0cRsSNyhMAsWETIh1N9dhgsuE8oZXbbx58wZRUVGaDkPraEO9FBQUgMfjgcfjIScnR+Xnd2nTHp8HLsGDc3/i6d3bEObnga+nD9d2HdGyV39Y13WRe12hUKjyeHJzcwEUfbCKzy3+kM3NzZVsEycaSUlJSscgvhW4e/dujBkzBs2bNwdQ9GH//fffo7CwEF9++aXkvOIBEBcvXkSvXr0k51m+fLnktZGXlycTb0FBgdzYlD2fvDpRVC+jRo3C1q1bMWnSJJw6dUrqSztQdIcrKSkJrVq1KvHcJRHfGv34+dna2gIo6mL04cMH8P6/P+mLFy8kS9AxxiTHREdHo1atWjK30MWNC3w+X1JW3NIZHx+vcCJrkUgk8xxKen7ynoeyv5vSXofyfkdi4tdhXl6eUn9LIpEI+fn5yM3NlfveFB8fX6bzVESNSQTz8/MxduxYMMYkq4Iow8nJCePHj8f69evx8uVLeHp6YtmyZfD19YWenh4iIiIQFBSEc+fOQU9PTzJ4oyJvrKdOncLvv/8uNzkrKCjAwYMHYWNjg9mzZ8skteI/GAClzjFVvIO4svGW1oL45MkTqVbBhg0bomnTpkpdQ8REuPfgXukFAdzNuIvgpsHgcTWusVtKVFSU0q/xmkAb6iUuLg5CoRA8Hq/S+uQ5NWoMp0aNwUQiCPPzwdfTkxoYIk9l9BE0MDAAUNTSIj63uNXFwMBAsq1Vq1ZwcHDAoUOHYGRkBEdHR3Ach8mTJ0stTyePeH7AXr16wdfXF8OGDYONjQ0uXryIe/fuoWPHjpgxY4bkfXDSpEnYs2cPRowYgSFDhqBWrVq4ffs2wsPD0a9fP5w+fRr6+voy8erq6sqtH2XPJ69OFNWLh4cHNmzYgAkTJqBly5bo27cvXF1dkZWVhYSEBFy5cgX+/v7o1KlTiecuifj9/+PnV79+fQwePBhHjhxB586d0a1bNwgEAvz555/o1q0bEhISwHGc5Jhr165h9uzZ8PT0hJubG2rVqoWEhAScPHkSBgYGmDp1qqRsz549sWbNGkyePBmDBw+GsbExnJ2d8fXXX0uuL+/vo6TnJ+95KPu7Ke11KO93JCZ+Herr64PP55e5/nk8HvT09MDn89GwYUOZ/eUZaKOsGvNp+euvvyImJgZ169ZFYGBguc6xYsUK9O1b1ActNjYWfn5+MDc3h6GhITp16oRz587Bw8ND6pZzeft1zJw5EwEBAYiJiYGfnx9u3LiB9+/fIycnB+Hh4QgICMCzZ8/w/fff4/PPP5dpyhb/wQDyRxQXV7yzrLIfBI6OjiU+ShqkUla5wlzJwJDS5AhzkCvMLb0gITUAx+NB18Cg1CRQ03R0dHD06FF07NgRf/zxB3766ScsWLAAb9++LfM5ZsyYgbVr1+LOnTtYs2YNXr58ialTp+L8+fNSX4Zbt26N8+fPo02bNjh69Ch27NgBCwsL3LhxQ2YKrrJQ9fk+NmbMGNy6dQt+fn64ffs21qxZg8OHD+PNmzeYPn06pk2bVuFrKCLuo/727VsEBwfj9u3bmDFjBvbt2ydTtlevXpg4cSIyMzNx9OhRrF69Gvfu3cPQoUMRFhYmVRd9+vTBsmXLAAArV67EggULsH37dpXHr+zvRhWvwypJ5TMTaqHHjx8zPT09BoCdOHFCbhnxpKRQMKG0WGFhIdu6dStr1aoV4zhOcoytrS378ccfWU5ODhs/frxk+5UrV5SO988//5Qc7+/vr7DcggULJOXWrVsn85zF+yZOnFji9V6/fi0pO2zYMKXjLYkqJsMsFBWydnvbsWYhzUp9tNvbjhWKClX6HKoibZg4WRtpQ72UNoGspigzCW5Zid+Hxo4dq/Jzi4nfu0t6366IyqiX6oLqRj6aUFoLrV69Gvn5+ahfvz6ys7Oxf/9+mTLF781funRJMtp1wIABUn3oeDweRo8ejdGjRyMrKwsCgQBGRkaws7OT9KGIi4uTlG/SpInS8W7btg1AUZPwxxNqFvfDDz9g9erVeP/+PXbs2IHJkydL9hWfCLS0kb3Fb+9+3AdFG/A4Hno498DJpydLLdvDuUeNvy1MiLYQ928qbcAaIURzakQiKL71mZCQUKbh6//73/8kPycmJkolgsWZmprK3PotLCxEREQEgKI+FmWdnqY48RQutra2Cmd2B4pu/zZt2hR37tyRmVTU1NQUTk5OeP78eakTjhbfX3x0tDb5psk3OJNwpsQBI3yOj2+afKPGqAgh8sTGxmLHjh3Yt28feDxehdbaJYRULmo6UbHLly9LJp8eOnRouc4hnphSKCx5lCzw30gleZNWe3l5ASgasFHSfH7Fp8Px9PRUKlZ1aWTVCIu8FoHPyf/uwuf4WOS1iCaVJkQLREdHY+3atbC0tMSRI0ekln4jhGiXGpEIhoSEgDFW4qP4AJLLly9Ltru4uJT5OowxycSdurq6GDNmTLniFa+NmJaWVuIEz+np6ZJb2vLWUyw+c3xISIjcc2RnZ+PgwYMAim5ja/OqIn3r98X+/vvxqeunMOQXDWox5BviU9dPsb//fppMmhAt4efnh5ycHDx48KBMK1hURFBQEBhj8PHxqdTrEFJd1YhEUFXS0tIULkdTWFiISZMmSSapnDdvntzkDCiaKZ/jOHAcJ7MGJFDUL1Fs2rRpckf9ikQiTJkyRbKvf//+MmUGDRokWat48eLFUkvSic2ePVsyImr27Nly49Um4pbB2yNuY2ernbg94ja1BBJCCCHlVCP6CKrK5cuXMWnSJAwbNgze3t6oW7cucnNz8fDhQ2zZskXSN7BPnz4yE0srw9/fH2vWrMHjx49x/vx5eHh4YPLkyWjZsiV0dHQQHR2NjRs34tatWwCK1sCcMWOGzHl0dXURHByMAQMGIDMzE56enpg/fz7at2+Pt2/fYuvWrThy5AiAotvIxedw0nY8jgcDHQMaGEIIIYRUACWCShIIBFi7di3Wrl0rs4/jOAQEBGDDhg2lTuJcEj09Pfz1118YOHAgHjx4gMjISIwd5ExL8QAAJG1JREFUO1Zu2Xr16uHo0aMKB6X07dsXmzZtwqRJkyAQCKRGFou1b98ex44dk0yWSQipPDo6OhAKhRAKhSgsLKS/O0JqqMLCQslYAE2+D1BzihI6d+6M5cuXo0+fPqhXrx6MjIxgYmICNzc3jBs3Drdu3cL27dulVuooL2dnZ9y9exe7d+/Gp59+CkdHR+jr60NPTw92dnbo2bMnNmzYgMjISMnyQoqMGTMGYWFhGDNmDOrXrw8DAwPUqlULXl5e2LhxI27cuFGu0c2EEOUVn4UgJSWlxq1rSggpSgKLD+JUNDuJOnCMlWPhV0LK6NGjR1JLekVFRSm9xJwi2rBcmLaiupFPG+olJycHSUlJUtvkjfpXN5FIJJkLlfyH6kUxqhv5ylIvH88KUq9ePakVwcQq8zNUTPPvPoQQUoMYGhrCwcEBr169kmwry1RRlS0/P79CXVqqK6oXxahu5FO2XhwcHOQmgepCiSAhhKiZubk59PX1kZGRgQ8fPmjF7eHc3FytaJnUNlQvilHdyFeWetHR0YGxsTHMzc01mgQClAgSQohGGBgYaPwDoLioqCg0bNhQ02FoHaoXxahu5Ktq9UI39wkhhBBCaihKBAkhhBBCaihKBAkhhBBCaihKBAkhhBBCaihKBAkhhBBCaigaNUwqVV5entT/4+PjVXbu+Ph4cBynsvNVJ1Q38lG9KEZ1Ix/Vi2JUN/Kpsl4+/sz8+DNVFSgRJJXq+fPnUv/38/PTTCCEEEJIFff8+XO0adNGpeekW8OEEEIIITUUJYKEEEIIITUUxxhjmg6CVF/v3r3DlStXJP93cnKCvr5+hc6ZkpKC7t27AwAuXLgAOzu7Cp2vOqG6kY/qRTGqG/moXhSjupGvMuolLy9PqouVt7c3LCwsKnze4qiPIKlUFhYWGDhwoErPaW5uLvm5UaNGcHR0VOn5qzKqG/moXhSjupGP6kUxqhv5KqteVN0n8GN0a5gQQgghpIaiRJAQQgghpIaiRJAQQgghpIaiRJAQQgghpIaiRJAQQgghpIaiRJAQQgghpIaieQQJIYQQQmooahEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkNc7evXsxbtw4eHh4QF9fHxzHISQkRNNhadzLly+xZs0a9OzZE3Xr1oWenh7s7OwwePBg3LlzR9PhaUxubi5mzJiBLl26wMHBAQYGBrCzs4Onpyd27tyJgoICTYeoNZYuXQqO48BxHG7fvq3pcDTKxcVFUhcfP3x8fDQdnsYdO3YMPXr0QK1atWBgYIB69eph+PDheP78uaZD04iQkBCFrxfxo1u3bpVybX6lnJUQLTZ//nwkJyfD2toa9vb2SE5O1nRIWiE4OBhLly6Fq6srevbsCRsbG8TFxeH48eM4fvw49u3bh6FDh2o6TLV7//49Nm7ciPbt26Nfv36wsbHB27dv8ddff2HUqFHYv38//vrrL/B4Nft7dVRUFAIDA2FsbIwPHz5oOhytYG5ujmnTpslsd3FxUXss2oIxhvHjx2PLli1wdXXFsGHDYGpqilevXuHKlStITk6Gk5OTpsNUu1atWiEwMFDuvsOHD+PRo0fo1atXpVybY4yxSjkzIVrqwoULaNiwIZydnbFkyRLMmzcPO3fuhL+/v6ZD06ijR4+iVq1a8Pb2ltp+7do1dOvWDSYmJvj333+hr6+voQg1QyQSQSgUQk9PT2q7UChEjx49EBoaij///BP9+vXTUISaV1BQgI4dO0JXVxcNGzbE3r17cevWLXTs2FHToWmMONlLSkrSaBzaZu3atZg2bRq+++47rFu3Djo6OlL7hUIh+HxqoxLLz8+Hg4MDMjIy8OLFC9SuXVvl16jZX2FJjdS9e3c4OztrOgyt89lnn8kkgQDQuXNn+Pr64u3bt4iMjNRAZJrF4/FkkkAA4PP5GDRoEAAgPj5e3WFplUWLFuHRo0fYsWOHzAc7IWI5OTlYuHAh6tevj7Vr18p9rVASKO348eNIS0tD//79KyUJBCgRJGqUmpqKP//8Ez/99BP69OkDa2trSd8HZVvjkpOTMXPmTLi7u8PY2BhWVlZo164dli9fjuzs7Mp5ApVI2+tGV1cXgPrfpLW5XkQiEc6ePQsAaNasmdLHV4Q21Ut4eDgWLVqEwMBANGnSpJzPSHW0qW7y8vIQEhKCX3/9FevXr9doX1ttqJfz58/j7du38PPzQ2FhIY4ePYolS5Zg06ZNGv0ypQ11o8i2bdsAAKNHj1b62DJjhKgJAIWPkSNHlvk8J0+eZGZmZgrP5ebmxuLi4sp0rsWLFzMAbOfOneV7UiqijXUjlpyczPT19Zm9vT0TCoVKPrOK0aZ6ycvLY4GBgeynn35iEydOZO7u7gwACwgIqOCzVJ621Etubi5r2rQp8/DwkLw2Ro4cyQCwW7duVfRplou21I2zs7Pc49q1a8fi4+NV8EyVow31smDBAgaAzZ49m7m5uUkdx+Px2MyZM1X0bJWjDXUjT1JSEuPxeMzR0bFS33spESRqU/wPom7duqxnz55K/7GFh4czQ0NDBoCZmJiwRYsWsZs3b7KLFy+yMWPGSP3BZWZmlno+bUwEtaVuGGMsPz+fdenShQFgu3fvrsAzLB9tqpesrCypeDiOY7NmzWIFBQUqerZlpy31MmfOHKanp8ciIyMl27QpEdRk3QQFBbGLFy8ygUDAPnz4wO7fv8++/vprBoA5OzuX+W9QVbShXsaNG8cAMB0dHdauXTv2zz//sKysLHb16lXJF6sNGzao+JmXThvqRp7AwEAGgM2fP78Cz650lAgStfnpp5/YqVOnWEpKCmOMscTERKX/2Dp37swAMD6fz27evCmzf9myZZJzBgYGlno+bUkEtbFuCgsL2YgRIxgANmbMGGWejspoa708f/6cbdiwgVlYWDBPT0+WkZGhzNOqMG2ol5s3bzIej8d+/vlnqe2aTgS1oW5KIk4GV65cqdRxFaUN9SJOiAwNDdnLly+l9kVGRjIej8dcXV2Vfm4VpQ1187HCwkJWt25dxnEcS0hIUObpKI0SQaIxyv6x3blzR1J+3LhxcssUFhayxo0bMwDMwsKC5efnl3hObUkEP6bpuiksLJR8oH/11VessLCwvE9FpTRdLx87ePAgA8DmzJlT5mMqg7rrpaCggDVs2JC1atVKpr40nQh+TNteM9evX2cA2GeffVbmYyqDJupl1qxZDADr3Lmz3OMbNGjAALC3b98q+3RUShteM+fOnWMAWLdu3crzFJRCg0VIlXH8+HHJzwEBAXLL8Hg8fPPNNwCAd+/e4fLly+oITeNUWTcikQgBAQHYtWsXhg8fjpCQkCo7R15lv2Z69uwJAAgNDS13jJpQ0Xp5//494uLiEBERAT09PalJb3ft2gUA6NSpEziOk7pWVVDZrxlra2sAqHJzLaqiXho1agQAsLCwkHu8eHtOTk7FglWzynjNqGWQyP+jcdqkyrh+/ToAwNjYGG3btlVYrvgUKDdu3JB8WFdnqqobcRK4e/duDB06FHv27KnS04FU9mvm1atXAP4bVV1VVLRe9PX18e2338o95urVq4iLi8Onn34KGxubKjd5cmW/ZsQjh2tivfj6+gIAHj9+LHNcQUEB4uPjYWxsDBsbG1WFrRaqfs2kpaXhxIkTsLKykkxRVZkoESRVhvjNo0GDBiVOY+Lu7i5zTHWniroRiUQYNWoUdu/ejS+++AJ79+6t0kkgoJp6iY6OhouLC4yMjKS2Z2dnY8aMGQCAvn37qipktahovRgaGkpaLD7m7++PuLg4zJs3r0pOKK2K10xMTAzq1q0r85qJiYnB999/DwAYMWKEqkJWC1XUi3jVovPnz2Pbtm1SrV1LlizBu3fv8NVXX1W5uQRV/dm0Z88e5Ofn46uvvlLLBP5Vq7ZJjZWbm4s3b94AABwdHUssa2lpKVnmSt66ldu2bZN8gxNPkLxt2zbJ7T0vLy+1NMeriqrq5ueff8auXbtgYmICNzc3/PLLLzLH+/n5oVWrViqLvTKpql4OHjyIVatWwcvLCy4uLjAzM8PLly/x119/IS0tDZ07d8b06dMr7Xmomir/lqobVdXN/v37sWrVKnTp0gXOzs4wNjZGbGwszpw5g4KCAsybNw9dunSptOehaqp8zWzYsAGffPIJxowZg+PHj8Pd3R3379/HpUuX4OzsjOXLl1fKc6gslfH3tH37dgDquS0MUCJIqoisrCzJzyYmJqWWF/+xvX//Xmbf9evXJf2YxG7cuIEbN25I/l+VEkFV1Y14Kaz3799j0aJFco91cXGpMomgquqlf//+ePXqFW7evIlbt27h/fv3MDc3R4sWLTBs2DCMGjWqSrVgqPJvqbpRVd34+vri8ePHuH//Pq5du4bs7GxYW1ujb9+++O6776pcdxVVvmZcXV1x7949/PTTTzh79izOnz8POzs7TJw4ET/99BNsbW1VGntlU/Xf0z///IOoqCi0b98ezZs3V1mcJak6716kRsvNzZX8LG+5r4+Jm9PldToOCQlBSEiIymLTNFXVDdWL/Hrx8PCAh4eHaoPTIFX+LclTlV9Hqqobb29vucs1VlWqfs04OTlh586dqglOw1RdN+3btwdjTDXBlVHVHApIahwDAwPJz/n5+aWWz8vLA1DUl6m6o7qRj+pFPqoXxahu5KN6Uaw61A0lgqRKMDU1lfxclltU4qkZytJUX9VR3chH9SIf1YtiVDfyUb0oVh3qhhJBUiUYGBigVq1aAIAXL16UWPbt27eSPzYnJ6dKj03TqG7ko3qRj+pFMaob+aheFKsOdUOJIKkymjRpAgCIj4+HUChUWC4mJkbyc+PGjSs9Lm1AdSMf1Yt8VC+KUd3IR/WiWFWvG0oESZXh5eUFoKhpPSwsTGG5K1euSH729PSs9Li0AdWNfFQv8lG9KEZ1Ix/Vi2JVvW4oESRVhp+fn+RnRSPORCIRdu/eDaBouSLxTPbVHdWNfFQv8lG9KEZ1Ix/Vi2JVvW4oESRVRvv27dG5c2cARRNu3rp1S6bMypUrJTO2T506tcot/VVeVDfyUb3IR/WiGNWNfFQvilX1uuGYuiesITXW9evXER8fL/n/mzdvMHv2bABFzeQfT+Ls7+8vc4779+/D09MTOTk5MDExwQ8//ABfX1/k5ORg//792LJlCwDAzc0N9+7dkxrRpc2obuSjepGP6kUxqhv5qF4Uq/F1wwhRk5EjRzIAZX4ocvLkSWZmZqbwODc3NxYXF6fGZ1ZxVDfyUb3IR/WiGNWNfFQvitX0uqFbw6TKGTBgAB4+fIjp06fDzc0NRkZGsLCwgIeHB5YuXYr79++jQYMGmg5TI6hu5KN6kY/qRTGqG/moXhSrqnVDt4YJIYQQQmooahEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBBCCKmhKBEkhBCicUFBQeA4Dj4+PpoOhXwkKSkJHMeB4zgkJSVpOhyiYnxNB0AIIdXN8ePHERERgVatWsHPz0/T4RBCiELUIkgIISp2/PhxLFy4EMePH9d0KIQQUiJKBAkhhBBCaihKBAkhhBBCaihKBAlREx8fH3Ach6CgIDDGsHXrVnTo0AFmZmYwNTVFp06dsHfvXrnHijtqh4aGlun8JR2flpaGGTNmwNXVFYaGhnB2dsakSZPw+vVrSfnk5GRMmDAB9erVg4GBAerWrYuZM2ciKyurotUAQLbzeXJyMsaMGYO6devCwMAArq6umD9/Pj58+CA5JioqCl999RWcnJz+r717D4qqDP8A/l0W2OXiXkBF5aaFN0jUwVuYEShYeC+NvJu3weyCjncJssEKKzFtRk1N0RTvNmKog4qllihmmWWoIzqgggoCKnJZ9vn9sb9zfrvshQVW098+nxlmdN/3nPfd55xlH95zzvtCLpejffv2SEpKQk1NjcW2jh8/jlGjRsHb2xsymQzNmzdH//79sXHjRtTW1prcpu6DC0ePHsWgQYPQokULyOVydO7cGUuWLEFlZaVRWxKJBKmpqQCA1NRU8X1aOoYXL17E9OnT0b59e7i6usLd3R3BwcFYvHgx7t2714DIWic7OxvvvvsuAgIC4OrqCoVCgcDAQEyePBmHDx82qn/69GnMnz8f/fr1g7+/P+RyOVQqFfr06YPk5GQ8fPjQbFv67/vOnTuYPXs2OnToAFdXV0gkkgb1+/z585gwYYLYB7VajdDQUKxYsQJVVVUNjoM5Go0G3333HV577TU0b94cTk5O8PT0RMeOHRETE4MNGzYYbXP//n1s2LABb7/9Nrp06QIPDw/I5XL4+/tjzJgxOH36tNn26p5v+/fvR//+/eHp6QmFQoHQ0FCj2wy2bNmCvn37Qq1Ww93dHa+++iqOHj1qcv91P29XrlzBpEmT4OPjA5lMBj8/P8TGxuLWrVuNjplWq8XWrVsRHR0NLy8vODs7o0WLFoiKikJaWhqIyOR2jYk1szFijD0VYWFhBIDi4+Np2LBhBIAcHR1JoVAQAPEnISHBaFuhLCsrq979JyYmmt0+NTWVfHx8CAC5ubmRs7OzWNa5c2e6f/8+nTlzhjw9PQkAKRQKcnR0FOv07duXNBpNk2ORl5cn7nPPnj2kUqnE9qRSqVjWr18/qq6upgMHDpCrqysBIKVSSRKJRKwTExNjtp1Zs2aJ9SQSCalUKoP9R0REUHl5udF2iYmJBIDCwsJo2bJlJJFIxO312w4PDzeIx6lTp8jLy4vkcjkBILlcTl5eXgY/p06dMmgrOTmZHBwcxH26uroaHJfWrVvT77//3uSYExFpNBr68MMPDc43Nzc3UqvV4vtSKpVG2+nXd3V1JbVabfBaYGAgFRUVmWxTqLNu3Try8vIS49KsWTPS/wrSj7kpy5cvN4i9UqkkJycn8f/BwcF069Ytm8QoMjLS4P0plUqSyWQGr9Ul9B8ASaVSUqvVBttIJBL65ptvTLap/94TEhIIADk4OJBSqTRoc82aNaTVamnixIni7w8hjkK7Bw4cMNq//udt+/bt4jbu7u7k4uIilnl4eNC5c+csbp+Xl2dUXlxcTK+++qpRzPT/P3ToUKqqqrJJrJltcYQZe0qERE2tVpNSqaRNmzZRRUUFERHl5+fTkCFDxC+Ay5cvG2xrq0RQpVJRt27d6PTp00REVF1dTWlpaWKS9f7775O/vz9FRETQxYsXiYjo8ePHtGrVKjGBWrduXZNjof/FolKpqH///vT3338TEVFFRQWtXLlSbC8+Pp6USiXFxMTQ9evXiYjowYMHtHjxYnEfmZmZRm2sWrVKLJ8+fTrdvn2biIgePnxIKSkpYoJrKpEUvphVKhU5ODjQwoUL6e7du0REVFZWJn5ZA6ANGzYYbS98UU+cONFiHNavXy9+IS9dulTso0ajoZycHIqIiCAA5OPjQw8ePLA+wGbMmzdP7PfkyZMpNzdXLCstLaUff/zRZDyGDBlCO3bsEPtHpDtOe/fupY4dOxIAGjFihMk2hfbc3d2pY8eOdPToUaqtrSUiMmjfUiKYnp4u7mfYsGF07do1IiKqqqqizZs3i4lNaGhok/9Q2bJli5isrl+/Xoy7VquloqIi2rt3L40cOdJou7Vr11JiYiLl5OSICY9Wq6Vr167RRx99RBKJhKRSqcmkXnjvSqWSpFIpLV26lEpLS4mIqKCggAYOHEgAqFmzZpSQkEAuLi60Zs0aevToERERXb58mXr06EEAyM/PT4yvQP/zplQqKTg4mLKzs8U+Hj58mPz8/MTt6/5xZCkR1Gg04u+ebt26UXp6utivhw8fUmpqKrVs2ZIAUFxcnE1izWyLE0HGnhLhlyUAOnbsmFF5ZWUltWnThgBQUlKSQZmtEkEvLy+6d++eUfnHH38s1gkKCqLKykqjOuPHjycA1L9///rfbD30v1jqaw8ARUZGklarNarTr18/AkBTpkwxeL2iooI8PDwIAI0ePdpkH1auXCnuPycnx6BMf3THVDyJiN58800CQAMGDDAqsyYRLC8vF0dCDx06ZLJOTU0NhYSEEABKSUkxuy9r5ObmiiOP8+bNa9K+9BUUFJBMJiOJREI3btwwKhfiqFAoKD8/3+x+LCWCnTt3JkA3Qmwq0du/f7/Yzq5du5r0fmbMmCH+8WBLM2fONHmuEhmeb3U/+0S6Pz7c3NzEOj/88INRnatXr4rlJ06cMCjT/7x5enqaHL39559/xJHoZcuWmd2+biK4efNmAkCdOnUSk9e6cnJySCKRkLOzs0HbTyrWrGH4HkHGnrK+ffsiPDzc6HWZTIaBAwcCAC5cuPBE2p42bRo8PT2NXhfaBYDZs2dDJpOZrWPrvs2aNctiewCwYMECk/eTmetTZmYmSkpKAMDkPZMA8N5776F169YAgG3btpmsI5PJMGfOHJNlw4YNM9m2tfbs2YPS0lJ0797d4L3qc3R0xOjRowHA5L17DZGamgqtVgtPT08sWbKkSfvS5+3tja5du4KI8Ouvv5qtN378ePj4+DR4/xcuXMClS5cAAPHx8ZBKpUZ1hgwZgl69egEA0tLSGtyGPpVKBQAoLCxs0n7qGjRoEADg5MmTZuvI5XLExcUZva5QKPDyyy8DAPz8/DBmzBijOi+++CICAgIAWD4nY2Nj0bJlS6PXO3fujJEjRwIAtm/fbv6N1CHcwzdjxgwolUqTdUJCQhAUFITq6mpkZWWJrz+pWLOG4USQsaesd+/eZsvatGkDAGISY2vCl2VdXl5e4r979uxpsc79+/ef+T7l5OQAAHx9fdGhQweT20qlUkRERBjUrysoKAju7u4my5p6rE6dOgUAuHTpElq1amX259NPPwWge4CnKYQkLTIyEnK5vEHbarVabNu2DUOHDoWfnx9cXFwMHoA5c+YMAKCgoMDsPvr27duofgvHxtHREWFhYWbrRUZGGtRvrOjoaEgkEuzfvx9vvPEG0tLSrH6I4tq1a5gzZw5CQkKgUqkglUrFGEVHRwOwHKPAwEC4ubmZLBPO9R49eph9yMaaz6hwzlsqu3DhQr0PYQFAbW2t+BDMJ598YvE8zs3NBWB4Hjcl1sx2eGURxp6yZs2amS1zdNR9JK35JWzLtoV2ramj0WieuT7VjdedO3cA6EarLBFGqIT61vZNv+3GxkP4wqusrDR6+tiUioqKRrUjEEZd/P39G7RdRUUFBg8ebDCS4+zsDA8PDzg5OQHQJcM1NTUGT3nXZWoUyhrCsWnevLnJkWNBfcfSWq+88gqSk5MRHx+PQ4cO4dChQ+L+BwwYgAkTJpgc0d+3bx9Gjx5t8PSyQqGAXC6HRCJBdXU17t+/bzFG1pxvTf39YekzIZRpNBqUlJQY/DFmSklJifh+rf0DUf88bmysmW3xiCBjjP0HhKlrYmJiQLr7tS3+NHWN14ZO1SJYunQpsrKy4OLigpSUFNy4cQOVlZUoLi5GYWEhCgsLxVFuMjNFCACTl3SfVXPnzkVeXh5SUlIwfPhwtGzZEgUFBdi0aRMiIiIwatQog2SruLgYkyZNQlVVFSIiInD8+HFUVFSgrKwMRUVFKCwsxK5du/7Dd/Rk6E+/dPDgQavO47q3ajQ01sz2OBFk7DkgfIlaGjkqKyt7Wt155gmjT5Yuw+mXN3a0qilatWoFoOmXfJ90e8L9YgkJCYiLi4Ofn59RUvkk7/ESjs29e/cszhVo62PZpk0bxMXFYd++fSgqKsKFCxcwdepUAMDu3buxevVqsW5GRgbKy8uhVquRnp6OsLAwuLi4GOzvWbkP7ubNm/WWOTo6wsPDo959eXp6iqOQTTmPGxJrZnucCDL2HFCr1QCA/Px8k+UPHjwQb6hnuvuoAF1ycPnyZZN1amtrxcud5u5BbCwHB92vVksjZMI9c+fOncPt27dt2r4poaGhAHQP0lhzKVognHPdu3c3WX79+nVcvXq16R00QziWGo0GP//8s9l6R44cAWD7Yyno0qUL1q1bJx63zMxMsUyIUceOHeHq6mqxf/81/Uv85sqCg4PFy/6WODk5iff4pqen26aDsBxrZnucCDL2HOjatSsA3ZOmpnz11Vc2XVnheRcZGSk+HW3uqeG1a9eK9+kJT+baikKhAACUlpaarTNq1CioVCrU1NRg9uzZFpNGrVZrcV/WmDRpEqRSKYqLi5GYmGj1dsKToH/++afJ8gULFjSpX/UJDg5GYGAgACApKcnkajAZGRnIzs4G0PRjWd/nSBjpE5J94P9idPnyZZNJ9h9//GH2yfSnbc2aNSZXq8nNzcXu3bsB6G5XsNb06dMB6I5BRkaGxbp1H6xqTKyZ7XF0GXsO6E8hkpiYiPLycgC6y2WLFi1CUlKSOBUD032BCAlgWloaYmNjUVRUBEB3s/rKlSvFaTpiYmIQEhJi0/ZfeuklAMCJEyfw77//mqyjUqmwYsUKALrLr4MGDUJ2dja0Wi0AXfJ36dIlfP311wgKCsKBAwea1KeAgADMnTsXALBs2TJMnToVV65cEcvLy8uxY8cOjBgxwmC7119/HYAuCdu7d6/4cExeXh7GjBmDnTt3iiPWT0pycjIAXTxHjhyJvLw8ALqHIrZu3Sp+PkJDQzF8+PAmtTV8+HBMnjwZBw8eNEi+S0pKkJSUJC7jJkwHAwBRUVFwcHBASUkJxo4dK15ira6uxs6dOxEVFWXxIY+nqaamBpGRkTh79iwA3aj1kSNHMHDgQFRVVcHX1xexsbFW72/cuHEYMGAAiAgjRoxAUlKSwZO/jx49QlZWFmbOnIkXXnjBYNvGxJo9AU9vykLG7JulCZ8F5ibV1Wg0FB4eLk7qKpFIxGXBJBIJffnll1ZNKG1uQur6lpAiIsrKyrLZkk+2am/jxo0EgPz9/U2W111iTq1WGyyZFx4eXu8Sc+ZY6l9JSQm1aNFCLG/evDn5+/uTv78//fbbbwZ1V69ebbCknEwmI09PT4Pl02BmEuGG0mg04sTGwo+7u7vFJeauX78uLg0H6JY1018+7LPPPmvSuSdo6BJzKpXKIG5dunShmzdvNi4wevQnfsf/ToRddxnIkSNHGq3eMX/+fIM6+kvgtWvXjrZu3Wr2fLHmfLNmknJzx8HSEnPCqkJCTM+ePWu03/o+r2VlZTR48GCjuNVdktHR0dEmsWa2xSOCjD0HpFIpfvrpJyxZsgSdOnWCs7MzJBIJoqKikJmZaXbSY3u3fPlyHDt2DG+99Ra8vLzw8OFDNGvWDOHh4fj++++RmZn5REZq1Go1fvnlF7zzzjvw9vZGWVkZbty4IT5xqy82Nha5ubmYM2cOunbtCplMhtLSUri7u6NHjx744IMPkJmZaZPL11KpFN9++y1OnjyJsWPHws/PDzU1NSAiBAYGYsqUKUa3H/j7+yMnJwdTpkwR506Uy+UYPHgwDh8+jIULFza5X9aYNWsWcnJyMG7cOPj6+qKiogIuLi7o06cPUlJScPbsWbF/TbFq1SokJycjOjoa7du3BxHh8ePHaNOmDYYOHYo9e/Zg165dRpcrv/jiC2zevBm9evWCi4sLampqEBAQgEWLFuH8+fM26Zst9O7dGzk5OZgwYQKUSiU0Gg28vb0xbdo0/PXXX+I9mQ2hUCiQnp6OjIwMxMTEwM/PD1VVVaioqIC3tzeioqLw+eefi3MJChoba2ZbEiILN6Ywxhhj7Ll2/fp1tGvXDoDukn7btm3/2w6xZwqn2YwxxhhjdooTQcYYY4wxO8WJIGOMMcaYneK1hhljjZKfn9/gyXt9fX3FaStY4wgrhDTEs7KqxdPUs2dPsxOwm3P27Fn4+vo+oR4x9mziRJAx1ii1tbXi3HzWksvlT6g39qOhMbdXd+/ebXCsTE1W/f9B27ZtLU5YzuwbPzXMGGOMMWan+B5BxhhjjDE7xYkgY4wxxpid4kSQMcYYY8xOcSLIGGOMMWanOBFkjDHGGLNTnAgyxhhjjNkpTgQZY4wxxuwUJ4KMMcYYY3aKE0HGGGOMMTvFiSBjjDHGmJ3iRJAxxhhjzE5xIsgYY4wxZqc4EWSMMcYYs1OcCDLGGGOM2SlOBBljjDHG7BQngowxxhhjdooTQcYYY4wxO8WJIGOMMcaYnfofawDyd6C6zawAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200, facecolor='w')\n", + "\n", + "ax.plot(np.logspace(1, 7), 50.*np.ones(50), 'k--',\n", + " lw=0.5,\n", + " label='expected value (50)')\n", + "\n", + "for simulator_id, data_ in data.items():\n", + " ax.plot(data_[:, 6], data_[:, 9], '.-', \n", + " lw=0.5,\n", + " label=desc[simulator_id])\n", + "\n", + "ax.grid(lw=0.2, which=\"both\", axis='both')\n", + "\n", + "ax.set_xscale('log')\n", + "\n", + "ax.set_xticks(data[\"0\"][:, 6])\n", + "\n", + "ax.set_xlabel(\"num_monte_carlo_samples\", fontsize=9)\n", + "ax.set_ylabel(\"Mean loss [$B]\", fontsize=9)\n", + "\n", + "ax.legend(fontsize=7, labelspacing=0.15, handletextpad=0.5, frameon=True, loc='lower right')\n", + "\n", + "fig.savefig('mean_loss_vs_num_monte_carlo_samples.png', bbox_inches='tight')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/benchmark/speedup_vs_num_monte_carlo_samples.png b/benchmark/speedup_vs_num_monte_carlo_samples.png new file mode 100644 index 0000000000000000000000000000000000000000..878e24f0e504c37faf73066467be3bf999c89039 GIT binary patch literal 59990 zcmc$`WmuF^*EWnrN(s^-sB}uVA|c&fBHi630@5JTE#1w~A>G~G-QCQ$$NPES`}p4f z-|_vxnPVJg_O{x$ ztr25?iqH`F5G3m_YIbmNB(1QYCzitw{BUqPZDK;76rGdy7o1d;E=d2LTs3OOJhMi} zc=6ik5Ec25zF4wv-oV6gW>{XqF2*D~D`u`YBE9B|#Ea+H)!9FOkPpryqdjN1x_?~m zLe*c}(Ec^F=i;2Q$F+3Em+I!*=YOO~9hCmY7ef${?DRP#?-}fgF9tMXT@v<4j{g7e zlaV-XI9-Bp628`@B^~Gy@@tx}CMG7W0bsoW_hjtsF=kW6JJ5r}!?5J!!vBjc#s561HhiL#Cg_I^y}Z247LTTZ z&*S0cP0Cj)Ajm9M3FM7E@2L<={O<$)>5OKBGjqrAA6&1TCOWY}nlqcp@-~mNulOSKd^Xm0fG7ua1sK|I~7mulrq**M=pC=l#wI?2f1} z{7uDO&dv6#SLa>ejlM+FLpN`{xI;-qQB|C zB@88ZBfb@-@MU5b8-#@oXHy@~LOWd`1DQ7#|6B-m1V*dkJ1#6iL@Wh+?p8DegS>se z<&W|2-n7$7|7IccWn#9_B$}O`E{qNh6(+=u?ZZSOlN9^U|AhLzAdu)QjD?hTZ-A4} ze%BL^As81YUeuZ9T0|E;(bWON@JY>s7L*|?J?|dm7C#@J&29pLWlVJE79 zY_Fu1Jz0PMdUj`UACFP;2DZ*tA?)O^?+yhs75Yyge6yn_=bYn)h9)seiSZ-g`7A1F z$MB6rX^D2Q0Jy|k>Qpx>wndabj4Q(-BBW z)Fk4toc}vFm&l-1cRa{*^rufBexlLs%6KIG#Zfbq-`m@JzTPQ(YbX^96SIY}`ChQ? zC#qVL`%PaHADIxzA1Y+gYPT|vMY^Otw$;$Q3TpX6=i>Q-5WCm6UJvxi0@uETx@m<3 zSN#6$C6xROX2J8wWRfKxDUG<3!<8KdvDC`Gy@0#en=*R1y&&SU z^#xBAnms+>ViGsPlDi{6rvd22Vi+MI98!MR=?4y1ZL_N=t|tJPSOWl6+RfTR}j zR@AWIy)1%wJF2)2n)$U>+$d-NI%J%ziU=x~SL;#EId8FByY|3z1bGO{~B_A>qo z>pc#Nz<+Nr!g>W3CmI1**Hm**)=(b{V{7#>GxW&)%>M+pYJUbpS~%t&OT zDqkZjMlwXt)_btv(Mdw;>)o<9UJL8aRaw9(mS`s%4kTo$6{}SkDi$cCez%yb%Gwn~ zL_vAW%8LEn^Wj!5S2m4x5C4OHz#{}C(RD_Zp~p6`fXrKB$z=U9;JG?9Vf8Ge~2#l@U_!vI-1^S z_m})|T;f=J1>n&BY)(e;P!lqNAdA^z=}7UHJO>*&NKWrSN-*ueADAVAK8uLCwPJwKrKr zHwCslNjmo9-#Rv;xiUYHX~$f5bT_epgEiSzGyQ8pYw}CdY$WiKz@K zbAP<t!=@I5-Ppe|bT}g@TCq_2zWLn3W)gK`WsMeW)v(bWaDDTK-*I zd5=a-3a=Q~@}%qqp1QMhO-uIl5=b2tMnnG#3O2Tk&Um?lun3jU_E$W1o0$=Vkq6;5 zgl6N0gtaEUH{S}Z{)R5WZrLvA{HKes1!}dK4yvo6;`@8P$i(&9%%NXH6pa&jFSGu> zGXe+MaCcZw71Y{A>LqzFJ45*A?*7K^VXxoNQC(eqSEsAJeO;U{-leSLP#Bj%^N&`& z^tkUI=kM}!n;#|tDXBA@bggFi?EiWd27H%BTdSPXRw%iu79ne-8$qsx{q)oX< zLuJfR6sFXMn&RlTe7c6#{g_B?kjXe~G?}d+-Nbh{L?U~c@$sDz$lyko`!gR`Z}n&J zRZ}xTg1?=LcVOoCxK)JSb`+|#XORFZmB8(!719lepKzJr(yq-E)3bUUSKmlvb`V?_eL>E3_jq>{7#!R-GZPQcW|?l=Pep^@SD%lTnso#c%iOLG zu^BWug(VaXS;!)tsGB&MpdGFs66g~Y!^N|DE8j~ZM%-1NoZLV3kqe^j=eR6AVLiIb zZuuRBg3gdB-Y-9|G4g@gnmqb|hOp=b>fiZZB`(3h6CY4_cdV9Lj2i6dmz-G1^o-B}h;`*^?Xew9kZAUHc zUY<&ccJ_s0t}K~ok%u5+n+pzc$E6EPtpjxugC2j@&qV)Edpd;W>@WzYJW|fCPY?Eo z;CxX{SEG(DB~_aI^c=}u1=?zb#h)&HH&}D&hO(E=E)p&pprYoj>B~-;l$1oJ)5Ht+ z`1pt)!)Lt=2L~{=V!k4E2Nwqi$HQL8Zmq)}j;^jQTuoiw<~w~dU+?*5&rpX*{*{&i z!Uleqm=-LSTC;`7`!Dj*fy% zn++U`Mx!fRP`dtgwEOSxB_$<~&hoZd@_EPS=g(hhRQ~Ys8Ea6nwk~bz=o=ejQHu2s z4i0W&I|vteT%M^g+UZQn1pC6}x&#U+?#+Rk8?~z zLqoU_d=`p{QygYyX7CIiE>xsVl++{2kT2EqmKqM7gm?LDNI=HnaWqTf7U`u@z9Ovk z!s2?UM%OTuNlTJ&fR}`#&5at^ZtyD;&=#_(B}P~jm34|oau`bDRMCp$TnVfW#Gf&- za2TysBJHbl#&%sD#e-yj$|g2g-qO+GH^hJU^1EJF*vjs1Z)YeWm*YMjA%|uA#6&cB z@yYRwQK}robOMwzUgy%Lg43K-&vdJ$ru~@;|F@!H$7|sNqv^sZ=@}Vv1rv0dH5gJP zi%&%YR3fBfzk_1BuhkUiN?bR(cUDqLr${w*n4_F$vNg?c_T%GS&_QV3p_+13fqW=O zj+ZD5z+UW|D0}k$ZqtB%OzbKD+*)cM6t;ylBsF_L|MIivp3zu;JWH+J781)WPII-fZOy z0P?n$vzNH`?l?$%M3?9P1kyD|1fRCfI=7adPNwSId{-|r>yxz* zJm%IfN8*T2Fg&i%_L^^#_R_Yt`8(XaxhM2| za#TA8`h!ukdzGj{S>~yuT1s2=NFRzd*>P`DUe7;2r2NK<-Xug7y@}0WILm|PXa+X5 z`chzRD?nsYETZMH{eruGoM==eQKBD?{0XKUaJ}OAf@`CFox%(OId0g?2>LSi>qsuE z`F7PO^pjO7MXeu_{Yi z^2gU6+HqO0!CCFQ`~12it0lPVW2!FAR7-t)`QV9!#%5aKc5+piddgMJ;Fri<=}s$9 z6iQhx1KM37@66EPHlq4;s^Lqmvc^59GqI$A@DipOEalp?~WzzbnrCIjwKw# z9P`Hmr54!b+S3uAdBB%5*b}?BWCls~jN0EB^FCzvQ-J=|GnF%}*;Bi_B3CpUjee=e z%4{ugAC_C>mU)9++eyco*H+Zm3pfE&4qGl z-rtgBuZ>VsE2g_{^Uj;lx7-Y~ZydH_klA$B4!8t{4Y$9vqLb>waP3M(=yQusE&El0 z8wU&C2sRkufgI(g^7h7Kl~QP-Nw_($B5$(6pm>o{8+WL%tpe2J2&J=?oRueIHb z%KO}hn_`x#&}4l>7hR;0Z<(S&D5Ed=SPf3Hb3>s^4LV_@s;+T1S$Gpw@VlO6`mkeO zuRR6R9C@xiGdnWwkeg3MgK3t#%E0bwAgYw1Wmy2BVsk!$cVPfYw!1Ut^2q(~-x-ur zI!)gJ7K$>DN4oUGdFd+x;hfKexc=$1acj9xt)7p%xmgtp>3mA=DY1D?^8<=%n6$)c z$=7I*iP+KidnQ3J;OWZxA@Oyw_D_X}pY{*OEOdo-PMA{)PSPiVOO)HgW%+9~yV1q5 z1y>UCOEHwc{* z@v-;smg_fhr4MF=+lo^v2{>OuX6ZoEr$SC_WoHHv6rp8OT2AXcH1jbbCJ}p`YfAZQG1nJ8TAm+4nn5#%b zGpm?cuC?)Us`Hug&hYP4>4)|!$|j?^EDK3XcCH~W0c?F(NNTH<4W*RZwQy*1*#$Yi z6;Y`6IJES~NyO*_Avyi3$&VwyvE{mRjhTZ*3q_dLU)g-ODewfLlf`_9i9Z+mq|Fq) z?`$ocuCUPLW)s7-+A@4;c4I$IfT!)W&iA<^lr{C$_NEu_Lq2Vy02KEhSo>2I6Pb*V<=Ucaw+rHY@0A2=w8w6mrsAYeN>bMCmCA zj_R4AyJ!dZh3$o>s1@->XtI^{(GB0Eqqf8l4WHeG=S-HI8J>dIOIWbMDu9!yPT0L$ zJ6Ks@`q+upHMngXF^I0kC0}uR-f?<3oo~dB1)8l`?3DR!ZX^;GdP2mdbYh$Kw;?|4 zVHR;Dyvg4D&(6*TJ70u?t~)?Q-1s|VV$8+B0Yteu(5R*6%t zsY-O{0=s-c=E~(1OC|WoirOwinmJ{|cAdAX?xxI0b-w+KtYrT;54n+&J57~MlGOWa z;WO;8LKiqbRJBZNCa!4A=W~u}!X*lfX&Y(EH{l+ z>(3>+dCa@Qg_S71?hrf0+}9CE+rvgR_FbS3+EO>{K*tY>YbJ-TR&=J0bmU1iIeV6n zn}AiWyPepS?Q3$zel0<*LB#|7qCoFN`~K{j*~@eMfFm}Y&8mbx%256u+(5NgED-#+ zdtv%6{u`Qsb*+0m+LYTOzw+9|BLN+om1h>y8&jZ8yq7M_wGK&POARx;iCfv%sP*lm z4Bwc+fh5XUesEnf=I1%azmS+RO59?xHvELYK zU7P2}Ys~f7FQ(gLy>(6(7q9TN-8f0dp`b@j09bw9{g+pe0jqWt)A?yrc zW@JVIoHo7zSY4bDBV54R5}8e9+4@j$PFM+zym}vcjV3>~TX|1%%Oj9{8<>tGe3N#8 zUTI^lHyZcG=4lUaxXbee#BY-;YUeW}{$!A!$Ck-X6%ATZ&Mq!{l(L9qpxsjqe`JHJ02%StfEC~b&Iz*sg~p$i`1#h*TP1R7 zqW7!qa+k%bA?ags`M+5PF9_G>|1cXAC=N_OjR8`VhsRRo_>PClqPJORVp5@>zHo_ePd^5J+-s1 zPTw6OMgE{DJKE(JnZ)nObW9I1X-tyCW$9-wBp+6-hP+T6XhY4#!>0IsLyJgT8UES&;T*U zFs4E0$fJ(i$pD;@`}Q3f$!lKNRb2}2OA#;9O8vX4bSh-P+^<3Rkdp}6)B56MN=thi z4`Tvy5&2Ia0(gcF*W-(G=H*N5`Pdzn+B5%%xtBtp!A}sii=y)PV(md%pc=#fH$&g} zZYKW=W`2F0!omb`GK05Q8v};ThcYGlcYkrC)k8mDsB^M?F;}A1UTk^evx=@M@Hb=` zpV$5IR~c&OspCNP*#M4s7<(9wH{K?l<Guw9C<1>-jban=!&ti(A-V zr3QD26iN~*-nJi8v9mkQw!|nUH{HOL%6jX27+uf8;!N@Ok>C?<4ukvTHH)}#!N497u17N&pzot70v()oV<0X%fAo@>E%D z;;dvEaQh++q7ukW*5)_8XIzzgK87Z>)}D-YUN{;lL*V%%IXc;7>6dpcwwQ|CBo8{xzv)9r^hCFHP)kjw1FuL|=-0hB#*VQ0Hd-k|8dM(=K2^tS8n ztGDUjGE`?RspKABh9B9wUij0~8xOfoL}^1uP3+0L0+hY7UoTp@5Cmo*AxNe!B#y z6@Q!MmtcaR`F<7Xmh}~BURx=8`7G5x4ze7u+#YQE%lL-pwSB+`q|~_aOhPfKXJ@X# zp0nOAQ4mLd&&gO*yA@v#q1W8mW&9Kqk4+>3hgBT+yrz+vNgrqySF0JCpD+y@z0o1P zO#sy&OEktytS=s;H4{4-4d86{}Rd3)}s9FM(#VjQpg>%R^D71N>`N?+5I-zJOWyV zZnbtT`{rKD8G`#J6u--g)X079q(Nz|=qXPVT>)|;u3^=jc|wduFF?Ya9#^bq^II$C zv6tL>B{afv#{jlei#EUKCrjxWpctFVvikN){`IcYzR3OAmL{K5Lcp3R5(?V7?+`m( zVNsrH4nM5!C^lpI9R$VS7U4z3&xUZAHHZOP=mzvPl4uG2lgCAp=IqQmN7=gOFlZja zz}hV^VR|$>tqSN-%JsjV;{>QFsgjxEYlgKrZMAM&*WE{NVaRn-7eBO*eGuZ-XbPgB zG5>NE^1I{&@Db-r6RCkxl&fkTW8-P~9T#0w@tC|me-c00=T3VA#4VdIo2R(ZUsRYo zUrHTK$Sy30eW+b~4^2i6E8W`i`$H8~qZ)#=u zeCW?om}i65nZ;ts9lu{cN<4Q1FRX$0m0Ji5`Qk*F@-9f)Un*}DtQK5cKVr%!$m&Gg z5wn1dg;G?iBDJ!ggVq!?NahqTq*l9&-b$KtpF}@w6ik@hu&t}$q^gG`M-vNF-7xpn zQ-PL7T*Wrq{=HGcg{P0vh+Lpqell-oS+WLK&5jc?E^U}XqX?KU33W{E>gpypZpBSv zJW()HFQ(RTHP;29=*j=U!XJxO?QOa>Ev=r%@&;tv*4(h8(?KR?pLU%OpyrL3jCa8| zI=Kt-E)hNa48>(1%`qiyGQWL~V~7LaDEdjEy8%O|-cxF=JQNnjELVd})f1ZeuS*Pf zhhOgQH&#gUu!ffU>w+Mn=g+-rk$9ixXKtRiu^0n@uh_6@tqYlNKx9_{r>Ad4lb3Gx z$g=Di+r!fuM}xjB4HehV&j}n4;t#8oJM}FM2Lq-=hG+6v?9hgELHi8A$W3`qEaxm| z0@&n#qJR-9Zem@3pK`@ZLF+ffON3^nINw2aJ_apxQoUCg^+3+>R94BS-PeJ2Du>bs zzacl{P=&=)m*5kr&arCKCHE!nQ`Sdn*e&#Mb5R4brBNebUYOyI)nGEVFAP-Ffmo!R22MU zjMhV?O#nmnr>yj&UOc4v7h6n>F`agCpPU>vd(zV1(uFo_y4`M&=-xB;832x&f+MwG z^Q!jwJmR0FK~LX#bY=(D8QZNHVn841^*=Hz(kn+7rD))5nw5eqj;p4srU2ME?vVRm z5y2`f)|XE~Oo*K?%n{wMRZIFK0!<3%O2xpJ5koDqGrE!u&c|aF3x6~ zc~{rI@w5%3|Lk#=^4ch?nHRB&+2*CZRsvw|OX&hF= zExlyN)2RS|cIvi$L>2UHxAa4%g1tF!Gp3A{OxP0t;JmV(+Pow4rLe8l$=beb-b9p5 zvEW(LGiSS7C$-154G@Dt(y@Ib8zB|REPXt5Mxbj;s_}RVetj}Y<8uSU;&@to6f8Gq zm`+0|O)EmK78QWRiT=^3E`S~dg zsLCo^#pXwl572A(#pxS(O3PFx2V)8t*lNv%r4-OO>^zRb)?#vALlhptb$_IL zd$cd3XpY_N_!td9PqSpr>U*{S(s29xQ|vR+JZ$42;*6^ z3wsAKyho*@Yn|9$mCPupvYS#NOcrfEUYOMq=?+fN$we;J-FL1VM$ULS2rN`P8YxUu zM0z#jMfL-78gHSoAcD8S<=K!7C9DgVPURL}aJ{hQ?c7(pXUQf?YCY^;cv-@i#C*~9 zHG8mTPZ3Y&hI~V9!GsNDo7H-~C7bn0Ojrvv*gKeO1H<`8VIEzV5_2Z9bx(q48Cqx9 zkNOS!^MN+YmcLt|P3(y&3k!D>M~wXIn106Q&*i34ta%gy0co~wW46N030ft)TAJobP%*pUauY5ME z!1&D#_#M(3&+kZ2u&6ARk{q-q<+4;?KNF_5)%bt2aw1cN1IJT8DJ_XoP>O|h*7lZ5 zkRCbW2BW#pTq1{b0%z*kG#99Kbzqvb8VsTUc6OZ5toIWMwO~SFl%U7Kwz&z2(vGY= zT0k|tV;v3$li%sv0ahSX%BV|3fGo_(kCy#DS(4?3krbp0(63tC+@9PQSYBE;!9xTd zB1SobE{>y}eZK%VrmHwLl)85EP!A9&cbCI9HgWU)8A`AWeRlL`T0=;ZU#MT`lML)m z*(z%_WqZw*-(wQ0_O_USJ2O!3Q-haESamol>SKjqxIzgmUv+1`6;dE5DPf-nwNco4ZQ%8<-5 zUn%duijx7njv;Z1aO!~vp1K*;(YOnOS*Sz86xhZgtdtA|`K^Wc|0Z9)L1ugSa zED6_cP|f-FE7BX!_J_E;`{_;5dD`_*zGoeMX4*|$iEieGf`6Yc-s};JOcM9FIV|># zT(?l#$Xu_qqnkIBMi9I=Ep6I!HI2!QN0Dnz=x5zjG?@>f2~9kq;|>Bmd(zobSJjc> zR|`D}poKJbsbsl{k+rm2!Vies);iiw?6B>gm~%PB#L=QQt4#!?$sCNq)Q36 zAy7%?XF7;^T3)gA4bd5$>~s({dn9quZ^_ol?qF|xFnuutI{XT>p;eoCJ$|!${Ac;- zOg&W+B|$(@c>bl}?vwh6zCfp7jsLsDlM@dUNu*E2hL3cXK8!lTNT40|NQOZz$yZK>>paScx~ybR zJON6M28?UDyVMT`Z(&N@vekWLZpHn-fRQe-pHlo}l+CUOxC+4Ze@8-~IKB;=ir-*I zQE{7ksqx92-Xh+^nf9;xAkZ&B-d_prLeb;7d}rLL&o8gTb4F_g@!G z@4YkvL6E>=#m68HO-@(1#%p5+GfPJ&M!>3}RdDCq2N#QUC!Q!*k;0d2bIe z0U#_O7tTAJ4N^Zmpjy-H$c3WQLg#j^23-#b_97p z_kUK1Llls{ox4cBAz6D~mpdrHIV9RddIFHD#2kH=%gtsdnp&KyO~ERiWqn+&=+>#m zw$)C|7&SNOgsul4ctBP%Zb$TUh)5sbn~ruRuD6BWvJDbXi*AF-$!taNE3`1MdlI2B zML^+LbMkFe)$VL(fG+ysu6Ie&DLG|}0tu#`WeWQBtVuC{?xO(v`wWKsW6>2!9!^wB z4N8!vyaB!)gJ+Z!DU!z`#!WWidf`XEqVbN4CG8d3YvYSejQQKKhsQ@b)V(P zAo5^$t3ez0Z&x(vP;j$dgO$h4Ct_@s3O2;6bD}$uK@N#|#R~pSxetL2Fe3H@pLsA> zmuHJ-WNSKGlPP_RN&4|aJ!|uTz-p@pT}oH8L=b$5p;8T^!>mKPbiFihjf)Qu5hHPx zrjB_*#mY|6#!V-FCKS!eR{E~skSG_7SC&kt9K==`saFBY%jHA-kQ)#)YXg}*2EnrE z1jPW5aDKDsp0&rSc*iZ=Rg%_BK>0Bu=RM?yzOc5%3(UZv*y^q#=v>3u8uG1l!l#*D zC8Wjj2pti0gR}k~U-;`+q<8agt_T$EFbI@74`c|Ue|};^z+dK$1wwwvL^;u*XGM>Ox^xXzz-c8sH%0ykW4w=E?>)jxy z9S0uwlyfR^LP81t$tNi*u_v71s5sWD|ivkS$QsFc*&=Y$(UI zw>cCvsPCnwBr(zVha(eu68mSumVXf0o3_;pOf@}~ zY&v>vui#A&cx%3MI#5RJ>=S_u|2i2NvMUSFqEcej-&Pv4h56&9tHJ*&1G;gG3SfSG5J%yX!ffL`$19Np^%8Rdn^ZNXNNmGSFKC}B@|RZ z<709fI>$o(??l@>c-K}(z9wAkq<*8%$kZvtdP?!i0>)t|YBCa4{&0?|m7oWQobv3!t1L0*yRy<*h->a^?pZ}HkI~eQf!6F${H+urU zFoNR4Y*!w9*n~HNwl$nckPue_wR)V?(}HO3E6^G>1@KL!YQ{3qkO{@)DboBeISdq- z!J(rH!k~fyIw*UyPDE-)rYr zt7{dC%798^XJCkZ+xt&X50Cq5Sz-fTs+30a-9&BCibffvGRvZ)iXs3EMf1m0RsWP# z_N%K&NWd~4k=&&iEUo4O2}CU+{-;oAiA9Vipjze_EHditoahG1FIRv&WhPC&z{X@Z zA*&ofQUjMFR=r+W>NtfAe-tPT!tTiPY*XC2FTOijzInDYiY>SfYZB7gS^7#tfXM+~ zi#HTo?($y(#}m$Z%Q~EDI#afJRxeG^X5$Z%YPtJ7K~x5vif8fvt0A-G#D*A)b*rt#FHg4;xW?S&}j9< zOK0$Bues@QdF*04>`nAV>h)_!UA+ZYgECvg+4{pLcck1Q=pX^^l|7O<>XJBs)Yu;w z_0tjkFkVE97m4WUMlil&`3JDyU{Z!*-0f4d&GX79qtxNI9~f2d?2S%cdn1tv@&D^` z-v~avr_!jU>FDFh6EPnX8l@bMg#JFu+{|0LXTUU>Bl+jmWN1&AEN;e!lyX zo3R|zRKKYfacLNLqdez}J7bi+Hm>2@0jmRpb1UL=H7aJC=8$tE6rH_z4(`fdZbz>2$fM)=K)bPY4dI)B9=J z$qg_;;4yvun6P!Y*cja0EC7_GK=mKHqfU<>r@)`0~I%q(^psMvh8?XFEeGraDG57DEPd?Wx{-o381}NaF$f>9TLJ2ue zZ}&>{3=KPh*JOJn10hEyRk|V!7&_uj#~^BHI8MAoAgm|D5km&`#XkT^-R@RaGJX z;pFC~aXMO*atJ?MsNdT=zPOM&nImY;?u*qjrHFmx^jkrPZ$*F2WVJ*mb508>(*EHa6E1)ryal zT-krV1MXEj{@&Vk{peBVVpB274PE%&!1c%`Bl> zh-!QQ6<1TLG?s%)5%5acO{%WufCGf< z`C;8f3NG2?^uY}S6|=qc0@D0t5Rfpt2wz8SO$}!l z5!cg?XPX0MrKMl0Nt~|QV|=HlRYBy&tj+_g36PFU$T864;NY;DO-g!6xx2exE{0&# zZuj`yY4X`65Lo6-vBR!wRk_2)=?nBu1CdOq6WQJtsNY#y+uGslbUEfnvCF!Fyg_-Zc(#U(93yXE;db%UHu= z>aZ?~_HqEPc?+DsSsGfVZv%w|lomt6Xx-JS)?(OFB9-C?TM$Nvptus_1S%TlO@Jj@F-XNt)jkWH>9;HkQFgvJ4@YZ6r z${uRfwupTA4F8l>O28?ouHmAi0mB`oG54&c)5D4#CO~(pzc=t+9ofzi3?@F027@Gko5j z(kTsZY^g^*b2URd3rYd@(Z=MN22rhpuUxdq#x`FQ@(=|_x1CrjZ(?N+cpyt10FjC+ zFXM`=X=`X?JNqF&qGFZ7#wdEJt=W~PKC6}qJe+2l-%F1r1 zCMPGU2l4Y$3Z2U&E?}OH;UT&gx#|!apuO(B^cV$4tY$h@Z1D@+bT<#RVA6qrJCu=~ z$m6g(DPd!Ibkc|oq3V^LN>eo%T_S$Vck?i_j^o0x6KNF54jx$6E9CMN;qxf@UNCS; z49!_J4*)&%4Nz}iFZ-awvJ_Z5!lTBwXCIEfx!<1WJzfNB#s18vr2RlR7E@`Mh@s~2 zaL+}u)SPG^Rcj134cAQ5!7Jpm zbjQG1MOy6vp%D;P1;W28^nnX7%`3Tqb_CQY3aJD*Yfxrhb_L(u-8~C@b{k1S^3G(w zrp%N4qkL^;dq)Q*5m8}t=e*`*$gAwvHm6iT2PmIm(91BOA!CJU&l0f6Q11Q{xG;m> z8TFXYR*FGyAye8CHpL*|;Dkg)D-8N#SWB8cAGm?fymAizkyPlM4j1Cm!+b@dj=x&{Zc5a9B&xji>|`s^97g&|p5T80pEpnchIy$5CK zT(AE(HlucuRnrap7ozaVN)rX;BK3|ky{_pd51xa$YNM_&Vz`%hOmOJv;jDU~5~2dE zfH166?Q!P_5@07dR^!P+d|TP>m3hZML!sq(f01r;&7=s90FkjUzZKsa`t3{ zU=|_sr7{Kv6R`PgU`w-)>fF`n)hqu1?64*CI%1DN?h*xW-sv z1kjiWFe!pe+cG;l8xWE8j}(di1*ap<$q6&NKdO!jeOE>+qEgC@Ldsxi1R%t6u_1o% z3bx4Ezf|o?(d?xdMMr-Yb?+3MYPX5NM_ld(s@?|FgVEUYmNCGYa6DR(+qC zXDJEm3*>8@S@B?4M%^`&^ANOZJAzp@5GOXNuP#FN_LYy2&`?wm^HPw7#I*MI_P7SO z_a(polkEHUXWqSgXAR7g4@1t1icvkkS;R{GFsOZ>U$4qmu(Q9H*bCd`yYXY=))HKpUuD)wQaS`O zoF*12g6NLE5ZsrH7{6o2T73<+Ih!>5mj;$c`9BtZ5!OT}=GmCUl<(O}T;n7}oBae# z;lI;=;SXcF8;9WpfT*q|-x~9wOd_1YX7`Z#wx&A_P7qP|C2SkuYMc&`oyZxp)aUwX z=Yzk+bQo);IdH3hznZ}G4n~i{`NH4o0wPZOf?y}S<9&M>KretA^!AJQL&^ZK@5g5l zrO$(;MUDTEPN-K3=~)&FG(mSgNjms{2g0>30}v!%m_g}#9S&PhajHPqnwyit!00)^ z{GWEcNOzBi5xe#^jjzEwss?D|4JO8Ll0RVVu8NGDruXY4;d_pHtdjjv$9JS?7HXtwucwDY@(J8+;sFc(SpRRzz1j`X!zsQC*$Ix>!ooAvN9 zAMO${25|mZzsD7|>-)CyRgm`i6vr1e;zRn}>(z_I#%eV1g&ZJNB?H z?bUm63_`+0L#-lph+xKuHGqCUU*fk8r+t2c2QnC#EJH8S!L0}ToGkI^(n?rG^#dP} z;}Q-UpbrMU*uZiwUG}YmO1ps*v^(#CQCVpwPa!8AIPuQT^gt>cFHk`@Gc)UrrtJa- zGKqJGCh&3wd39O~-iSx|-~Vi^q9yCZJ(1fcgUM~zn`V95rc;KG(& z()^eJ62%D&ve$S5hcjHm*&q+x`Tk6#XgEok#T>iq<$e!9q@$r*w-=6FRZx-71epKsQMc8)Gm+rT%cUJgXR~sDk0zx2*gS!bIVm4k6>RM zE!4-Zb%iT{3Iu03m?Q?k&UC5nGw_EVvfOV@XWV}XuEW?es=uvhFVd;F!C#oj5^%iR zu|S*W{2MFP#Hy=*GnG{@vt32Sq;iB=Ffp>$HLm5NR%RDM2syA&AhNTu5sN_l^evsu zYLOSLuw$X#i5l2S!9y3Y|AAU8pC$hKO__!*z${U;Dq+Q1^@cntz|6LX#q!;BA|E&% zg8+8`I=o3r4YSF@mihT4F1yXlZIU9LW_}+8bVFdK2d(+p<(yScuGju_*=_sFzq7Lm zpow6zm}Lzk6=3Lz?~VjnKOGJQ=@@3E$F8Ey7N|NHWv3g*0sQs1*6!1i-mIWfyAX}4 zk}+!J5=K6uLgiQ!HHpv!sUx=khpP9E=eq5~ht<^-k(7u^*?T2al#pFUgizT#D?2K( zm7RzXvO~zO>=7ZWkc={mkj-;^uIqk&&+qx;eqDFg_xn9R=lLGTalDVS&9=EO5TorX znQ9?+$T66Ar8;)36*TF_`Z3!p|@QJ7|vL9zpGv9#+sYNpq4H(5>J0$@UqY{&GsmX#RxB z#}m{H1R9m7x;sFd`s0v!=rN0Z1?t>tT3v<8qD65H?!v~!Vq@teH=~o?UZyC<2+$sT z91yVm#U`J}g|LWGW+o;QN(P4Kx8hK0 zp`R^V+!xx@;7!6v`s)8w9fBKqr;0=Fj5Lz3mM)yWWw^6v&lwY;$snC-A@f7k194=o z-%ui%IQMr8^Y^Kzs}tk!{iTk9D537abYOFJikCR#1@^zV)#D;=rqKMvDOZg+c(MxE zoZoh65+t{8y!!G|^oNGV>WJPgJ&~_sYPss?J9lb&b#d8Lm)~>jRQiP1nqTcYy)60W z;>C;O4(w%Wj_9i>ju8`q#n!qTbBULHZ(Ccp0$$K6v11l{&eP?5nnbXmMsD{b)93l9 zCNStt)P5r}lTp$V5)ve6WS2UYs7~?%iuBt)ez!*Y*kHMGaMYGn&%*4=rN6oZmkD65 z?b5+NXjK1F^pAJG+h#Fe^VrnFUT{_D&ds&m*3R7pXO_=bfB2xvt(#}rCx9k?{7WGx zqH4!+UQ~nU-ToS)$>P$=_YPxL=zs}$@p&rJ(X&a5c`~9T#;{FDN zglfF4yuv~yK@g{>XzdYBsS!?ZmE9KU-prLYtWRNJV{^#uAMg&{yPUgoX3F}SiW%4I zj;D#OFU#hQ9Hx6iDJ0e@F~o|)Q;YdqMCaYi3Q?oJ$M4Br+pJg`H0VrK>aX;Oy&}G{ zW8c0&b)#ozY(h{8?>o#jgz?kbXyAHp+O*kG&D4b;B}ZDjydOI z7h>=xKmYdD=7wVYxtQ^B)5F}_H9#$Fot*01+8+1ld!Da%#O^(ET2zgCCoeCrp67;R z9H!WByyZhIuWM}d$ImeE^5&|K9P_4pN=IV&m@(hJ zzP|4KXLK*#CyFcSs;Is|>w(hRkFjUW`tq5(GBvLhx5BCB&S=Ad`15X$lGxZwPi?HP ztFE6d!8f7&2H+}hTYl&J2ltJ|o*QrP+(-DHoBe(XZQ&hzg$jp8oOl)Lo#?OBeUoTQV*AVG#B#eaQZ!mvac&{Y-X}`2!YX;Ur44*or0!FJ z!60ZW&DC7#8qWTGYbXB-arSUM+cI80F&NAa!zbf;UJ& z5*vd517WK#H*FF`UN2&je0g=1iki9xEubkv5>TAaSH2yVJR)Mzk`n?=npE{-83{Y2f+^6YdVI?%c!uo1a=;~X7Ec%ta6kF6SrM|=1w`K6dd#h>Si1Kxp#QAzZAbz{QgE$pC*?FEALS6QSl1tM~jEk+gVg*qWUfH0N{B5 z8CPzOpeej%W)|~9@*%n`w?DJnG~41*WfUkj@;3R%o1xcB}Rq z(~H0v;G_@}MGj9I4i1iw>Fs#YedM#%(5GdQ(rh~c`3Wp8;;)@+e`R!j@&TKG09B-X zYy9Pca($g+wuVHfjrBW2OsYHw?!z-R{cs1lto>{T-a!QDi)SKYFNNL`u>z&%j z`*^>fQ-c2|$ zF>y5|#GA6tB%(5Cv@<(7Ik|J-*C{#I*d7=tz0uBQymW9lGHu)ejm7tle)8ZFQ4)dx z9B$oPX|HR|G&o{L3xXCJI`N>z$|B%jjZ+4xonMI#=ryN5@x?NLT4I?3%GfYf%mMbnYg zu+|hnj#GNpslKD7qo&=TdjCemz1vYzX+D<%6MLwVy+^-)zi4R4M3g%N1Lte?BJbY4 zE8~CB??D|~V@z3D8Nc-@Z|D0Md3$~7{^#GH$-B0q^XDplG(Y@FVQ5v*Pqjq$%Sc@C z{2}SxKZ}gBr%Sj$jWRSe-qm5&eV24KDv*`gfcVqZ)t6Xy?zy!?z*Emp^ZNh#kwwF= zr>*vWlN?ZWOjpecnAq+XIk4}czTFCi>WuyMZn1egGnby@O+A99B5)lciWSZ4;0ul7 zGF3l_+sgb1W<4X~Jb$87TT#%~F!yyBkN@7QciF|RcZu@PH3ij?KH7|#NB<-hZyYf? z{qFuhqNO?4GBtLENclZD1qBWU-l{!@u5R!Hvjk}a~T5ic0ay@|yzrmX9cTS*Nd_2uMoS4y=)|`@h-8w$-PnZb^N- z%*qoT+WwNHaM!cP0(y#&Qwlbz(mmN26LMhDJD}sY&Li|GI>2#K4KN7F#WN4zZcGb% zWYQT2bA|3}s*HLYqUHM4Ed8|q&*nn`@o|=FTIMfJn5zRl%^}-TC%bKGei%=Uxk&kImbVH9IWjZ zn|tcQ_-f5~*!Cap3$Y9Y#ybR*UZ$#;a;HlCQ_7nL2A9D55H%;NikCphKl5*%8-I?7(|8k&f^DZN81?OunJiXA@^P-0;-f4Zm1^J7-U4`vpVyfwS z6=LwaFoBEOb#3k8p&>8CQJ91EqH^ZqVbr^px@LCep?u0P&}U{2jsO(9v10U$f0(6J z_Uv6qHV^;tR7Y!@|G{lS=H$?xJrfZN<>okjom$xJ_AdW{XF5feiE!J>(yxloty~Rg z3}>B3@(ZtHuF2%M!fZm)m2s`QuI^FQ*5=pGiF-nM2SVO9RLAx#em#wGUmP|FaE|FH zn2k|xxon=Z?c1-=ymdF=`oGRFS7Av!lsc#z^St=@seyDNmN1; zSmQx%!UyU`se`{w)kc)lpv!K^C1K2=#1KWf(i$n4=6rb3kIvd(_ZcS2rYrKJ2d}w- zDNUrIqWXYx?E+eD_@5-9Elb@mwELCSKVjH&R0j_lO!9eCPVgayY0$(MqF5SwcYnw3-D;KYE(YE# zHJqn-e$di9-lbN}ZF_k?CXVTgV!A`J+0Ar2;N=C{_GI##xRupaV|s6yOL$9nY;7+l zH`-SZc{k9Y3c%2VLhu&vIkz8!v^?Ua4Hziqx4KC%n6+%&Cg8GY@0FC6sumb4$+dVp z?`7OpDf0PMFeYe7ED=yjK8%^_<&^lJI_Po@u?=!Mq^|MDy^$%c6##phyOFKzdzT$NReq|Ei&x0~XHu-Zt+XL7HBXs7ubYjJwl++suoLJ!g$ zyK&R1L3=Y`JrJ%ndEM7LLHA=2R0>l*WOt9dxw%PRx};|LUI_MFL`towsCfVDly}3i zhpZ+j-cMiGeYlHU;JU74c@y|uOi}KDWRPT*bm>FaU?ef-ix<%qKOhdX1V4@T$;Y*( z2ECY=#8(KL1Dc;ayGo*wrioh8HtR--9h%?P6N~#8?dpaawN$Itn^n`*0jh=WT*}oS zYaLS%n(90*Yw0Lz|C?;zxx-I|`9iJm5o9stpLXpH;m80L)-JP)fk8nvsC3a-6ae`; zF(>E_BS6B74(_P@j+5%hP`lo}G3#8&-R2P!#H9OsYN{C+`1RK}w|)QqJ%UZ;0ZO0Lp*+KlG4@JOMg~(ysYvu!JZY z_I!C#_%E&$5LL)%5i=p&$;R*E>`X~Z+X(Y41mk+-I?vYDR-Wd?mIR3ekF~#Zbw_PJ z6XR&CtUF6B(P5xyV9aP}}NT9zyEikTYO3$ZhGwYA@W|89e~l!*H>A7GiEXx9WCOeM?h z{?*b;+;~=&$baT%$zRd4C+}iDiuZ^4dZhqWO#AnTr{uexT;hAN zO7b~lx^2QP-|>UC!Sk^{a*e%Mj@jAShPjts$RULD(uVbpfF!;Oc7GTNw@C zigMq(ckg=`2i7hE3*!Y;F`S-hze=0D!vbj7$ff>l-Y$&wf*nEozCe)s* zFCo4>^bat{_+j`rNSU8$^_^WF)HQ#jIQ@(eM?W4p*39yg#X)pZ0ERrLfHYxh#Y^`e zJBJy}Dy3^BrQSc))DL}!s^vkLg*`oOaTpzk;o@W$JJnN~gY2^O`+Cx@948t^q9FmZ z6fjRtCnPJ#-)!yy(MHQ(w^djef-B(Ce#0hxd)F-fCFr^74y6e%&?DhwCKD(DE~!w1 z+FMii*Rn(S0>SfrY^)Y=8Y=+Z7^KD8RCU^EU2_s_PP#}lDe2hht)v5wz8g-};9VAY zJXdb#H(a8;eekv*w}qK;(QeK}tCyaWeLe3a>=TFj zOY8y8PLyo{5`Bt_82sT+^lLSBsqQRiYz7r0<4#-miwqnoP}NrsD*&E)BJbKAJc{(z z*w|P&+pbvlaC)PD2SRuYBo@w{0Qc1RxZm^V45%PZOBza!>JzH1{X1224bG^WpVmyu zy|d7*Vq6?&HTj8@5ZZ?5q>5=wHekS|Kt1Pf;}_9V-$Z!1a?~04FhnK8XoY5Y19Yc&*jh7 z-%TY~9PRy|cJ+>`mrTm7s~^h+!#x_FFluSfZ9-EtaZEE^eU&!$o9EVfqLBmwV1%T| z-c-3X=!WtvP3wy5!FD^mk>1|ke~~crx^zn3YPPdGfSo0FnHRj-^#xU!|KrD3?1Q{0 zhb0)dt+9{Xh=hpFucx+PW>}c0u`b4hKEkvN?VB&J4*? z!nZUKK3JXdH&FZcezN-KJjc?zCNBQ=BILPbI|^ZkuQy-sG%ZL5&_Z&f>@Ih`W0r1N zl;`Hk(|D)wQq!xXZxrtK>)}LRgz`N)B z9ni3m(F%Cuq5W7smUI&xh_R7TErdu%#N9=p0=rS+8cFaB(lIY1BU`v>1e|@9zk} za8LLPg_~gD#LhaVzIM5VZs-qz^KKtPFdUZkrfj4=55{*iE{P4wd({*!p#j0=Bg}JgXES;)x6SwkVszm7v#oDAji5JS zPvV?CYJvJ=l$DW@aecO$0<;ks@I~sc9PmDGd)3&NBpt{GcmX9C7H&|skm5_VFGad; znJ`iIIlcc7Cx#k<*e?uX4)5N-C$@9|HT#3Wz>C4foI{Y>yQ zF4>>0(G0;90Y(C9{(z8z`u_T*3|=s2sh0eTjk-z)uY{qyqi57t%WCewF>szg-(Z zU2oI>_Wgf#lrfCI*Wofw`|FhJ@4@q>4ijPKu^E1Td+x1_(R62NRl~~jY0CS8q?`X& zBPJ|p0Nfio`BG6QK}S=x9Aph>Im(=V8>8x?W>@tFqwr_E{S-22q;cPwZ|(=t-IO`y zzW?P3SqTZK|2E*@edR8Ks87Fx2t^gBUo}WXcEN#1hQl@ft2J3De2In?gwE@G8?KW* zxfJg}Cd3Gtsg^o|qbK~)J#KfGIoS};WdCvT7L-fux}`!$Y%oU`(BZZn?z%hH!X7Vu zKIxH;1r`vyr0CGs+ZHi}DP+XO0S5yPfVJc>FVxn0ee?e2bx>D_3bmhSOk<-_N6M#& zoIQJVdJ~oAHDT-iSI{yDwSB8_(?n~jLbCJf`o=~lm(%wTJEfD`*}OVn1Um+vjJ;I? z*12Y%UxjXGqYIYVOF;pTZPYa5zfYTgex?4iy1M$%(W6IqUd>QXPpYY}H<@QJ`GrWn zdW2+*(9UJ9!KZUqCKPn}ZALvGN}8G;e}lvSbGzwo{*=FyUz)zh`jS&WHyca)9rOA% z9|$9zwrDsvyk^p&Vev^eD1dtMJQS;5EZzcAu2xSURf{Wlv1V9*WRH4L) zGcJLp_=_$UYuR$s_LEuJYCQY3;CqW0w}UB!m9X*c%=%gOyYe5ZVyT$3PSzRouwMNR z$e4sGt<(lpdU7!3jX*1)81t&hRz#MG zGCq%ko~&J1!|i~tMw#Exy?*@&AWRYh&X@EdP0_mY=hrp4)|%Q=zL*qI9q4*K{?>G} z^bbu%=3n87DDjg^=b(0t9bvuG)fK#toX#%s)+y_dgm?4vKgnJH*OJDZcPrZL#gp4h zPToba1Z7o%ig=%ur6qJVEaKwgo%t}LJpsrDYe>hKzXkQnq<&i0hr26(j5c~tJ2@?p zP05RSj?|H(SW}Br5a$$1c5RB{hLP?*5>RWjyLt6o{@1%(O$bZ}^!jL|)fVJuDJ^mY zd?^WR_RwcF|0*1@l{=JMQ$ty3r87MDoVR%3svY1|!fPFO1x!3fnH>V0*Z{(_*K0rs z>QTs8Q0w2JBHhPMN!kx^HBuvKLp#j&-vN^vIvZFl6lyDDd2^Jn}2 zOv|6$>Z8%Ex_7>s_tM>?f&Gi4-~Y*p7gY+5^8fl7kMjGkA?0*Qvnv?~R(h~hC8D>s zuX`>_acFa&VLg(wllwogJSpWK>Oz!F8^@y{&+b~{Qj8TQ$En+LoqOE&2Ef6gNO>QC zN?>!75orP7tL5AftqWnu{Pt)<8ZBB9R0Kq@IVm0R2`#ik@fGdBlchv6~jM&)&qnml6!~l?cs%qPQ_pp6GC7jB_op$0vSRHwJc2tWuwPj@2$^W zzWaMHI4zCU>dTv31iN|T?GwE9Idq3*A|TiMgZl;y zU8@j8`uqFex-IcQ1dxU#0u@6PmNDO;em~@jixme&*%MysSKW&{=Mn~6@bM8MwfYAI zDe_0H;8YI*l1#xSD_{8$3;jz3N+Zf6M;ai8H)0S8eSlsE_?s`_(~+qu1puZi%Oj6b z%#xhI%`goOvM7Dt2OQ!g<_eJ7%fU|9?IHIT{3d_X57=KM<7a+x3uIUfP2_I&yCclz2dEi%4L$P)&hp1aP{gF@%PA8 zR0u%^h^++g7{RN5OqPB%4^IQVbx3Y5Z&8uILT%7-iDMKL6o+|k$l~Fdp)x}`U{<-? zi%^CjrxH)kKx0H)7hZ|CLRgN$lGdefo>y}9Di*4) zz%yC7#BL18#hr}2I>exc1ySQjjZ6S#xzDo1k3Ltvj7p&`LE_4iJ-eCym;T!kqb(3~ zAltR4tFeM8Q4{*k^81S#wNHii@?bcUTOqw-_Rzp6@<8ihn0+@-N!>Q?&ejwI+>|%s|+R_YM)rtR>MDjq)J4; z5mfrqcK6+ja9$`a^EW)zuNp4)z3MUt`t-?ENF6etj{+snlaE;Wdf^b*fzA8zF}5D> z4UbMfU>;$N5FEMxX=G*B4zlY6csJgaNu!;8n3Izee6bW@t4^-ig>5AMXZIO0t&BdP zsXCyS#kx{epmxPrU`il3AfQRZ+;^ZP++?n8{90i&0uAkJhr6j^ znqQjd45iv9-ipmyMHosfO{i#T4=;bs6*U(vaJbw0_cX1j<0LiODfSSga`vtVgJz4e zOdiVUfMh+V(Q1;I-JNF+_JE*XJ(d6B@XJgZPydWAbKIyF^8WVF${bb={P_Txi z#E*zdT~9h#J)m;N6Uj40l!MxR%O&Yq-mP z#C^}>-vcQ!ncX+sokKgFu3+d6jxx-4Dv;t_2ygt>LPuWfOC~ITPK)2Lfs$HUZf;Sa zfC7~YWQzS2ZfCkma9zsyl1XdUenMlN<|1xZXS9d(5#+afH4Ir!4U8mR?<31a}k zfE_#pyJ1gDOLp9Yj19@T#et4n0I`QF4W=SH0tImFBWC8^#cN2cczz)Umzl>?IQ08gSG%hwSv@$&L= zc+6Z8O%uthA5RRixGhi$5aCdw+=_h<-l*lE$qV^AasV>7EPGfY6G4AJ+r#Glux zQVL^~mX>bE0N#eS0T7p43*+rtrQMB;<)sEL=1Bn$4*kd*;^H0@jQz3b(6T zItEb156@Za1|L%c;Bmi&m5%nq(0l*v2iOq`?ZHP59ZLBvuEY_3?DFNy0P#K|8e9hy z5@27o{%0TRTGT)?-wHwp{xm8jh@Y2UGE!Hk#$H3!Gcghr96UDk{$YBK$La$6mH2be z?VTH7PL+CZ_=exab8F)aD*aPpV%l5Lje-C01|H&kgb^?%a4V9rVNpt+5E6=z*j#>y z{GL+cqxPrvu-jtTwxONGj3_X~2&hb^t4b5#3+P(5AnbVkgDjQKCu4&%E>s#Ehd4Mh z>B%?GL?99qycv$VS4s-={{8#$+63U0G}TH;#2Fkc;$9;nn&7q$|3F?h7h4Ez#n)#q z;oFgB3Y{px@7UXq;I4pMkarU57|1H~pbsRvRCD8dcbi$!*|pd29UsB%S8@0F7m?msf|{@q-R&|Cg4)L+>YZ^Hi&d`F13w_TI_VTuc6{=H=;&xwl#$Ze z8fhG5hK*Fj*TGHXy#ICl=+R7v@lO}4+}4qp?A6Q=gIZHoXy zHT9VM*tzT5BATOl)7Xw;qUUW{87Io)E>G+7>nz;3uSSKWwxu6Acj;UJhVzS&W9%$E%q6XnVdW0>B}KMJoNF#89;Kx%7f&3^lx+Dsn`nGp6Kj9 z=jwmExrC~*cyn73jt%$)&j=LnFV`F~>)hXbBKc2|3dF(&2bK{T^jnEfertNR!y z8jfiG8dU^p5;>$=wMe4;M>vozzK8u*UQvPCVIMe$+UDkc1W0DY#m&8f`f>u%{ZU?k z=9S*W3l4k5GRlf>OE2eApXQZ^y(9>9=bg;ic02{|eHwIv1pJ5!37uJ5S;wzHKxJVw z!Ii<-_64_VNs+yL(3B9@cwmSOK*Y$z1a>V2wpW|O9TOl$q8N|Grmp+=F&G;8n?^=H z1qFh?%jfqa@R$IYl5y2M$%`rOl-mQV*S}ELt|gt(jVrsE9qPm3^Bp)L|E&)@AcXSK z&Te&JXJquYrA--A%+@e*AuYm)rkI#mr=w;5CH_zGp^c6c9X^1L%hee$28Sv+0ss4U zLB)TaXR?*sI*uZ-d3OTko%3F0{7yzzg17Gc4?%qU_U&t^1{K{7LiA)5F`5PV4C+fe zOg=*!Dahpp@D@sig8n9!noRgx9f!+8hLCmZ@Qb!rT1hOYV z_}ukr2vR9M9WLCfSL$H)Xbis{BVv0JLjZN!{@dZdkFmD&j+deoR7oOtM!eoU!$|x# z$OWe{Z&-(QL=c4(AV8=YYLf>spdyj|(za9-|pUJjr)ov7@4*a$Xv6VuvOc8E*$Mk4av$L{=vQ8IS+AcAfykSoJ<~qeq z0C60eIW1@;F^&s*4!K|j3#~%!gPY}u^!xA^*$Jt8FBD{l+@DBv=?;jx{ycIfzW+t8 zf<8(WMa6dZntGNO<75))?8Vu76|lmMyj^^dQL6ih)f$Tz@N;|MZTsm(E?m7z2`q{U zH~#_N9G;w%2THJbbedG<332y;iOST^u4(w#{RUXq-}ZkretXHtYO1Rr zB9>r;{4&^)g|mCc9mF^^vSj_KnEir-l?rl@l@r@d34!FLM`X7!n@NJ0N(8noR~2{n zb0}R?P?Qi-qT%5WU?)1u3F;2TDJenNAVv`LhS2syWEzn%O^9F9)t6UR@~j8MaG-tB zDnWv00QG*Kwmj3ncug&)9Ns$5oy0^!67l=E2#eT#7W5_LJ&Bh@rHgx* zY6w3AcN-w%>nroP<8_LIdYbX zQE?LfF1T)0-J(4}%U7m@P(Nn{Knr_od)i+;g){sLNuBI*gKoh^m(1y=E8o9=kBToA zf**e4mLovz>%qV8-LnUb)DaUC6PchR@8NLZ6CF*17ScFiiucA_aEBzQhibtCAT|?d zH$cWm2za1a6qW}6*+oXU6gd3qr$x9WXm)gv!BChWzJ*l&zcVm^zY{M$+~q#|es_PB zX9D`he3Q0ggrNd3rud9a;_@Y&CPYp-NUVBMrK7JNMFG1Gn6=MU8J8FmGbE^RV1dAg z09S)IK`0@ROE8Edqc6C1sUQp)Mi+Y%awuq#OvL7tRH#?~&NSl} zAuu9J+;bkQ5qKvZ$(Jd9v?a7bW*V2Yj`7DvtV@BqxIb3G?e8>U1Azhm5YRfYVF>-;*bl1gF5F9QQQ)C%eGSPtU~!2`D7RurVw^ zJ6m}^6aS|P7=AFV>V4*;2}ku^+X#QArqx_=P31xH^v`;_I-<@aFG5cVRv=@B_oX)2 z=4p?$Mvhy04uk}$M!64Vu8Y{|r|K(+&t9{>j6rj8{D4PRWo6}Rn-?)z>UD$@RCbQz_NR+Ahxo3-L|mEjKi;a zt^=M50H}+~Ad-+@(|!%)(XY(%R7PJRXKM|OKj{mi>G0%YWW1Puqa=Sj8?YZ`l}$)J z)JTjl1!N}vcodyUGD!d=r&OpTCGL$i9r}0qP*>sEM~wWD+q!I4D~hzZ^C}_X*vLaQ zma^)pZ1;Px;xh%$HnCrx^9>Q~T=e9IUE%kE%8C zkGua52X)rX&Dfgv(g*H%oWbT zswXD91#iA10WnqwSPs)o?okGgc6R@2W^65&XTL*N`7rtN)|vzbDd{lEHJs5HoRL(v ztu9S{Bv(>GdqYqj)7;v4SrRy;SOwVqkDNv86AJahb7&}kzH$#k3`_~I2Vup9^+)qT zfT}NhdB1!SThyxpr7gSU;WsTPZ&w5g%On3Znp7Y~=!)-#VJGr?tU3_gGsp^4EJH@B zJ?`A2*?;VURcfkxb?N%p{Gn5NNAGJhU%EIiSeEZIzGO54Q4!`jD$ib&Ea&OWH~wMn z>iOlw<#3tlro-}%EnQuwYkBo$`w#X3l!Pq<2BDQOXMIG}jtP6-2vY%A!QEb%DM#d%-`yt%F z6zf3}IFXmhpEef$22(m8MW&E+0I3}~Z~(oH50H^O3`_vFuRUs0evwewc4b6XCQ2U( zK?MUS8F!Nsq$gn?)4`>N9#|t+FBsfa;9>6DXr062{5ADZxU`Z#d%dMhlD9X{S>vye zqwFwqjLy>(^O&X#4sr#1#$}Dvu?%4@rHKIHn5gEAQG=8Yv15l0?Yw{x39o?LfNrr> z{=v0^*tkfLmj z!mNq_WB{#kqL;9V{r&tJW;gt@1hu#PpFh`)T79Vy!FC^h9$9ltdM=6g?_EF4qnKr& z0>XpveOL2kQp|dJN#)D_>`?gPX=Iw7ee>u&O%gdNsbrc$-}8*l2@!M&(07$OZs}0E zpwxjVumBY-8c%=aG=)Gk(=075iOT>{?f{)S)#ZY5CNDA*A38OJi~C!{ z^1q;(raya^%)(-d+TeRf=1+uV*aX3D?9HG(x_{(*S;uJ{Y$#>qx2E+Ct*nB5eRm^( zjWqLCF|n`^0_n5WOQ-T%*%~on(d8EqFpM9MiSoc~612}T_c}>K6WGNV@G;dbx~YCQ zSViRXNGte$9ub#%Khp7*E7!BnZ}MYPQl9L(U-$J_>4RKz&emKPj^ZL|)Um4ckb2Of zKX-uo1y#?)<7jrZN2o4{1~ZCFOAE8}UiO;_fY(@~}^U9SWte!0^Ueh&zxcz3=C>bAf7q2BDhh|k|i&$M_{2e}7$1Pc$Hpc|^jgW)GZk zoR*G^Yn&K_d!3(;ym4^)YcT~%Oawclr@PsLid(hNtsg?oXf*jby@?nGe(ni_0Rarp z5<&yim3$i4cSdE|8@o3qG{+~va3AN2{71ru4AXKoSIKL(z#g&fp%Lze*I>F=;xbwBXh4{7~PNfE83S_Bjs#R8_EP7ujo9%W}F z=wLQT^VE^unuWfp>4hhBi>k59!x8XC*k{rr$0-d29+BTe~B4_ z9lLf-Zk=2M6u4*4o_9Sxnsw>^?%YBR2?G)zFGpMYI7q8Fug-1@86;I&Z4!sIAET;Z z)BbI8oD@}WLstM!Ab}7PgKixge$?14A3x#?LkKCSWlSYU1Mtq$;obQ;Aizy$``d%; zZtZ(Jfr4USI%WI|oq*vUBsmb`;k8EcX6Fy`wb;w${%XPb?1az>Ap`?1%6YV9%Watp z6&4sDML_dns zlM+za3@1ojcDeOU!C-!V{!)snkp;KVts@Yc!`y(lbGP*FOcP=12fEj8G2Z2LBfIQ3 zUzv&SatH;WS|%_6_K>yJ)$K$(v5`lxo;Xj$U;;*4yx$`U{@>S$1j<`QRE0~4Cmzo{ zLhmiiL%77_5*;&K-jKqXGI)!nxnh>FZ4>P;A_xum5X94kdi2IY5K@Ee=EI5~i4*484|=P+3HPAk z4%i#QWQVt+yRS>*0#C->f9=H^5|oqcRjRuNPAq{hPD40k422lMS@)9H; z=b6GD;_M6##zTCk@3zG7O}%7m+q%8LvzMH@5!)Fon+8uroaa?|=i{nEEv=GEnk2## zZR`0WsmHcAD3>_diS()gNayVz;eCWbHlH|dI z2h%)koFD%--Tqo+1#74yn6Zbg;3w$cK!xt?>+2i)folvxEr=WTE& z=y4b@!~+#~J2GH7Mm`!^TDbBnP>AlsvlRdXvg5h3?~4~Fgsi?$V?STk)_!J{fTy~H z1Y+5?qBb-deMJTvTR0BR3+7zl0&@aiq};!lidQT9D# zk}JBYGXR-%OiYaFmp5ic>cI^&Og`HWSZNRc8C<4nmU&~X*Ym>V{ehw(a+|E+0*-Y%e{~x zk|DGKl)EeEM#%#t$rt$N^-6b9m_+CquA!Fs0JTjpinEazllb?jZ?tk|N+zKUsV9CP zD@S%zm<+-RzsHa3F%$FJW!{(=+!r@m-zE%HfL`4Ft?YF6V;rjba+mo}5KqG1a$i0d z(V;)ZI0GiQ&1rhj5n#xHk)Qtns*QI*u|lJ9vpWqhF@0Ezo`keQ?=b`?g!);;Zgh{{ zy%nRc7B}GfP*yrn>2VYf{}P%-n z?CeF4XgM|YV>{@5k^Sk2A#%by0yHjS%ucX*Az4{m<(LmJa^>dGNntV}ylFtq5F&3YgBCWZ9j=(>nr)QD!dHa)^<>TSh>TO&vYlr+LgIGfa4*5 zk5>d|v_eJv6Qj7kit3d7G$*UevD+>+MfCc9_V?BvSv7N*iXI{!A+oW6Q{5meSa9AS z12x(9`i(U)RwS`L`;Yj_=s^g;8a4hx0&#ahmqa0x@MoRQA4 z;WJTI)z}deMF1=gU?wQhY7pDxF$yty0E+d{uFYYp;Gfs!-Oy3g0(`NZ9l8iSueB&7 zGgrwhq#B8F7^?H4&iSp?o+{#a6YauNQG4T<@UbR!_QpQ!Q$j(*b^Y}_;jBj*nHV#2 zS7932z}99cdUfF1q5LO#;%>W7YRiq=GLcaQu$bmEy{=ePVlw&m&Vlg~W8UJlb*SB# zK&6|#q|dKv%a-b;E%y|~sgQd=4L)b-uRJ^s)_A0-hU|45o!i<>@f@0p+t_n=_bPtp zwRqP-^9vwoJ#1d?Omr|KQGVsN>B)IsUDMJvQ(IFLu`24ZG8WAjqxe+NBt-Z2E)s}I z>VSOu0YHcr73K6V2o&C&d+d1=2OB;b$=sp^c0%vmv`P=a<-1m(c_6n=3!} zATufORv5XX+u|hzYS;v@nq#RYYUQ4dA%hN48m2_)FV5WM2SSA#My&tDgSL0K|hjo8Xu2umHhImn9 z+{a0U;`{~ji|myvmw}}cXgkV9$;7KS0Ydfy&I;w79WK)Eo+7e9)ql z>1!B&c*eL=@>>1EPj;nzGYP{T%D?-yr=_=%rcll7imv#ltgOU!-tw~Mq}ES`FmHrS zl6T;1yrKCSAp$%O{Y(>lnvP-1IKE{t$(Ar0i090byWr|tn!TBF8VVAD#gQ^_Pn%0s zTZv%d!AlfpAL3+X-EC%OCQT(y0_}4hrZ`VD3xGNg0DelI;QnW?p7Zyepd3a*FCSy? zv}elfDLri0}rGZ8<4V{CgN%j&_n%TPhB~`{ z&b2J*O|FtrSMyOm(NlH>2fqq4POXwVxZa8A6yT8a(HbyLl#>mY&!WAyQ)$F?__vLx z_mA^yl4Az6yjN1%U%0eYF0Xw(USdV^r31ytHWDUg=17;Ls1`o}O0nA7$2f}~;k~8s z*TQnGHJX{;Tb^T+P|OFS=81N#`ZcI`5pnt)ih4cwIq9;*vstQYYPRSK?PjWJr{=Lk zqID$-kixx?w`vD>eb-Mp2{ zN!k6&b0ho+1^o~hIgcm$Qqs`{V9s?2V8RjfJ0LUEGD^$b+;$e4wr@}H_)8n__Dd8~ ziaU^dWH8SC1V<0m-%W74&cpt!#2jmc%kkFhxu!ROlZiQudl8~+EC*plfT(I=5t+Zb zvGi>Y8JLlWXFos;8Q7Qb+<5DSx?VD~YuJZI?{y?38x))K30p%%4TT@408j`U$f3OY zWA;<_Y%>-kAtSFdZraI=%G3*IU;dG;W6E!K#CXPqj-p;XsON0Oeys)(=YUwuZOEP{vL&n@ByR}m(tafP>c3r_5uK>)}&$6z*kO7;F+dy%p=51mS2m= z5hfn!sl~hU=(kk~4vM;?B zK5}6(IFK_#)eO145Lp)xH(^X>NJL<+0|d6Wcp+6DezZ(+%@cL&Fz?FT|JUS{^&+uY?!X z1T`Ebywu(b?xH^6vOB(;$?jqQG}p9#2^seq*}D(T5+^^gQa(Oy|C^oUq!ZLrT!bGw zA#A_OMm<(q%ygjSxK68I|IoWRB*`S~zwUACbiBm|{pAhTTt`%L>j-|*ckb}P z5zE*~hxz26b476nBGvA?(hY0oUYNRnX?DzKryr@`2an+2^A3f6adiB*ci^*f80i}^ z7)HJlGiat&5uL$1A{pvTVJy<`3!(X1v8PaS=DYTR11i^QM}uC`3#eItpIz-TJ+rL0 z{<}rf^w<~re{Sz`F4dNjQupB(J;mXBzKYAIseX4~_9feeA1aEL5}_kc@#`hCI^M5> zI&$=@^OTN$+8kWt`}z6jxON$*SkL72gt^Mjg28WXh62|D-PR9WV>K?IWeMN=?)g$F zD*_$|E-dGL)cx(ar?Ai|{__V8eo>lrhbr__n7)q|Nl-5J9(0}>-Qs&SctVKWY7#HTyoZcTN?x9n&3=C91C(f9{6Un{Tw zk$2F9RF#NE7+E!s)m*+bp!?^~pXpy`<(&A0L-=`GBUyw2ia+XpxKwClC!;Rk!xLZM zcmC|Bjda_mcg%&4S+1W*+MaYympenswc;4sK;)~2rlyS7YO%W>CVtQ!%Mh!p%F&Vhb>cZJ^X_8Kz80(JAUsC&Lc+J$-N$GKY0v^W=a6~yOIxp--0X3tX0B64dk zf9%TS`0w{KsE@`!W#RD2G`aHq!}|?WVaq-DL<)8oJbQfc70>6+u9GK|%J$%Ms`loM z>Uc}{)Y5&tx4gD&pg7NuKYHN6fYH;q10~}fdDXIFw$zKh3)M~gGG`StO@`9`_NR19 zNjW&(Mts_iB*(LI_yGA)gLIcu<||zvE(IU|gU#kQ&QmiQ)UcCg|F3HOy(X0WuQ`iu z3%Wd_Ya5!?VW*r{SWNDTg&8^)XDlR>v9tAT^JCa;pZJQaR?a?$|)>!B{ru64e{rL zkT}2p)z`ck5GW~WzMbVw0*PE0R{!M5(m-rpyAOs!x0l)i+h3^Bv{Y=K+Eqh#A@KF# z_?*L7fH5q9sI6tEtKnd&kIu|Lwx`y1*;p$}Nku+rqz(N?=HWKCs4c%owga;t^%d@T zCai7J+u;yOG5BQ=bVH7+_^Q@V#NhZkV{9xxbEV?;OWQ8H*YlC?wQ>?ODy^;x?A|v?=~ZwNl3n$v!3ifL!W&6vddc;tk?h!R#SA0 z-9F!*Tp7dPZnIy5KQ3SX>Ukmg^MA+rdQ;#gWO5)z%Z^3s< z?~d!Gm8E4uh}}i4)B5U5nWN}l)?%wi`b$4Vp4;v}`1Q)@$B+Jg4FtZIXqK1YIK z#sC{cNpSh_hubMZZSvSu8wwDUe;1$$2RcX&8IzFdCz3YtH7-beR3^n#CUnc3kC`k@ zdwothw%Mdq*Zlv~_7+fCwp+jNLrF;r64E6Nf~1HD(karNf`mv4D4inGJb(y_h?I0m zw=|-32}p?`B9c;P-mbO2v%dA6v&YzD?ClsY??8ly=en<$b6)fR`~NW8^GJrFd|oKZ zX9u-yk3KIO!wjPI3A&|Dc82fgi%C>Fu00%5yfts!$r1hT2KjEt_eXUq@N5Qj)6o^da4T@d zq9stM=;&j>=`cDKIhm2}M2Im;y?A4Fy%OMx_>9a8p# z%UGnr9NLjD04pgE%18Otu3%Vjyn5pd0|l+Z7;s>RXyjs{fF(%=r?UVc8lM~-cq0`7 z>T6!SKr}V5xdvfU2lOzYP)Oj2#O0G{fPmmb5G4!O=kb}DF)3!g_|PL7tfK2|R-nQh z+7i?Gl$4G#OrYcE!K2~k?6)r;86h*RH+!n`#Q@xULtTJxd~E<~kkoKEpaenMW^8qL zd42uqU$E-VWuyUs?ta(v`LNK?d5EI~${V0h+8b&f7$_(tA3!O(*Tl|k;#XupXOH$bhz8i2l zLt_>W3JD?S*Voq{T*DF2ws2c9lf~OOa3z!dKH91Ic7S@^jc$jwF}F}2YEOYZX?^@= z4Utg4!9>A;89EuRZ-a<}>B^N)_tSPg?kZ2iTa|(85e5qSWO-GSd!GEp-D8$m;3YTe z#@i+8WG##JMkdEC(T(n<*AOC2y|uQse#&S3;1F&eHvUv6dtHO%RbE@0yu7@8esy)# z%?~VCOg6TcmTXdLJjKY$qfKx4KaEq^Eo-TyIomvTvDY=y)PD;1#pu+9txeWjR^w{SM)hxc~8cE%jdZ|+vtDymD4LHs5s%X zu1253+B@B5tt?vq`pzTm?-5z@0scAMd{uy)!u0Xw?chG>+yDnk$l;S6sENuS+P6DU z3kjDNtlU2DD0u!^@FkzWGe+YIJR#_l)T;M#Mzugu_bFdJprTPSKxxrJs-(8CH&&=q z)nvd_0ZrUR6e$&zKAQVNAQGaU?b>k~jkkJwo;&@t!uU5DxLua|qE;z^4H{7B0(0aY zp>9mv2j!Tqv9BVJ54Kn`2BD+O$x+?7&V#GGqJsXu9aPDx*I*Y$*ZdjPJN`~7xUy{J zGr=rHcO>X=IKKUNB1Hiyh61#(s2pv4lsDA&o}PD!PfQGf?2Zft5KBQQ7)MO|z&?tB zf+}q)AYbE`LFds0cQIHkZWlZ_>}(S=GQ+VP^_WU@#kW0L-lG?#OxfX>CD%>Qx(XNe zmSXlZkR3P=!*<}sryF?ktgDDt?0z(&C`772(ELnBMHK!awq@;$PGo%iTq*%ZT@Up#1ON5*+&>WE$YNrrm z^LD0fVYe`TOo3z$b^Y|q&d#>A?53Y zzWXdK3dSiA9l9M_za%h_*7$1NVz%}RZlc>%!-9fzIA_<|}iO$~_$1Y$=W zWMl)KrlWT9{%RSklBCc1Yu9qDbv8I}ox26&^pK4a%j=9p{E+AQrHUYtCYg!_nG~wP zNOWc~JsFt~L|eC$IpBm1Wk&*fLoiaz+A z`)zF8`NaIwNE}v~5pKSOv2hO$&V@hZ_nDQxJnNy+HG~rIdY6mkyTyoiQ#91WPJe&h z%`=R0{P1b+H!prE`X*d#dl&d7iHzD-Mk!IvK197`^J8HAOK`MK=6BwuHSs&~Y;g(? z#5P>Ol8?c-*L)gPIa+udR^+z`;$I#jJac6)Ee}?3-n{tC!lz79ffu3O8z${QFI#w(v1FUOo|z(5;BYAcf_Ftt-ozlUy+u`05YCPT!q$6a2;pgW4#zyI!H8 zg^z+?;WuFXcs7idq^{r#@RNF`@H!tX3Ocdt6L2~SNt<3Yn{WDL>OZBFmmz?cx z7U>w1zhJ@F&06ZM=G`3>vQtJYkbDb9nF`Kd!aRsDmR|B;M*EB%j@>iGdo_xcfXO9y zNkX&#U1(^M`^~(QPj6qF3(C$YPi&VHTwl5D;xmb}vMQdM;_TBDvy%Qhs^od;2nn}2 zUX{SB&lnCj@REtO?qO63glgL<&nHRZC12DsLgVL*X`AKuyez3w;}Id%TI|gv6d(01 zH^sE7aS0>Owd!gK_;`e;tQ7c0M^>8?6^4zE8R*nQ!%l<7>kDLKQbyb81y5?9YjacU zz1x@F9l$GIvSl4FL_C%sDRlP&f3g08&PFBqB6->AoW0Rcb(vh;s~CYCq(kRcG}nLU z{yr;tg*|QU{b$h3fB%V9&uGojE!_`G(Y?7W{3TCp=cgrb=bP)I;EvX@4&SWxF=V(B>4rwxa&#EFVY9txtbSo-y^q4O|)2T^drM zP+nd>%<}WhQE8&-ro1G0Sy=tjfpqrf9A}@Z>6x+0AMCtFDfON4yu4w}=>9y=06&a8 zVC*~2Syp>*jWE|4=J_6fqu^30Nh1z?RTfT+I5s7MzHD2g@}%1o2j*F&CnRAWm*aIf zw^NpHaI?#3qpEH0U?^wdB&nbO1~ShkJieB#HLE;Q8HC;s zc9tw1@|e%KXI!3gW+2u$>Qhc%gqvd$OMyxw&~Jt@y%TyYk^4Lq<}vM`J=yso9P3-=}*=z%J8q7g|g>o62dNDaFiGWkbp$|7)HkgfTQ;jDnX7yUS9w)E) zo0t_GBr4^HIiF*^}#qp|HwHLoI>~7-2 zEV+4+052<$lpLFa6!Y*m8y>Uaw(|N_-dNdlp`J!4+3L#r$d~n9PGHlUTOIsR_Z%nLkp=jc=0`u04Fn9F5FCUj1hAUWx#~QVCDF!R> z+$_Yp+C={N1Xc7ha7;hk=(1csI&0^OY<_Qu>>#Gwa8P9*x`SVgsC%GP?Wt9aG2_{5 z<@DLgFE`7nEN++=d9EEwB%QHt^**Dfdw-o=--F)idzfxN{h!w<{Pr@Hg; zjlVT%NwQvh>d6=QAX|`1It%qaWP5VDO5) zF!fF-&g$xAL#Ug$oBPsI$$pNTx{PT~a!|LU`9)73LxOLBzei~Hz2VivI-d(}zI7+P z4k9|1mRh5EuB%r9jA$-K6(*X6br0~B5hrLwaNvIB>lrXr>c%v@SF6;R88YHHsZ{$s z$lACV?R!nz-!VC9?lt@J&)5k*fEoD}qb+t~|qVpAV@aV2DGv#H1Qrm6bJPV4K$&&kU;t}(p& zY@~6$@GAO{TmAHG%+{!Dn7b%vqvWi#Fl6|nc^K`tZ4xGd#ldyE{nVFluKif$ri3n& z^m(7xIAga{F7bpFm=qP=KP2Wm2c?${HHqqucOA^EsQH}iz$UL+qjF+rgJ&E49vk+L zXxyip*Gr=X(=6&d3E!@ZS=1S-sg4h%lltuWl~A0Xdi9`1tDiU<8Co=Hmk5Yv^&U^p z#qF(^uuH#$_MF1URve)+8sTL5;}!8<*DvLdyYa@3^Tl#l`nPAjC(t^CF-RB4*k27) z$PNAQ5qAnjROxGO@A&5?)kQqh)EkvS4tbvBY!a&)g(mm?$?cSQo{!|1@IF6iZ5o*G zEjl-m^TO0ApuyCeL8Q7VMzZTt{l%R&6azM**;HF7) zS(g1*&m%AY*uBRI*tYh0MYgKLub6fAJ!%s}!&Ynj!@_PZtYMh8_*krTt3BQ)xaU3Et6mi7zI*6gnl;su4zP#3Z;vh>&PF(`0 z9}e;vn+Ye9O6?k&|?+8>R53P3R2Ozk9X70O^^$>d?r}U)@@ZRl$B9xy%Vv( zeqXg4)92i9MkqfYu7ucdygLt;M2$%Iz))-4TI`I|1vht`&(VRO-rX{*rhQAtIDfab z$QG+RoGqR2NrnWj1NB0-V5=f~yJB{zf<6}Q+*I`&4XUrWrWrEd+IENJLt8F$wj@+v zs@Ph3HfBOO ziZpKCI6X|LVOI|PFt<%*Q17%$*7mv1KBYTHLSy4y?4(#w65-zOsCoTfVm{N&hP7iWJ^{ z*BQ=_4}I@9-H!*?I%q}ar<*d`_4sv_@Yr;h8NN?V7>xMuo0|A75_RD}R|%W?*|hGt z=)Fv%_AsI3c&uc^5gpnOQ$6`N(N2)GNkpkqz*Q$kV!!vqHy4`l-erYM%5!-f4R#WmQ{tR40PR9k@IPowG!M*G&a=Rfjd$-(dR^>@6o1~ z94@(ZVl%Oy{bZpiC*!Wba9Em5kgOtj|MgL=!}A*t;=PQMmG;xgG?PBt2qZY>p|Bm&Dra|}+(w(VRBEpB$s zWO5x9nSAss9c8V23atVPt$d6eBm5jAjASF6Fe4o0B1|1_Rkys#V}bm4zelRie)jY1 zG>epZXq{7GXH#zLti7?QW4)?>gAhVq+8g1KK7B(wCjoWGf4pBvHdhTdFO8W;Y?lYt zm^z&Z-!-oLc5smFY)%;pn^jtz?HiZrpW24)J??^El)@yXW!2JAz}> zKtZb>zgzS88VN^OON`f~!If{GoSs3O{*sh!pM&>^S?&&Yl%3#yD!0DIsY5x(HRhBM z?_XhodG`k{`dR;UZ8iUOha&Quhq?5QVg#~U>gL9>Z+8pd*OOe`qz;NR@)s|^f{%|| z(w=l#ZaG_~-D|;qR-o6BJg!&I^y_PFo(1zeBxle6koWa+2sb_66zlGN{gN( zpOZP=CN)~9Ujd^+86)u%?%fL7yNRX8X*g)}@Ek>r^D+!C%)>HFz+XUj^YZ;OXEFS%BW zlfdIqSz7PTSZ+)vTJ{RJJ0)25Ci2A+uNe0B2&VT7uJj15rdjlg81^ow@x>|# ztNEaJ-HX;K)ELzFOzrv>jh+!tlv!OKsqNyU@=0~$)!$yxETp_^|5$ej+kX3kSR-H1 zopWnhc;`d48Fj9f5#r_T@U!yY=HzX+r8A7?si75T^k?6Z8gdF9&-jcDV))h}Ye_ zPAsa?I}|U7%M76A6k2I6dVpZx3@xwfji2JdaHoqF9*JB3?b9XGsr#CGU^< z7Dh%U@*F|V{>dL!w+P8u4)*UPB{kcGfY}@%E!keL)Z=r7v@Qln?lDV zsWjWoByd%&^ftD57H==oY2^y>qdD2(&GS=Ux9Qk?N!9))K5nX?kwnBNFS_d8;|MVh z3HAPWHij0RiV;lxue-GD|9Bl*eOJoammtJ zslQ3{8=t^aZ(1j>NH7RD|Mk%IfHI)|qCt)}Mn*G<$EkGZyX6->_V7k0m4)mo+59KR zZm_xuyT@nPa;2y6(3#<3qqN`BeBUw2BX@t*+ZW9Jv)t4%qc_R=URk2r(1Frc52K6b zVo8u*Nl2`83wq+m85lvC9?vR;%03BEjrCqGYlm7v4ogJzd*t@C`XuN?-DRPc*riR; zu$m;Hm%}FLH*QJ2j;KIa^x*zj#V*G1_|Q$=HZ6) zCa|b|C6}YuCRV!hvPah7&(CGUL@`Bt(-?f8Nrk1m%aiA{2D`5?3!D*rVfmOe zgz^p*JWOgIzIbaXRW>J7NM_a3JTJMZfT$VM;LldRUy{}l=K__^pTb*34?7;D_Ah_z z)97jYl~H^mgHDzfylW$OVdMH0%+we0=>`$edAobOFT}k`2d1ld##>^Mri$9eYh@+N z>J6WN`EkA}aF_g;>KH7`oa}9M0i`2NkT;^cT1yuHFrUA@#DKDaH9VknQK-BpI&qp` z&TGNxY1<22&%j5U=NC292D^)(pMJ=p?>ftV4ExhKdK7lmQ~4Un*%_VssAN0Ag{=>4 zbYBiGn>1oJS=K)=d!~46xotsz!!X>ucJ1>PPyAH6*(7G)%Z(+^;ujKO9qqWK&8e>rB4 zq$-^4TJ5{5=JG_%Ux}S0SW8$!TlUxqh3jELdpV*H0P{()g+T;dGQLJ{cYH z)|6$)QtA5iK<<(B0^RK;ce~!hHJq*mo=H1?JXV{97jCnQqNzH z-(aT?Wv$DM43EPd;07LZoQDw3Bmc(0O96M8>U{9dNsZEpyw136xPg4Hgs$fSC5PRT z$Y9sc&S!+Hu1lHc`yCfeYetls;=-@<3@-Lg>f9O`w_bWvoj2RvlOs!9Du728zp7KU zpbw8+pR_!>NcG~pkv+qoU2js669=f5qXLcfh00dP36-RLFTj3vW$92a@*d6iT`De8 zvfHE3EYi@nHai{fdnlx_D`=t82Ss|~&-a%s=Drh(*Z-u&l&ku7qnd`+Gp`3N0QU?J z;LR=CRM1SLd0UpZ=%j|$xv>9W`@Z9cdP1amdSv3YV#xFrJ}N$cb@Xk?)bB?7)!;IoWM?XhUJJ zh5JM2H5QZT?zY87vv38&KaYx%Bd&}`XQwAV_*QenQnbf@R*b+I_mW!(i|F;P_yNaAU6Angxa3!$jL4_oEWaxdK9^W?PxWL9%aGD;Xe3plou1I~9HC z3yGB|^=EghD7T=~!oAM=Nbg%yC@C_|$RkcFG|U^9JRkDXC2VNwl(NnoUg|US{xDc} z_jYVj-uS9!bI$DBZUCj^{fT7Z8hAv%;W5WZss}$fTmM0JThrX~h?Rwfn*?SA*^xe9 z$d!+%Glqd7(FW(Rjm1AX9vg?dm%j;WYBPTLYpXD;4!&&Z=!jH z>P1XXi}5T+t=~~iVnyl0WgM`V#A+pLI+(8D(`r^H;;@A-3U;`UQK?x^>FiE?7P)aL zBD|Gowt6<20&B0NDRQ{}EZDsCoF7B1JdA+W1C${=Pgw{oa(dNj!&sY(I@f&DyleXU z?oZy;P+%Z_*BokXEFhPChj}wd!TwV=agxK|7uiK#q-r@gtUFoFUcz3G<(Q?ns;GhP z0YXKt&_c|B<@Xr zq-T2TdzI7G@1!vr?cZ7R-n!t7!U%V}BX8f}Y}T&(bE=?y$DN^klX~3*Qp|u%wbo3^ zRaarI3!et$uFU7Jv}Bshz1oXhb%m3;YkVSlgH z8F6^k)vf$PtNylDr(P1g3L%UbLCxJybZ-u6ehqaiYjH*0Sh{aE*n#Xm-a8z!>j&1| zghiyoEJ;}1uw<%Qm!i2xmWMAtII_XiuETw8-gv6fmowY_0lvYN|CAP{?zb}?;j0ej z7ZQS%X~@WQ1>nuM!A|9{5D-ru7t!@I{d?&y4-X&JFGq4$w=Ugpm?Pf~l`dR;R*1v? zcZ40HV1!c%6~D&&EpWTxjws|#Wo)2n{w`#8x|2mAWFg1q#p*S(WNqK}&8vn!j4wfO zr@zCr8!M^P?&F-r+r zL12A}N!0%o_u@UouPLF!uxPu>iIKW6p3h|^XAMhVyzGSg>o_}$SYPDI_3y9RU)609 z?fmi>h5nER*uJ@I2A=wNwu<~lb>pl&$3Qh5k(V7ec6O^hy?HkZLtRqw)#8vZ-g$TD zcfznTzlTG@);Hk)_TNnpP*l`9$x4PQp7z_KMn~Y4?5GfEm553yDm8)p|2={^z zR=aC1$#a6VpoNJqt)UB=u?mTC9GUMpkayI2(>{OZ+&E+OIZct4*NIQJ7CSG*x%X>* zOZsMBB5_yjQN|OPCbzlZQPkLzf5xt;8)!T0JYghexE|?MG*uRhe3fQvI&nsYnd_CV zLmG6jk|mQh--Krn*#Lc#@CI1~p!p6y?S2YB1wP$oQ5%%n0D22zvteaz4b7SnfEYrW zqyQc*U0&gn{owBdk-O(T1UwnUe*8^t?(~YSogJ&RG{di7zf!L~`|9FETZ|Cpa9%=9 z{mw!`{=t7VxcuXzZq-ETa=#p+j$2w<0%7n1h-Bqb_)VSqfSMHo&CiygIuM8MCZyLI zdYxz8lRaB|3fEHW7cs}^RTW}Bou4f)q#hB%)O=VNd$$Vfy6N>;OOqGYPIT7)`dC;{ z79UEg%lfS0DFPAz7}hzI)X_!-f?=#tWicU1Q2zqyP1>n8kW=@TZodx6v>bsO2rw z{XySGkG{=G;SJU$7^wXG{0X2j*yKAcy`n_pB=RCd|Fhg7maF8+b(3 z2D#H(En1+N1p}l=(6>cIOdJlx8tDCsOG?ryI6<0%YGaCpQv18FJckwNnBe*|_sis; zRpscX?$OVz|LdcKg7A3`;m3XrJoMYeQ#x2U5uIE6`vPSRA`*T5{qMRR7N8M?^G6kP zIq485`_gk&vyX~g3$v#SqhC|fd9lA7oJej{r?C9{2&i1R^h{f}E$vQDj5?S#85XXR zbJ!*KTL@0P^?UqSg}3CBJqjfuA(1nssm$kWH~8Xav;T?HnHU&SsOdjHFJb#(J49cF zSL~f9{mgiwXMT;j?vMBWsjjZU|MuVqM<>oZo8lH3!9DU`4uOV;&rKQjVTY>fwT6ZU z^1juT6-<&6l# zR;XMgCACQRTGp}E)4PZo*9h{Jt(Xcrn9my1n8O|`vuW@tZH{XBpHpY}d9qsJC<|!e z0c^wlE2TQDhTrhkqmk-JC;! z(?Yd?lo#NNn=H1-Mlx-RfowT7Uv{ALCbEG_0BkqUk-7J2LK%z=-m~3eI>v6t{1V`BJEqy!!$wE zd=nn=L$S=UombHHi5L{60>=`*eBRvL92*A*)P2N=q!_5Jp~wzf_Z-<_pTG`l3F7Mm zkXrnLE-T+UZusjZ9B4a2{x1(*-|)wWjKdB-y=4Z67knB|1%1_jzwBLgS0p(--Eltv zaQxHN8F6taSw&js%=H<$4!zrlihM3l`aJySG2vc6lr2KXx`A)(Jj(<#3x#GpM6wE} zHZ)C2-G>HPWKM(m5@3|hy@E4b{NW}YoP$B2vYiJVTnj`FQl{#$KsM+A*;NdjN|uPt z2}t?@SM&@v1WTZ5A};OF7m6G9+V||-b^l{=h%U~73eCpW)~8O=>}JV0q63#-8HZW; zdHpM2C@J*~e<_3b;ur5F3T)@;>VIwu5|$1K38|Hm88v2?b{XKw-97 z2ztM|n`tMSE)Rw=@rQsH1WbS`iWJ(Z_hbed6wS;skrng}*gw?QeJfE+U_kO?&A~@U zO)VOnJfK&sVGyv9yr@VR1G7}Mw=8|YS;Tc%&Tw;gm$$di1C%j~ghZ|E-tEQ!?F4;b z%P@jLf|MyyiQAmtK7z}YUwH_y0NABIz;2BA#*vKl|Arn)Xqt@b2NOX=aDZZBX3i=v zT-F7>ZWtKH%>$$|NIQSW!?Rm;d1=W4I!E)&o25^W=FTLg^mMp0?JJA`DFAeeFhqL{ z-$hvtc`*_gSp%g2+2Fx23wh?#hdY-uy`mi1rxb%fh#g|b{9Z_Kq=6$6%15aN>oRprnKRpouTg+a;lJ4Cg|_x z2aTo0HE9^f#ZSY}zmTVcay(+)b7SH*$f4gaq@iQPI+o4P{-mIo%pUy^K`5>DyA%Xr z5R)gQXBMqDF!RSClP*k_8N?wxI~6HCG?VmsfOE2H3B<_pzd$GDtp%bG3>k3QcnS{H zPk=r31jq(YfLl4)NcMSnSal||hTRT+BWB){NI0CCQIWtZPF|!zXNYxju(GxnODC{B z0aDE<4_`wCjm3#eN# zUHg8@J^U5^9*LPT1GTu5UxVV^3Q(!=`yyJ)fj#S0AaJ_>78b}9>*$P!)rF6;0+`ma zw--`evI0n#6_7%!W1dk7nDOqWBc?&{gP>s;UQQm}42q3vXN`2xqK+Rva&9ZnT(6`L zeEp=z2*VBF3YFg;Grh*viAhOp(nlM@WE2!^u(RDVGBUcCsaNYGX95r^b{NnDP;@wp z%?bty53c-Z)GBg<*M%eb>tpE{zK8gw8F1NrSsBC&CeCeH_ zW>+Ujl$$I763*9u*WK`C)U=PJXc(Vqoeqi=#@Wj!BT8%1^$P8?*C6hB4UbL!>+%|W zqsz6s5YWSuI@+xNxa`RteEIA4_reka)N2?V;&GRW(kv7cY=@>(xr?G-9yB0qbrdP^ z!T9>_a8jC)$}Cp{g>!lb=HpsvG&FVtA%PgBq^{lx9n?J84h+kK@4L&Rq1~Gt(Y>(7 zO2HO>QD^N}J@=nf8i3TG5LLcyarWgTF@8X|AbT`O{Lcf{sJ>N*ir)ke^$p%<2BhU>M5A}&p^Q{(I5$LeNtD;iAOeh2S=MI;X2_@v(N}}iv zA^TW=#vpaCBML zW2vuTf@h1X@hs2tdMm^?5%FgI27oX`8r{+&gWxSdPTmd&D-t^c9Hp!+GorrsccVv* ztG*Kw4#V+E3eGk%YHH_!0r&vKLkR9eA)5@rw7?E@+wx=k?2J$U9}R(8&Y7_;=XdzxQ7Wvl@~%nLQca#wq-}xG~t7E=PB=W znRP^wdGsgl1fvPBlhn*}4b*7V`Y|=`3B{P3gO@U%y5Ix_zC&kQw?EnEW^K7BYKl^S+yH z%A4IR9G!amdwW}j_houIVasQ+mHQwW{`We9msm#_l*Cj4ap*jiJj^rJH)49vp}6IVErK)T?dKyOt$Q4YMI>PCF{1-KjTXLkI5{#;|w$Db zrbK7KZiS#EB^PAJ|5o*h(cS&~3h=ltp;U*r{zv9_@4qK1*1FgEVOGolVcas^%PS|A zw-2!~LG=~Mykpg#8~Bgkzrfc7S?!3l4=6sk7BqP-Agz?|MF8T}pFj+GxXk^~IHTO+ zU-hBCwIaI0@2>H;Y)QV{G_!;43(P;DSri154SQ3LDBgjFFkF8>;44HqEyB_G&pZ*_ zEfJ7i7DQp)Jw2^}L*4>9G6o9C|3H0MUwE&9^1o;D234_7UpXMW6U@NAfI+aT*9Jt2 zq-hD9PlHcW!>a3mV-peKQ{%2n_-?a^+xeL(oU_uy<8&!#A|Kf4m+606bV|ERvG6fKQcG zP*Ct`N4>JgT?A6KB?zv7D1jtjASo3D3u#DICdVWobwRN9d3l_mQM&3df(N+R&`xmk0a)J(Nc|YtGFdq|&cO?Ux90oR%twMCZvk?agjH_=cDdANb@jmPU< z*SfJIP$-ak!HPlnAMzUU0T4kTYY`9=uoi(EL*g`5*|V@m*gOXZMFgZLm{5p>TpA&L z0BFS(G8myQHMH&Hvy**9sRo`~_z>|R!SxWJK^KT`&75wD%oVFF%&p{_mwKFV}C3_o)EmjPUAVSSwk zh1X~%0AW}%4VWJdpTKGSNlznz4Hmym%?Wr-M(*tFu&l$>P)CshIELb9<9=owTTiur zs~>E8)BFq|;iG_R6a~2Pph)4v$UDQ~O&6#fdmTLoV^)B9R6GBHFsG3paLwenBn-R{ z`@=}vY=oYG9J*)I8`zf@AmOb>AWTo+>6bQ?l$3z5usVJGouRNRxSd8ERiY0e)??(Ul-A=2x?hilB z)aD3h&INoH%Ze6%{uBTcU}r-mrAToAxs5cLQ3>k2b{=6Vvbo6_Fp9+-dWJvA^X%rsw#-6!} zTeZU|_p}!P8To-L!~{boCZ-QDb~oAysNGdFHyD~u_Kb}&C4dxQJY#Ek5y?6M)kH-i zwIvh33s7QJa232t#>nWRDr;kS5wa0dfM1r!u_<#Vt3*7h-mP8V_07`Z?gWU~EeD4J zc<1o#Pa%*XK(R0}$p9xz7gA=>>zYRb7!iDZpjtu+hUKKFTOJ;jd`)^VX<%MfI*h7p z%+`EVeC6$zO~ z_gb|HLfkVZoCOYJUsX{s7;ErerF{lNYEtKs-|gl|hlPa&O8tc4AMpM~oTqfauT)2| zXB=ve&PRv9k?7rhj0j_mWq)cQ<&bu3UA&{kqOC{fczq<8kn9228d zruldd{0WJOJSTd6fCXgy^v9#0jjJ9fZGS!Hu~B4~E;*`l5|rPrATs!Or3v5%XEUmkF%jrFir~T$e~3f@SR_&?6jVr` z{JyLmS*1Avp$UTFDOH2JK?L-^w7hHyaMtQWN=ipJdVuIWhFedsx_3}2L0PEs&J6s) z(KA4{>tQI>@mBZ4<7#ZufcsulAjB!)RX4Fvr;EfUI;%2 z6Un>7A|vr~1CUD-3D&yFnr^k%k#=*uGH+`#Z_=UUpv0$D1+}KH-_6HjwAJYti zu60QBP`pKwon_Ta27UELHNi*xj#BT;WdVWIt@|>@25hD8-Ow8wdy<-(s$GH5ADV zz$6?BqAt_^u!y%HaJuGncnVmMt!~!X2~!bTYHGY9J*Z8^0bdppRH{p?`Y|=z{{9sE znWg-~X=+N!%4J7EOHinf`f*tIC%b6g)np8gx6_B%_wVlZ40Vw3(z1SNPYgj=lVsURmHz};p9kkQ6pRxHNWNYrp6aY%MX5i zm46H@VQQdrwY9gq9&Xzrf`XC*p{CR?Y^Yp+%GG2{^`^+AykEmo~>@zx}ovCsB2+5 z4}1)bJ$oTx!IU}F)YsbqHE}GGZ39#nJVol1UhBvEg}*Bqfa~U`^nLxaCAP5pB5rqp zv=?~q^@A3{D(1fQr-eInDD=aBHOa7I`Ji4(Mn@M7NJgZD4zMh*>ECF7UHxJcF4r`b z99hWxo=g)E5mi-a>=U;W8^BWch3gA?e?S1dTof42(xW5d6u$1BzYRPAr%E+{&iiI-$gc zk)!+7ECWAxD;SC(*!Q-)E6T83kp4M0Z+0M z&G-118U*5-o!#Wga;*y#kPC(H?0BHicdmn@)J1r)d-c2-yo}$+-Z;T#f!zLpTidyo z&&-EV6fGk%L~4vk1+wVK<Khs%FG7&nq_P%E-SGe?emhH<0yTbU zK@mo9qlnMv{n_%4=QHoN!*y7BM7x<>i%hs){lA!Z=lYq`E}*!qzUriMT6D~^IY7rD#alA7zT zs{RqNk;1nV_gEe$t|Ly#b95C&>+yq0P+x3*EE1d`H(zQqQQT2X_yPHg7so?t3 z-0h|6+x#{s=Lu}(7oQj}OlRclaM!@NMDW3adZoi%c6WdlaXSLu=hm-ZL2Swh>>XiP z=VImPJp_O>GeQSONS=AX#f7>h87XNXtb|3lb8CgMGh^nXg-iuAFckn37We!)0kl^kfGb!nEXXU>yztfKPDY${;U0td80xzS z;xbwR@)CPE4>Ntg=dC|`1c?a+Dx|;+ z6y5H@K{%w_p?nSf{eSQfJlJT76u_NBkRu9AaO{C(6iNyuuA8thT_K0Ef`I7&Lc*vQ z4v)Yg6S1iCfO4B;1~HU?A(ZYgc4-WQTkP7L`Ru4$NLilb%6Y1XyDj$X%?Hb%tTG$k>u}0%@m59ust5 z5X7gZMnW|Pqx3~gF?iS8@!T>CxhDYk;{R_a#J_IrzZfTeOQT#8W=>D5R3+;4lBz~i0!}eTZ^VUTSwHY6prd?ITyr!{?JfY z=enqnZ@p|EI9-1e&atQTOQ{6{Kz97wcmX69D4hL!^WFdDI@30s} = {validated_args[arg_k]:>10.5f}") + if os.getenv("TIMEIT"): + if os.getenv("TIMEIT_LOGFILE"): + logger.info( + f"Found TIMEIT and TIMEIT_LOGFILE: timings will be logged in {os.getenv('TIMEIT_LOGFILE')}") + else: + logger.info("Found TIMEIT: logging timings to the console.") return validated_args def main(args=None): """ Main function, called through the shell entrypoint. - # TODO: IMPROVE DOCS + If no args are passed, the function assumes it is called as a CLI and parses the args from the shell. + If args are passed (e.g., when testing), then the args are not parsed. + In any case, the args are validated. + If used as a CLI, the function terminates the program, otherwise it returns the mean loss. + + :param args: [dict] CLI arguments (default=None). + + :return mean_loss: [float,optional] The mean economic loss. """ as_CLI = False @@ -146,6 +159,9 @@ def main(args=None): as_CLI = True args = parse_args() + # splash message + logger.info(f"gethurricaneloss v{__version__} by Marco Tazzari") + # validate (and transform, if necessary) arguments validated_args = validate_args(args) @@ -156,6 +172,7 @@ def main(args=None): mean_loss = sim.simulate(**validated_args) if as_CLI: + print(mean_loss) sys.exit(0) else: return mean_loss diff --git a/oasishurricane/logs.py b/oasishurricane/logs.py index dd69001..3cdd131 100644 --- a/oasishurricane/logs.py +++ b/oasishurricane/logs.py @@ -3,6 +3,7 @@ import os +# setup the directories for namespacing BASE_DIR = os.path.curdir LOGS_DIR = BASE_DIR @@ -12,11 +13,15 @@ DEVELOPMENT_LOGFILE = os.path.join(LOGS_DIR, DEV_LOGFILE) PRODUCTION_LOGFILE = os.path.join(LOGS_DIR, PROD_LOGFILE) - +# define logging config LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { + 'concise': { + 'format': '[%(asctime)s] %(message)s', + 'datefmt': '%Y-%m-%d %H:%M:%S' + }, 'simple': { 'format': '[%(asctime)s] %(levelname)6s %(message)s', 'datefmt': '%Y-%m-%d %H:%M:%S' @@ -30,7 +35,7 @@ 'console': { 'level': 'INFO', 'class': 'logging.StreamHandler', - 'formatter': 'simple' + 'formatter': 'concise' }, 'development_logfile': { 'level': 'DEBUG', diff --git a/oasishurricane/model.py b/oasishurricane/simulator.py similarity index 82% rename from oasishurricane/model.py rename to oasishurricane/simulator.py index 071ccfd..fded569 100644 --- a/oasishurricane/model.py +++ b/oasishurricane/simulator.py @@ -1,10 +1,11 @@ #!/usr/bin/env python # coding=utf-8 -import numpy as np +import os import logging import time import datetime +import numpy as np from numba import jit, njit, prange logging.getLogger('numba').setLevel(logging.WARNING) @@ -24,10 +25,9 @@ def get_rng(seed=None): return np.random.default_rng(seed) -@timer +@timer(cycles=int(os.getenv("TIMEIT_CYCLES", 100))) def mean_loss_py(florida_landfall_rate, florida_mean, florida_stddev, - gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples, - timeit_discard=False): + gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples): """ Compute mean economic loss in Pure Python. @@ -38,7 +38,6 @@ def mean_loss_py(florida_landfall_rate, florida_mean, florida_stddev, :param gulf_mean: [float] mean of the economic loss of landfalling hurricane in Gulf states. :param gulf_stddev: [float] std deviation of the economic loss of landfalling hurricane in Gulf states. :param num_monte_carlo_samples: [int] Number of monte carlo samples, i.e. years. - :param timeit_discard: [bool] (optional) If True, @timer does not record the timing. Only used by @timer. :return: [float] Mean annual losses. @@ -64,11 +63,10 @@ def mean_loss_py(florida_landfall_rate, florida_mean, florida_stddev, return tot_loss / num_monte_carlo_samples -@timer +@timer(cycles=int(os.getenv("TIMEIT_CYCLES", 100))) @jit(nopython=True) def mean_loss_jit(florida_landfall_rate, florida_mean, florida_stddev, - gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples, - timeit_discard=False): + gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples): """ Compute mean economic loss with explicit loops and jit-compilation with numba. @@ -79,7 +77,6 @@ def mean_loss_jit(florida_landfall_rate, florida_mean, florida_stddev, :param gulf_mean: [float] mean of the economic loss of landfalling hurricane in Gulf states. :param gulf_stddev: [float] std deviation of the economic loss of landfalling hurricane in Gulf states. :param num_monte_carlo_samples: [int] Number of monte carlo samples, i.e. years. - :param timeit_discard: [bool] (optional) If True, @timer does not record the timing. Only used by @timer. :return: [float] Mean annual losses. @@ -106,11 +103,10 @@ def mean_loss_jit(florida_landfall_rate, florida_mean, florida_stddev, return tot_loss / num_monte_carlo_samples -@timer +@timer(cycles=int(os.getenv("TIMEIT_CYCLES", 100))) @njit(parallel=True) def mean_loss_jit_parallel(florida_landfall_rate, florida_mean, florida_stddev, - gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples, - timeit_discard=False): + gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples): """ Compute mean economic loss with explicit loops, jit-compilation, and auto-parallelization with numba. @@ -121,7 +117,6 @@ def mean_loss_jit_parallel(florida_landfall_rate, florida_mean, florida_stddev, :param gulf_mean: [float] mean of the economic loss of landfalling hurricane in Gulf states. :param gulf_stddev: [float] std deviation of the economic loss of landfalling hurricane in Gulf states. :param num_monte_carlo_samples: [int] Number of monte carlo samples, i.e. years. - :param timeit_discard: [bool] (optional) If True, @timer does not record/print the timing. Only used by @timer. :return: [float] Mean annual losses. @@ -146,11 +141,10 @@ def mean_loss_jit_parallel(florida_landfall_rate, florida_mean, florida_stddev, return tot_loss / num_monte_carlo_samples -@timer +@timer(cycles=int(os.getenv("TIMEIT_CYCLES", 100))) @jit(nopython=True) def mean_loss_noloops_jit(florida_landfall_rate, florida_mean, florida_stddev, - gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples, - timeit_discard=False): + gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples): """ Compute mean economic loss with numpy vectorization, no explicit loops, and jit-compilation with numba. @@ -161,7 +155,6 @@ def mean_loss_noloops_jit(florida_landfall_rate, florida_mean, florida_stddev, :param gulf_mean: [float] mean of the economic loss of landfalling hurricane in Gulf states. :param gulf_stddev: [float] std deviation of the economic loss of landfalling hurricane in Gulf states. :param num_monte_carlo_samples: [int] Number of monte carlo samples, i.e. years. - :param timeit_discard: [bool] (optional) If True, @timer does not record the timing. Only used by @timer. :return: [float] Mean annual losses. @@ -180,10 +173,9 @@ def mean_loss_noloops_jit(florida_landfall_rate, florida_mean, florida_stddev, return tot_loss / num_monte_carlo_samples -@timer +@timer(cycles=int(os.getenv("TIMEIT_CYCLES", 100))) def mean_loss_noloops_py(florida_landfall_rate, florida_mean, florida_stddev, - gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples, - timeit_discard=False): + gulf_landfall_rate, gulf_mean, gulf_stddev, num_monte_carlo_samples): """ Compute mean economic loss in Pure Python, using numpy vectorization and no explicit loops. @@ -194,7 +186,6 @@ def mean_loss_noloops_py(florida_landfall_rate, florida_mean, florida_stddev, :param gulf_mean: [float] mean of the economic loss of landfalling hurricane in Gulf states. :param gulf_stddev: [float] std deviation of the economic loss of landfalling hurricane in Gulf states. :param num_monte_carlo_samples: [int] Number of monte carlo samples, i.e. years. - :param timeit_discard: [bool] (optional) If True, @timer does not record the timing. Only used by @timer. :return: [float] Mean annual losses. @@ -214,6 +205,46 @@ def mean_loss_noloops_py(florida_landfall_rate, florida_mean, florida_stddev, return tot_loss / num_monte_carlo_samples +@timer(cycles=int(os.getenv("TIMEIT_CYCLES", 100))) +@njit("float64(float64, float64, float64, float64, float64, float64, int64)", + parallel=True, fastmath=True, nogil=True) +def mean_loss_jit_parallel_fastmath(florida_landfall_rate, florida_mean, florida_stddev, + gulf_landfall_rate, gulf_mean, gulf_stddev, + num_monte_carlo_samples): + """ + Compute mean economic loss with explicit loops, jit-compilation, and auto-parallelization with numba. + + :param florida_landfall_rate: [float] annual rate of landfalling hurricanes in Florida. + :param florida_mean: [float] mean of the economic loss of landfalling hurricane in Florida. + :param florida_stddev: [float] std deviation of the economic loss of landfalling hurricane in Florida. + :param gulf_landfall_rate: [float] annual rate of landfalling hurricanes in Gulf states. + :param gulf_mean: [float] mean of the economic loss of landfalling hurricane in Gulf states. + :param gulf_stddev: [float] std deviation of the economic loss of landfalling hurricane in Gulf states. + :param num_monte_carlo_samples: [int] Number of monte carlo samples, i.e. years. + + :return: [float] Mean annual losses. + + """ + fl_events = np.random.poisson(lam=florida_landfall_rate, size=num_monte_carlo_samples) + gulf_events = np.random.poisson(lam=gulf_landfall_rate, size=num_monte_carlo_samples) + + tot_loss = 0 + for i in prange(num_monte_carlo_samples): + fl_loss = 0 + for j in range(fl_events[i]): + fl_loss += np.random.lognormal(florida_mean, florida_stddev) + + gulf_loss = 0 + for k in range(gulf_events[i]): + gulf_loss += np.random.lognormal(gulf_mean, gulf_stddev) + + year_loss = fl_loss + gulf_loss + + tot_loss += year_loss + + return tot_loss / num_monte_carlo_samples + + SIMULATORS = { 0: { 'func': mean_loss_py, @@ -235,6 +266,10 @@ def mean_loss_noloops_py(florida_landfall_rate, florida_mean, florida_stddev, 'func': mean_loss_noloops_py, 'desc': "python-noloops" }, + 5: { + 'func': mean_loss_jit_parallel_fastmath, + 'desc': "jit-parallel-fastmath" + }, } @@ -287,14 +322,10 @@ def simulate(self, florida_landfall_rate, florida_mean, florida_stddev, logger.info( f"Starting main loop over desired {num_monte_carlo_samples} Monte Carlo samples ") - # dummy call to jit-compile it - _ = self._simulate_core(1, 1e-10, 1e-10, 1, 1e-10, 1e-10, 1, timeit_discard=True) - t0 = time.time() mean_loss = self._simulate_core(florida_landfall_rate, florida_mean, florida_stddev, gulf_landfall_rate, gulf_mean, gulf_stddev, - num_monte_carlo_samples, - ) + num_monte_carlo_samples) t1 = time.time() logger.info( diff --git a/oasishurricane/tests.py b/oasishurricane/tests.py index a2e9adf..75c9ae0 100644 --- a/oasishurricane/tests.py +++ b/oasishurricane/tests.py @@ -11,7 +11,7 @@ from pytest import raises from .cli import main -from .model import SIMULATORS +from .simulator import SIMULATORS # fix random number generator seed SEED = 123456789 @@ -28,6 +28,7 @@ "num_monte_carlo_samples": 20000, "simulator_id": 0, "rng_seed": SEED, + "timeit": False, }, { # test larger rates "florida_landfall_rate": 30., @@ -39,6 +40,7 @@ "num_monte_carlo_samples": 20000, "simulator_id": 0, "rng_seed": SEED, + "timeit": False, }, { # test larger losses (requires deeper MC sampling) "florida_landfall_rate": 8., @@ -50,16 +52,17 @@ "num_monte_carlo_samples": 1000000, "simulator_id": 0, "rng_seed": SEED, + "timeit": False, } ] @pytest.mark.parametrize("test_args", [(args_) for args_ in args], ids=["{}".format(i) for i in range(len(args))]) -def test_simulators_consistency(test_args, rtol=0.01, atol=0.001): +def test_simulators_accuracy(test_args, rtol=0.01, atol=0.001): """ Test if simulators return mean losses that agree within a relative tolerance `rtol` - and an absolute tolerance `atol` + and an absolute tolerance `atol`. :param test_args: [dict] test arguments, same format as in the CLI (i.e., before validation) :param rtol: relative tolerance of the checks :param atol: absolute tolerance of the checks @@ -82,7 +85,7 @@ def test_simulators_consistency(test_args, rtol=0.01, atol=0.001): [(args_) for args_ in args], ids=["{}".format(i) for i in range(len(args))]) def test_simulator_selection(test_args): - """Test exceptions if simulator doesn't exist. """ + """Test exceptions if the chosen simulator_id doesn't exist. """ max_simulator_id = int(np.max(list(SIMULATORS.keys()))) # if simulator_id > max available should return NotImplementedError diff --git a/oasishurricane/utils.py b/oasishurricane/utils.py index 0cf8254..fb7148f 100644 --- a/oasishurricane/utils.py +++ b/oasishurricane/utils.py @@ -4,37 +4,83 @@ import functools import time import os +import logging +import gc +import numpy as np + +logger = logging.getLogger("timing") # TODO: pass named arguments to the core functions to improve formatting of the logfile -def timer(func): +def timer(cycles=3): """ Decorator that times the decorated function. If TIMEIT_LOGFILE is defined in the shell, it prints the timing to file, else to stdout. :param func: decorated function :return: the evaluated function + """ - @functools.wraps(func) - def wrapper_timer(*args, **kwargs): - tic = time.perf_counter() - value = func(*args, **kwargs) - toc = time.perf_counter() - elapsed_time = toc - tic - - if kwargs.get("timeit_discard", False): - return value - # timeit_msg = f"Elapsed time: {elapsed_time:0.4f} seconds" - timeit_msg = "\t".join([f"{arg:>10.6f}" for arg in args]) - timeit_msg += "\t" + f"{elapsed_time:5.4f}" - timeit_msg += " \n" - if 'TIMEIT_LOGFILE' in os.environ: - with open(os.environ['TIMEIT_LOGFILE'], "a") as f: - f.write(timeit_msg) - else: - print(timeit_msg) + def inner_function(func): + @functools.wraps(func) + def wrapper(*args, **kwargs): + + timeit = bool(os.getenv("TIMEIT")) + + if not timeit: + value = func(*args, **kwargs) + return value + + logger.info(f"Timings are computed by running {cycles} times the function.") + + # momentarily disable garbage collector (if enabled) + gcold = gc.isenabled() + gc.disable() + + try: + # use a precise timer for performance benchmark + _timer = time.perf_counter + + values = [] + times = [] + for _i in range(cycles): + t0 = _timer() + values.append(func(*args, **kwargs)) + t1 = _timer() + times.append(t1 - t0) + + value = np.mean(values) + + # evaluate the best execution time + # according to the docstring of `timeit.Timer.repeat`, min(times) is the best number + # to use as a representation of the best performance. Higher time values are likely + # affected by variability, and interference with other processes. + + # Note on numba jit-compiled functions: + # jit compilation takes time, which should be discarded when timing the performance. + # Since the best execution time is the `min` of all the execution times, the jit + # compilation time is naturally excluded from the benchmark. + best_time = np.min(times) + + finally: + # re-enable garbage collector if it was enabled + if gcold: + gc.enable() + + timeit_msg = " ".join([f"{arg:10.6f}" for arg in args]) + timeit_msg += " " + f"{cycles:10}" + timeit_msg += " " + f"{best_time:10.6f}" + timeit_msg += " " + f"{value:10.6f}" + + if 'TIMEIT_LOGFILE' in os.environ: + with open(os.environ['TIMEIT_LOGFILE'], "a") as f: + f.write(timeit_msg + " \n") + else: + logger.info("timeit: " + timeit_msg) + + return value - return value + return wrapper - return wrapper_timer + return inner_function