forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.c
951 lines (789 loc) · 26.6 KB
/
encoder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/*
Copyright 2016 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "encoder.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "hw.h"
#include "mc_interface.h"
#include "utils.h"
#include <math.h>
// Defines
#define AS5047P_READ_ANGLECOM (0x3FFF | 0x4000 | 0x8000) // This is just ones
#define AS5047_SAMPLE_RATE_HZ 20000
#define AD2S1205_SAMPLE_RATE_HZ 20000 //25MHz max spi clk
#define MT6816_SAMPLE_RATE_HZ 20000
#define MT6816_NO_MAGNET_ERROR_MASK 0x0002
#define SINCOS_SAMPLE_RATE_HZ 20000
#define SINCOS_MIN_AMPLITUDE 1.0 // sqrt(sin^2 + cos^2) has to be larger than this
#define SINCOS_MAX_AMPLITUDE 1.65 // sqrt(sin^2 + cos^2) has to be smaller than this
#if (AS5047_USE_HW_SPI_PINS) || (MT6816_USE_HW_SPI_PINS) || (AD2S1205_USE_HW_SPI_PINS)
#ifdef HW_SPI_DEV
#define SPI_SW_MISO_GPIO HW_SPI_PORT_MISO
#define SPI_SW_MISO_PIN HW_SPI_PIN_MISO
#define SPI_SW_MOSI_GPIO HW_SPI_PORT_MOSI
#define SPI_SW_MOSI_PIN HW_SPI_PIN_MOSI
#define SPI_SW_SCK_GPIO HW_SPI_PORT_SCK
#define SPI_SW_SCK_PIN HW_SPI_PIN_SCK
#define SPI_SW_CS_GPIO HW_SPI_PORT_NSS
#define SPI_SW_CS_PIN HW_SPI_PIN_NSS
#else
// Note: These values are hardcoded.
#define SPI_SW_MISO_GPIO GPIOB
#define SPI_SW_MISO_PIN 4
#define SPI_SW_MOSI_GPIO GPIOB
#define SPI_SW_MOSI_PIN 5
#define SPI_SW_SCK_GPIO GPIOB
#define SPI_SW_SCK_PIN 3
#define SPI_SW_CS_GPIO GPIOB
#define SPI_SW_CS_PIN 0
#endif
#else
#define SPI_SW_MISO_GPIO HW_HALL_ENC_GPIO2
#define SPI_SW_MISO_PIN HW_HALL_ENC_PIN2
#define SPI_SW_SCK_GPIO HW_HALL_ENC_GPIO1
#define SPI_SW_SCK_PIN HW_HALL_ENC_PIN1
#define SPI_SW_CS_GPIO HW_HALL_ENC_GPIO3
#define SPI_SW_CS_PIN HW_HALL_ENC_PIN3
#endif
// Private types
typedef enum {
ENCODER_MODE_NONE = 0,
ENCODER_MODE_ABI,
ENCODER_MODE_AS5047P_SPI,
RESOLVER_MODE_AD2S1205,
ENCODER_MODE_SINCOS,
ENCODER_MODE_TS5700N8501,
ENCODER_MODE_MT6816_SPI
} encoder_mode;
// Private variables
static bool index_found = false;
static uint32_t enc_counts = 10000;
static encoder_mode mode = ENCODER_MODE_NONE;
static float last_enc_angle = 0.0;
static uint32_t spi_val = 0;
static uint32_t spi_error_cnt = 0;
static uint32_t encoder_no_magnet_error_cnt = 0;
static float spi_error_rate = 0.0;
static float encoder_no_magnet_error_rate = 0.0;
static float resolver_loss_of_tracking_error_rate = 0.0;
static float resolver_degradation_of_signal_error_rate = 0.0;
static float resolver_loss_of_signal_error_rate = 0.0;
static uint32_t resolver_loss_of_tracking_error_cnt = 0;
static uint32_t resolver_degradation_of_signal_error_cnt = 0;
static uint32_t resolver_loss_of_signal_error_cnt = 0;
static float sin_gain = 0.0;
static float sin_offset = 0.0;
static float cos_gain = 0.0;
static float cos_offset = 0.0;
static float sincos_filter_constant = 0.0;
static uint32_t sincos_signal_below_min_error_cnt = 0;
static uint32_t sincos_signal_above_max_error_cnt = 0;
static float sincos_signal_low_error_rate = 0.0;
static float sincos_signal_above_max_error_rate = 0.0;
static SerialConfig TS5700N8501_uart_cfg = {
2500000,
0,
USART_CR2_LINEN,
0
};
// SPI1 SPI2/3
#define SPI_BaudRatePrescaler_2 ((uint16_t)0x0000) // 42 MHz 21 MHZ
#define SPI_BaudRatePrescaler_4 ((uint16_t)0x0008) // 21 MHz 10.5 MHz
#define SPI_BaudRatePrescaler_8 ((uint16_t)0x0010) // 10.5 MHz 5.25 MHz
#define SPI_BaudRatePrescaler_16 ((uint16_t)0x0018) // 5.25 MHz 2.626 MHz
#define SPI_BaudRatePrescaler_32 ((uint16_t)0x0020) // 2.626 MHz 1.3125 MHz
#define SPI_BaudRatePrescaler_64 ((uint16_t)0x0028) // 1.3125 MHz 656.25 KHz
#define SPI_BaudRatePrescaler_128 ((uint16_t)0x0030) // 656.25 KHz 328.125 KHz
#define SPI_BaudRatePrescaler_256 ((uint16_t)0x0038) // 328.125 KHz 164.06 KHz
#define SPI_DATASIZE_16BIT SPI_CR1_DFF
#ifdef HW_SPI_DEV
//MT6816 max clk freq: 15.625MHz
static const SPIConfig mt6816_spi_cfg = {
NULL,
SPI_SW_CS_GPIO,
SPI_SW_CS_PIN,
SPI_BaudRatePrescaler_4 | SPI_CR1_CPOL | SPI_CR1_CPHA | SPI_DATASIZE_16BIT};
#endif
static THD_FUNCTION(ts5700n8501_thread, arg);
static THD_WORKING_AREA(ts5700n8501_thread_wa, 512);
static volatile bool ts5700n8501_stop_now = true;
static volatile bool ts5700n8501_is_running = false;
static volatile uint8_t ts5700n8501_raw_status[8] = {0};
static volatile bool ts5700n8501_reset_errors = false;
static volatile bool ts5700n8501_reset_multiturn = false;
// Private functions
static void spi_transfer(uint16_t *in_buf, const uint16_t *out_buf, int length);
static void spi_begin(void);
static void spi_end(void);
static void spi_delay(void);
static void TS5700N8501_send_byte(uint8_t b);
uint32_t encoder_spi_get_error_cnt(void) {
return spi_error_cnt;
}
uint32_t encoder_spi_get_val(void) {
return spi_val;
}
float encoder_spi_get_error_rate(void) {
return spi_error_rate;
}
uint32_t encoder_get_no_magnet_error_cnt(void) {
return encoder_no_magnet_error_cnt;
}
float encoder_get_no_magnet_error_rate(void) {
return encoder_no_magnet_error_rate;
}
float encoder_resolver_loss_of_tracking_error_rate(void) {
return resolver_loss_of_tracking_error_rate;
}
float encoder_resolver_degradation_of_signal_error_rate(void) {
return resolver_degradation_of_signal_error_rate;
}
float encoder_resolver_loss_of_signal_error_rate(void) {
return resolver_loss_of_signal_error_rate;
}
uint32_t encoder_resolver_loss_of_tracking_error_cnt(void) {
return resolver_loss_of_tracking_error_cnt;
}
uint32_t encoder_resolver_degradation_of_signal_error_cnt(void) {
return resolver_degradation_of_signal_error_cnt;
}
uint32_t encoder_resolver_loss_of_signal_error_cnt(void) {
return resolver_loss_of_signal_error_cnt;
}
uint32_t encoder_sincos_get_signal_below_min_error_cnt(void) {
return sincos_signal_below_min_error_cnt;
}
uint32_t encoder_sincos_get_signal_above_max_error_cnt(void) {
return sincos_signal_above_max_error_cnt;
}
float encoder_sincos_get_signal_below_min_error_rate(void) {
return sincos_signal_low_error_rate;
}
float encoder_sincos_get_signal_above_max_error_rate(void) {
return sincos_signal_above_max_error_rate;
}
uint8_t* encoder_ts5700n8501_get_raw_status(void) {
return (uint8_t*)ts5700n8501_raw_status;
}
int16_t encoder_ts57n8501_get_abm(void) {
return (uint16_t)ts5700n8501_raw_status[4] |
((uint16_t)ts5700n8501_raw_status[5] << 8);
}
void encoder_ts57n8501_reset_errors(void) {
ts5700n8501_reset_errors = true;
}
void encoder_ts57n8501_reset_multiturn(void) {
ts5700n8501_reset_multiturn = true;
}
void encoder_deinit(void) {
nvicDisableVector(HW_ENC_EXTI_CH);
nvicDisableVector(HW_ENC_TIM_ISR_CH);
TIM_DeInit(HW_ENC_TIM);
palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_INPUT_PULLUP);
palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_INPUT_PULLUP);
palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_INPUT_PULLUP);
#ifdef HW_SPI_DEV
spiStop(&HW_SPI_DEV);
#endif
palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_INPUT_PULLUP);
if (mode == ENCODER_MODE_TS5700N8501) {
ts5700n8501_stop_now = true;
while (ts5700n8501_is_running) {
chThdSleepMilliseconds(1);
}
palSetPadMode(HW_UART_TX_PORT, HW_UART_TX_PIN, PAL_MODE_INPUT_PULLUP);
palSetPadMode(HW_UART_RX_PORT, HW_UART_RX_PIN, PAL_MODE_INPUT_PULLUP);
#ifdef HW_ADC_EXT_GPIO
palSetPadMode(HW_ADC_EXT_GPIO, HW_ADC_EXT_PIN, PAL_MODE_INPUT_ANALOG);
#endif
}
index_found = false;
mode = ENCODER_MODE_NONE;
last_enc_angle = 0.0;
spi_error_rate = 0.0;
sincos_signal_low_error_rate = 0.0;
sincos_signal_above_max_error_rate = 0.0;
}
void encoder_init_abi(uint32_t counts) {
EXTI_InitTypeDef EXTI_InitStructure;
// Initialize variables
index_found = false;
enc_counts = counts;
palSetPadMode(HW_HALL_ENC_GPIO1, HW_HALL_ENC_PIN1, PAL_MODE_ALTERNATE(HW_ENC_TIM_AF));
palSetPadMode(HW_HALL_ENC_GPIO2, HW_HALL_ENC_PIN2, PAL_MODE_ALTERNATE(HW_ENC_TIM_AF));
// palSetPadMode(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3, PAL_MODE_ALTERNATE(HW_ENC_TIM_AF));
// Enable timer clock
HW_ENC_TIM_CLK_EN();
// Enable SYSCFG clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
TIM_EncoderInterfaceConfig (HW_ENC_TIM, TIM_EncoderMode_TI12,
TIM_ICPolarity_Rising,
TIM_ICPolarity_Rising);
TIM_SetAutoreload(HW_ENC_TIM, enc_counts - 1);
// Filter
HW_ENC_TIM->CCMR1 |= 6 << 12 | 6 << 4;
HW_ENC_TIM->CCMR2 |= 6 << 4;
TIM_Cmd(HW_ENC_TIM, ENABLE);
// Interrupt on index pulse
// Connect EXTI Line to pin
SYSCFG_EXTILineConfig(HW_ENC_EXTI_PORTSRC, HW_ENC_EXTI_PINSRC);
// Configure EXTI Line
EXTI_InitStructure.EXTI_Line = HW_ENC_EXTI_LINE;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
// Enable and set EXTI Line Interrupt to the highest priority
nvicEnableVector(HW_ENC_EXTI_CH, 0);
mode = ENCODER_MODE_ABI;
}
void encoder_init_as5047p_spi(void) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_INPUT);
palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
// Set MOSI to 1
#if (AS5047_USE_HW_SPI_PINS || AD2S1205_USE_HW_SPI_PINS)
palSetPadMode(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPad(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN);
#endif
// Enable timer clock
HW_ENC_TIM_CLK_EN();
// Time Base configuration
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = ((168000000 / 2 / AS5047_SAMPLE_RATE_HZ) - 1);
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(HW_ENC_TIM, &TIM_TimeBaseStructure);
// Enable overflow interrupt
TIM_ITConfig(HW_ENC_TIM, TIM_IT_Update, ENABLE);
// Enable timer
TIM_Cmd(HW_ENC_TIM, ENABLE);
nvicEnableVector(HW_ENC_TIM_ISR_CH, 6);
mode = ENCODER_MODE_AS5047P_SPI;
index_found = true;
spi_error_rate = 0.0;
}
void encoder_init_mt6816_spi(void) {
#ifdef HW_SPI_DEV
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_ALTERNATE(6) | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_ALTERNATE(6) | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
#if (MT6816_USE_HW_SPI_PINS)
palSetPadMode(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN, PAL_MODE_ALTERNATE(6) | PAL_STM32_OSPEED_HIGHEST);
#endif
//Start driver with MT6816 SPI settings
spiStart(&HW_SPI_DEV, &mt6816_spi_cfg);
// Enable timer clock
HW_ENC_TIM_CLK_EN();
// Time Base configuration
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = ((168000000 / 2 / MT6816_SAMPLE_RATE_HZ) - 1);
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(HW_ENC_TIM, &TIM_TimeBaseStructure);
// Enable overflow interrupt
TIM_ITConfig(HW_ENC_TIM, TIM_IT_Update, ENABLE);
// Enable timer
TIM_Cmd(HW_ENC_TIM, ENABLE);
nvicEnableVector(HW_ENC_TIM_ISR_CH, 6);
mode = ENCODER_MODE_MT6816_SPI;
index_found = true;
spi_error_rate = 0.0;
encoder_no_magnet_error_rate = 0.0;
#endif
}
void encoder_init_ad2s1205_spi(void) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
resolver_loss_of_tracking_error_rate = 0.0;
resolver_degradation_of_signal_error_rate = 0.0;
resolver_loss_of_signal_error_rate = 0.0;
resolver_loss_of_tracking_error_cnt = 0;
resolver_loss_of_signal_error_cnt = 0;
palSetPadMode(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN, PAL_MODE_INPUT);
palSetPadMode(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(SPI_SW_CS_GPIO, SPI_SW_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
// Set MOSI to 1
#if (AS5047_USE_HW_SPI_PINS || AD2S1205_USE_HW_SPI_PINS)
palSetPadMode(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPad(SPI_SW_MOSI_GPIO, SPI_SW_MOSI_PIN);
#endif
// TODO: Choose pins on comm port when these are not defined
#if defined(AD2S1205_SAMPLE_GPIO)
palSetPadMode(AD2S1205_SAMPLE_GPIO, AD2S1205_SAMPLE_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPad(AD2S1205_SAMPLE_GPIO, AD2S1205_SAMPLE_PIN); // Prepare for a falling edge SAMPLE assertion
#endif
#if defined(AD2S1205_RDVEL_GPIO)
palSetPadMode(AD2S1205_RDVEL_GPIO, AD2S1205_RDVEL_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPad(AD2S1205_RDVEL_GPIO, AD2S1205_RDVEL_PIN); // Will always read position
#endif
// Enable timer clock
HW_ENC_TIM_CLK_EN();
// Time Base configuration
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = ((168000000 / 2 / AD2S1205_SAMPLE_RATE_HZ) - 1);
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(HW_ENC_TIM, &TIM_TimeBaseStructure);
// Enable overflow interrupt
TIM_ITConfig(HW_ENC_TIM, TIM_IT_Update, ENABLE);
// Enable timer
TIM_Cmd(HW_ENC_TIM, ENABLE);
nvicEnableVector(HW_ENC_TIM_ISR_CH, 6);
mode = RESOLVER_MODE_AD2S1205;
index_found = true;
}
void encoder_init_sincos(float s_gain, float s_offset,
float c_gain, float c_offset, float filter_constant) {
//ADC inputs are already initialized in hw_init_gpio()
sin_gain = s_gain;
sin_offset = s_offset;
cos_gain = c_gain;
cos_offset = c_offset;
sincos_filter_constant = filter_constant;
sincos_signal_below_min_error_cnt = 0;
sincos_signal_above_max_error_cnt = 0;
sincos_signal_low_error_rate = 0.0;
sincos_signal_above_max_error_rate = 0.0;
// ADC measurements needs to be in sync with motor PWM
#ifdef HW_HAS_SIN_COS_ENCODER
mode = ENCODER_MODE_SINCOS;
index_found = true;
#else
mode = ENCODER_MODE_NONE;
index_found = false;
#endif
}
void encoder_init_ts5700n8501(void) {
mode = ENCODER_MODE_TS5700N8501;
index_found = true;
spi_error_rate = 0.0;
spi_error_cnt = 0;
ts5700n8501_is_running = true;
ts5700n8501_stop_now = false;
chThdCreateStatic(ts5700n8501_thread_wa, sizeof(ts5700n8501_thread_wa),
NORMALPRIO - 10, ts5700n8501_thread, NULL);
}
bool encoder_is_configured(void) {
return mode != ENCODER_MODE_NONE;
}
/**
* Read angle from configured encoder.
*
* @return
* The current encoder angle in degrees.
*/
float encoder_read_deg(void) {
static float angle = 0.0;
switch (mode) {
case ENCODER_MODE_ABI:
angle = ((float)HW_ENC_TIM->CNT * 360.0) / (float)enc_counts;
break;
case ENCODER_MODE_AS5047P_SPI:
case ENCODER_MODE_MT6816_SPI:
case RESOLVER_MODE_AD2S1205:
case ENCODER_MODE_TS5700N8501:
angle = last_enc_angle;
break;
#ifdef HW_HAS_SIN_COS_ENCODER
case ENCODER_MODE_SINCOS: {
float sin = ENCODER_SIN_VOLTS * sin_gain - sin_offset;
float cos = ENCODER_COS_VOLTS * cos_gain - cos_offset;
float module = SQ(sin) + SQ(cos);
if (module > SQ(SINCOS_MAX_AMPLITUDE) ) {
// signals vector outside of the valid area. Increase error count and discard measurement
++sincos_signal_above_max_error_cnt;
UTILS_LP_FAST(sincos_signal_above_max_error_rate, 1.0, 1./SINCOS_SAMPLE_RATE_HZ);
angle = last_enc_angle;
}
else {
if (module < SQ(SINCOS_MIN_AMPLITUDE)) {
++sincos_signal_below_min_error_cnt;
UTILS_LP_FAST(sincos_signal_low_error_rate, 1.0, 1./SINCOS_SAMPLE_RATE_HZ);
angle = last_enc_angle;
}
else {
UTILS_LP_FAST(sincos_signal_above_max_error_rate, 0.0, 1./SINCOS_SAMPLE_RATE_HZ);
UTILS_LP_FAST(sincos_signal_low_error_rate, 0.0, 1./SINCOS_SAMPLE_RATE_HZ);
float angle_tmp = utils_fast_atan2(sin, cos) * 180.0 / M_PI;
UTILS_LP_FAST(angle, angle_tmp, sincos_filter_constant);
last_enc_angle = angle;
}
}
break;
}
#endif
default:
break;
}
return angle;
}
/*
* Note: This is not a good solution and needs a proper implementation later...
*/
float encoder_read_deg_multiturn(void) {
if (mode == ENCODER_MODE_TS5700N8501) {
encoder_ts57n8501_get_abm();
float ts_mt = (float)encoder_ts57n8501_get_abm();
if (fabsf(ts_mt) > 5000.0) {
ts_mt = 0;
encoder_ts57n8501_reset_multiturn();
}
ts_mt += 5000;
return encoder_read_deg() / 10000.0 + (360 * ts_mt) / 10000.0;
} else {
return encoder_read_deg();
}
}
/**
* Reset the encoder counter. Should be called from the index interrupt.
*/
void encoder_reset(void) {
// Only reset if the pin is still high to avoid too short pulses, which
// most likely are noise.
__NOP();
__NOP();
__NOP();
__NOP();
if (palReadPad(HW_HALL_ENC_GPIO3, HW_HALL_ENC_PIN3)) {
const unsigned int cnt = HW_ENC_TIM->CNT;
static int bad_pulses = 0;
const unsigned int lim = enc_counts / 20;
if (index_found) {
// Some plausibility filtering.
if (cnt > (enc_counts - lim) || cnt < lim) {
HW_ENC_TIM->CNT = 0;
bad_pulses = 0;
} else {
bad_pulses++;
if (bad_pulses > 5) {
index_found = 0;
}
}
} else {
HW_ENC_TIM->CNT = 0;
index_found = true;
bad_pulses = 0;
}
}
}
// returns true for even number of ones (no parity error according to AS5047 datasheet
bool spi_check_parity(uint16_t x) {
x ^= x >> 8;
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return (~x) & 1;
}
/**
* Timer interrupt
*/
void encoder_tim_isr(void) {
uint16_t pos;
if(mode == ENCODER_MODE_AS5047P_SPI) {
spi_begin();
spi_transfer(&pos, 0, 1);
spi_end();
spi_val = pos;
if(spi_check_parity(pos)) {
pos &= 0x3FFF;
last_enc_angle = ((float)pos * 360.0) / 16384.0;
UTILS_LP_FAST(spi_error_rate, 0.0, 1./AS5047_SAMPLE_RATE_HZ);
} else {
++spi_error_cnt;
UTILS_LP_FAST(spi_error_rate, 1.0, 1./AS5047_SAMPLE_RATE_HZ);
}
}
#ifdef HW_SPI_DEV
if(mode == ENCODER_MODE_MT6816_SPI) {
uint16_t reg_data_03;
uint16_t reg_data_04;
uint16_t reg_addr_03 = 0x8300;
uint16_t reg_addr_04 = 0x8400;
spi_begin();
reg_data_03 = spiPolledExchange(&HW_SPI_DEV, reg_addr_03);
spi_end();
spi_delay();
spi_begin();
reg_data_04 = spiPolledExchange(&HW_SPI_DEV, reg_addr_04);
spi_end();
pos = (reg_data_03 << 8) | reg_data_04;
spi_val = pos;
if( spi_check_parity(pos) ) {
if (pos & MT6816_NO_MAGNET_ERROR_MASK) {
++encoder_no_magnet_error_cnt;
UTILS_LP_FAST(encoder_no_magnet_error_rate, 1.0, 1./MT6816_SAMPLE_RATE_HZ);
}
else {
pos = pos >> 2;
last_enc_angle = ((float)pos * 360.0) / 16384.0;
UTILS_LP_FAST(spi_error_rate, 0.0, 1./MT6816_SAMPLE_RATE_HZ);
UTILS_LP_FAST(encoder_no_magnet_error_rate, 0.0, 1./MT6816_SAMPLE_RATE_HZ);
}
} else {
++spi_error_cnt;
UTILS_LP_FAST(spi_error_rate, 1.0, 1./MT6816_SAMPLE_RATE_HZ);
}
}
#endif
if(mode == RESOLVER_MODE_AD2S1205) {
// SAMPLE signal should have been be asserted in sync with ADC sampling
#ifdef AD2S1205_RDVEL_GPIO
palSetPad(AD2S1205_RDVEL_GPIO, AD2S1205_RDVEL_PIN); // Always read position
#endif
palSetPad(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN);
spi_delay();
spi_begin(); // CS uses the same mcu pin as AS5047
spi_delay();
spi_transfer(&pos, 0, 1);
spi_end();
spi_val = pos;
uint16_t RDVEL = pos & 0x0008; // 1 means a position read
if((RDVEL != 0)){
bool DOS = ((pos & 0x04) == 0);
bool LOT = ((pos & 0x02) == 0);
bool LOS = DOS && LOT;
bool parity_error = spi_check_parity(pos); //16 bit frame has odd parity
bool angle_is_correct = true;
if(LOS) {
LOT = DOS = 0;
}
if(!parity_error) {
UTILS_LP_FAST(spi_error_rate, 0.0, 1./AD2S1205_SAMPLE_RATE_HZ);
} else {
angle_is_correct = false;
++spi_error_cnt;
UTILS_LP_FAST(spi_error_rate, 1.0, 1./AD2S1205_SAMPLE_RATE_HZ);
}
pos &= 0xFFF0;
pos = pos >> 4;
pos &= 0x0FFF;
if(LOT) {
angle_is_correct = false;
++resolver_loss_of_tracking_error_cnt;
UTILS_LP_FAST(resolver_loss_of_tracking_error_rate, 1.0, 1./AD2S1205_SAMPLE_RATE_HZ);
} else {
UTILS_LP_FAST(resolver_loss_of_tracking_error_rate, 0.0, 1./AD2S1205_SAMPLE_RATE_HZ);
}
if(DOS) {
angle_is_correct = false;
++resolver_degradation_of_signal_error_cnt;
UTILS_LP_FAST(resolver_degradation_of_signal_error_rate, 1.0, 1./AD2S1205_SAMPLE_RATE_HZ);
} else {
UTILS_LP_FAST(resolver_degradation_of_signal_error_rate, 0.0, 1./AD2S1205_SAMPLE_RATE_HZ);
}
if(LOS) {
angle_is_correct = false;
++resolver_loss_of_signal_error_cnt;
UTILS_LP_FAST(resolver_loss_of_signal_error_rate, 1.0, 1./AD2S1205_SAMPLE_RATE_HZ);
} else {
UTILS_LP_FAST(resolver_loss_of_signal_error_rate, 0.0, 1./AD2S1205_SAMPLE_RATE_HZ);
}
if(angle_is_correct)
{
last_enc_angle = ((float)pos * 360.0) / 4096.0;
}
}
}
}
/**
* Set the number of encoder counts.
*
* @param counts
* The number of encoder counts
*/
void encoder_set_counts(uint32_t counts) {
if (counts != enc_counts) {
enc_counts = counts;
TIM_SetAutoreload(HW_ENC_TIM, enc_counts - 1);
index_found = false;
}
}
/**
* Check if the index pulse is found.
*
* @return
* True if the index is found, false otherwise.
*/
bool encoder_index_found(void) {
return index_found;
}
// Software SPI
static void spi_transfer(uint16_t *in_buf, const uint16_t *out_buf, int length) {
for (int i = 0;i < length;i++) {
uint16_t send = out_buf ? out_buf[i] : 0xFFFF;
uint16_t receive = 0;
for (int bit = 0;bit < 16;bit++) {
//palWritePad(HW_SPI_PORT_MOSI, HW_SPI_PIN_MOSI, send >> 15);
send <<= 1;
palSetPad(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN);
spi_delay();
int samples = 0;
samples += palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN);
__NOP();
samples += palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN);
__NOP();
samples += palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN);
__NOP();
samples += palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN);
__NOP();
samples += palReadPad(SPI_SW_MISO_GPIO, SPI_SW_MISO_PIN);
receive <<= 1;
if (samples > 2) {
receive |= 1;
}
palClearPad(SPI_SW_SCK_GPIO, SPI_SW_SCK_PIN);
spi_delay();
}
if (in_buf) {
in_buf[i] = receive;
}
}
}
static void spi_begin(void) {
palClearPad(SPI_SW_CS_GPIO, SPI_SW_CS_PIN);
}
static void spi_end(void) {
palSetPad(SPI_SW_CS_GPIO, SPI_SW_CS_PIN);
}
static void spi_delay(void) {
__NOP();
__NOP();
__NOP();
__NOP();
}
#pragma GCC push_options
#pragma GCC optimize ("O0")
void TS5700N8501_delay_uart(void) {
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP();
}
/*
* It is important to switch to receive mode immediately after sending the readout command,
* as the TS5700N8501 starts sending the reply after 3 microseconds. Therefore use software
* UART on TX so that the enable signal can be controlled manually. This function runs while
* the system is locked, but it should finish fast enough to not cause problems for other
* things due to the high baud rate.
*/
static void TS5700N8501_send_byte(uint8_t b) {
utils_sys_lock_cnt();
#ifdef HW_ADC_EXT_GPIO
palSetPad(HW_ADC_EXT_GPIO, HW_ADC_EXT_PIN);
#endif
TS5700N8501_delay_uart();
palWritePad(HW_UART_TX_PORT, HW_UART_TX_PIN, 0);
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
for (int i = 0;i < 8;i++) {
palWritePad(HW_UART_TX_PORT, HW_UART_TX_PIN,
(b & (0x80 >> i)) ? PAL_HIGH : PAL_LOW);
TS5700N8501_delay_uart();
}
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
__NOP(); __NOP(); __NOP();
palWritePad(HW_UART_TX_PORT, HW_UART_TX_PIN, 1);
TS5700N8501_delay_uart();
#ifdef HW_ADC_EXT_GPIO
palClearPad(HW_ADC_EXT_GPIO, HW_ADC_EXT_PIN);
#endif
utils_sys_unlock_cnt();
}
#pragma GCC pop_options
static THD_FUNCTION(ts5700n8501_thread, arg) {
(void)arg;
chRegSetThreadName("TS5700N8501");
sdStart(&HW_UART_DEV, &TS5700N8501_uart_cfg);
palSetPadMode(HW_UART_TX_PORT, HW_UART_TX_PIN, PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_PULLUP);
palSetPadMode(HW_UART_RX_PORT, HW_UART_RX_PIN, PAL_MODE_ALTERNATE(HW_UART_GPIO_AF) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_PULLUP);
#ifdef HW_ADC_EXT_GPIO
palSetPadMode(HW_ADC_EXT_GPIO, HW_ADC_EXT_PIN, PAL_MODE_OUTPUT_PUSHPULL |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_PULLUP);
#endif
for(;;) {
// Check if it is time to stop.
if (ts5700n8501_stop_now) {
ts5700n8501_is_running = false;
return;
}
if (ts5700n8501_reset_errors) {
for (int i = 0;i < 20;i++) {
TS5700N8501_send_byte(0b01011101);
chThdSleep(2);
}
ts5700n8501_reset_errors = false;
}
if (ts5700n8501_reset_multiturn) {
for (int i = 0;i < 20;i++) {
TS5700N8501_send_byte(0b01000110);
chThdSleep(2);
}
ts5700n8501_reset_multiturn = false;
}
TS5700N8501_send_byte(0b01011000);
chThdSleep(2);
uint8_t reply[11];
int reply_ind = 0;
msg_t res = sdGetTimeout(&HW_UART_DEV, TIME_IMMEDIATE);
while (res != MSG_TIMEOUT) {
if (reply_ind < (int)sizeof(reply)) {
reply[reply_ind++] = res;
}
res = sdGetTimeout(&HW_UART_DEV, TIME_IMMEDIATE);
}
uint8_t crc = 0;
for (int i = 0;i < (reply_ind - 1);i++) {
crc = (reply[i] ^ crc);
}
if (reply_ind == 11 && crc == reply[reply_ind - 1]) {
uint32_t pos = (uint32_t)reply[2] + ((uint32_t)reply[3] << 8) + ((uint32_t)reply[4] << 16);
spi_val = pos;
last_enc_angle = (float)pos / 131072.0 * 360.0;
UTILS_LP_FAST(spi_error_rate, 0.0, 1.0 / AS5047_SAMPLE_RATE_HZ);
ts5700n8501_raw_status[0] = reply[1]; // SF
ts5700n8501_raw_status[1] = reply[2]; // ABS0
ts5700n8501_raw_status[2] = reply[3]; // ABS1
ts5700n8501_raw_status[3] = reply[4]; // ABS2
ts5700n8501_raw_status[4] = reply[6]; // ABM0
ts5700n8501_raw_status[5] = reply[7]; // ABM1
ts5700n8501_raw_status[6] = reply[8]; // ABM2
ts5700n8501_raw_status[7] = reply[9]; // ALMC
} else {
++spi_error_cnt;
UTILS_LP_FAST(spi_error_rate, 1.0, 1.0 / AS5047_SAMPLE_RATE_HZ);
}
}
}