-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdz_cvx.m
130 lines (105 loc) · 4.1 KB
/
dz_cvx.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [b] = dz_cvx(Nt,tb,d1,d2,quiet,phase)
switch phase
case 'linear'
osfact = 10; % oversampling factor for frequency grid
nn = (0:Nt/2*osfact)'/(Nt/2*osfact); % 0 to 1 - profile indices
d = zeros(Nt/2*osfact+1,1); % passband mask
s = zeros(Nt/2*osfact+1,1); % stopband mask
wts = zeros(Nt/2*osfact+1,1); % ripple taper weights
w = dinf(d1,d2)/tb;
% start out the f, m and w vectors with the DC band
f = [0 (1-w)*(tb/2) (1+w)*(tb/2)];%*di/dilp;
d = nn <= f(2)/(Nt/2); % target pattern
wts = 1./abs(nn).^2; % quadratically-decaying ripple weights
% append the last stopband
s = s | (nn >= f(end)/(Nt/2));
wts = wts.*s;wts(isnan(wts)) = 0;wts = wts./max(wts);
% build system matrix for cvx design
A = 2*cos(2*pi*(0:Nt/2*osfact)'*(-Nt/2:0)/(Nt*osfact));
A(:,end) = 1/2*A(:,end);
Ad = A(s | d,:);
dd = double(d(s | d));
ss = wts(s | d).*double(s(s | d));
% use cvx to do the constrained optimization
if quiet
cvx_begin quiet
variable delta(1)
variable x(Nt/2+1)
minimize( delta )
subject to
-delta*dd <= Ad*x - dd <= delta*dd + delta*d2/d1*ss
cvx_end
else
cvx_begin
variable delta(1)
variable x(Nt/2+1)
minimize( delta )
subject to
-delta*dd <= Ad*x - dd <= delta*dd + delta*d2/d1*ss
cvx_end
end
% stack two halves together to get full linear-phase filter
x = [x;x(end-1:-1:1)]';
% b = x./max(abs(fft(x,osfact*Nt))); % normalized beta coefficients
b = x./max(abs(fft(x,osfact*Nt))); % normalized beta coefficients
otherwise
% d1 = 0.01;
% d2 = 0.01;
N = 2*(Nt-1);
osfact = 20; % oversampling factor
% Apply parameter relations for spin-echo:
% d1 = d1/4;
% d2 = sqrt(d2);
% For a lin-phase based design, double passband ripple and square
% passband ripple
% d1 = 2*d1;
% d2 = d2^2/2; %<-- makes the passband ripple the same, but double the stopband ripple (Still below
nn = (0:N/2*osfact)'/(N/2*osfact); % 0 to 1 - profile indices
d = zeros(N/2*osfact+1,1); % passband mask
s = zeros(N/2*osfact+1,1); % stopband mask
wts = zeros(N/2*osfact+1,1); % ripple taper weights
dinfmin = 1/2*dinf(2*d1,d2^2/2);
dinflin = dinf(d1,d2);
tbmin = tb/dinflin*dinfmin; % scale TBW product so as to get the same transition
% width as linear phase pulse with same ripples,
% after scaling back to desired slice thickness. This
% makes comparison to other MB excitations more
% meaningful, since all will have same slice characteristics.
w = dinfmin/tbmin; % transition width
% start out the f, m and w vectors with the DC band
f = [0 (1-w)*(tbmin/2) (1+w)*(tbmin/2)];
d = nn <= f(2)/(Nt/2); % target pattern
wts = 1./abs(nn).^2; % quadratically-decaying ripple weights
% append the last stopband
s = s | (nn >= f(end)/(Nt/2));
wts = wts.*s;wts(isnan(wts)) = 0;wts = wts./max(wts);
% build system matrix for cvx design
A = 2*cos(2*pi*(0:N/2*osfact)'*(-N/2:0)/(N*osfact));
A(:,end) = 1/2*A(:,end);
Ad = A(s | d,:);
dd = double(d(s | d));
ss = wts(s | d).*double(s(s | d));
% use cvx to do the constrained optimization
if quiet == 1
cvx_begin quiet
variable delta(1)
variable x(N/2+1)
minimize( delta )
subject to
-delta*dd <= Ad*x - dd <= delta*dd + delta*d2^2/(2*d1)*ss
cvx_end
else
cvx_begin
variable delta(1)
variable x(N/2+1)
minimize( delta )
subject to
-delta*dd <= Ad*x - dd <= delta*dd + delta*d2^2/(2*d1)*ss
cvx_end
end
x = [x;x(end-1:-1:1)]';
blin=x;
% factor the linear phase filter to get a min-phase filter b
b = real(fmp2(x));
% b = b(end:-1:1);
end