-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtest4_multislice_TSE.m
225 lines (179 loc) · 6.55 KB
/
test4_multislice_TSE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
%% Test 4: Comparison of multislice and single slice TSE
% 2017-09-13
% version 2 - multiple slices as per in-vivo experiments
addpath(genpath('EPGX-src'))
addpath(genpath('lib'))
%%% Sequence
%%% Number of refocusing pulses
nrefocus = 25;
%%% have 8 different scenarios
nslice = 1:2:15;
nn = length(nslice);
%%% Common sequence parameters
ESP = 7.7;
TR = 5000; %<--- use this to work out time gap at the end
%%% Generate refocusing pulse series
a0={};
a0{1} = d2r([90 180*ones(1,nrefocus)]);
a0{2} = d2r([90 160 120*ones(1,nrefocus-1)]);
npulse = nrefocus+1;
b1sqrdtau={};
b1sqrdtau{1} = [32.7 213.1*ones(1,nrefocus)]; % uT^2 ms
b1sqrdtau{2} = [36.7 189.4 106.5*ones(1,nrefocus-1)]; % uT^2 ms
%%% slice shifts are different for each expt
df = [10.9 12.27] * 42.57e3 * 6e-3; % G * gamma * dx
%%% lineshape
T2b=12e-6;
[ff,G] = SuperLorentzian(T2b);
%%% Just store signal at echo time for each number of slices in WM and GM
sig={};
% sig=zeros([8 2]);
JX=1;
%%% Loop over WM/GM
for IX = 1:2
switch IX
case 1
%%% White matter model (see Gloor 2008)
f = 0.1166; %% F=0.132 = f/(1-f) => f=0.1166
kf = 4.3e-3;
kb = kf * (1-f)/f;
R1f = 1/779; % ms^-1
R1b = 1/779; %<- Gloor fix as T1f, usual literature is 1s
R2f = 1/45;
case 2
%%% Grey matter, caudate nucleus (also Gloor, 2008)
f = 0.0610;
kf = 2.3e-3;
kb = kf * (1-f)/f;
R1b = 1/1087;
R1f = 1/1087;
R2f = 1/59;
end
%%% loop over the experiments
for JX = 1:2
z0 = {};
mz = {};
ss = {};
for jj = 1:nn %<-- loop over number of slices (each one was a separate experiment)
%%% Set up sequence. Slice order goes odd then even.
slice_order = [1:2:nslice(jj) 2:2:nslice(jj)];
soi = ceil(nslice(jj)/2);%<-- slice of interest is the middle slice
%%% generate the lineshape for each slice (depends on frequency
%%% offset)
fs = df(JX) * (-floor(nslice(jj)/2):floor(nslice(jj)/2));
GG = interp1(ff,G,fs);
Nsl = length(slice_order);
Ntr = 4;
slice_order = repmat(slice_order,[1 Ntr]);
Ntot = Ntr * Nsl;
%%% now work out delay to add after each slice
Tshot = ESP*(nrefocus+0.5);
Tdelay = TR/nslice(jj) - Tshot;
% how to evolve Z0 between slices
L = [[-R1f-kf kb];[kf -R1b-kb]];
C = [R1f*(1-f) R1b*f]';
Xi = expm(L*Tdelay);
I=eye(2);
Zoff = (Xi - I)*inv(L)*C;
%%% Initialise magnetization
z0 = [(1-f) f];
ss{jj} = [];
% loop over the slices
for ii=1:Ntot
if slice_order(ii)==soi
% Local slice
[s, Fn,Zn] = EPGX_TSE_MT(a0{JX},b1sqrdtau{JX},ESP,[1/R1f 1/R1b],1/R2f,f,kf,GG(soi),'zinit',z0);
% save signal only in this case
ss{jj} = cat(2,ss{jj},s(:));
else
% Other slice
% set flips to zero and use the saturation lineshape for that slice
[s, Fn,Zn] = EPGX_TSE_MT(a0{JX}*0,b1sqrdtau{JX},ESP,[1/R1f 1/R1b],1/R2f,f,kf,GG(slice_order(ii)),'zinit',z0);
end
% update z0
%%% First take Z0 at end of TSE shot
z0 = squeeze(Zn(1,end,:));
%%% Now evolve it by amount due to recovery period
z0 = Xi*z0 + Zoff;
end
sig{JX}(jj,IX) = abs(ss{jj}(13,end));%<- record signal in echo 13 of the last simulated TR period
disp([JX jj IX])
end
end
end
sig{1}(:,3)=1; % CSF is defined as having no MT effect, so signals are same
sig{2}(:,3)=1;
%% Load in images and ROI measurements (made in another script)
load bin/test4_imagedata
%% Assume in-vivo data was generated elsewhere - read in above
leg={'White Matter','Gray Matter (Caudate)','Cerebrospinal Fluid'};
figure(21)
clf
sl = [1 4 8];
nr=3;nc=3;
fs=18;
%%% 1st image, mark ROIs
subplot(nr,nc,1)
h1=imagesc(repmat(imrotate((abs(ims{1,1})-200)/1000,-90),[1 1 3]));% grayscale
hold on
for ii=1:3
roitmp = imrotate(roi{ii},-90);
roitmp = repmat(roitmp,[1 1 3]);
roitmp(:,:,setdiff(1:3,ii))=0;
h2 = imagesc(roitmp);
set(h2, 'AlphaData', 0.5*imrotate(roi{ii},-90));
end
axis off
title('Single slice TSE','fontsize',fs)
for ii=2:nc
subplot(nr,nc,ii)
imsjm(ims{sl(ii),1},[200 1200],'rot',-90,'gray')
title(sprintf('Multislice (%d slices)',nslice(sl(ii))),'fontsize',fs)
axis off
end
for kk=1:2
for ii=1:3
subplot(nr,nc,ii + nc*(kk-1)+nc)
hold on
grid on
pp=[];
for jj=1:nn
pp(jj)=plot(nslice(jj),sig{kk}(jj,ii)/sig{kk}(1,ii),'^R');
end
set(pp,'markersize',8,'markerfacecolor',[1 0 0])
if exist('xm','var')
%%% compute scaling
sf = mean(sig{kk}(:,ii)/sig{kk}(1,ii))/mean(xm{ii,kk});
%pp2=errorbar(1:2:15,xm{ii,kk}/xm{ii,kk}(1),xs{ii,kk}/xm{ii,kk}(1));% in-vivo data
pp2=errorbar(1:2:15,xm{ii,kk}*sf,xs{ii,kk}*sf);% in-vivo data
set(pp2,'marker','.','markersize',8,'color',[0 0 0])
end
ylim([0.55 1.15])
if kk==1
title(leg{ii})
else
xlabel('Number of slices')
end
ylabel('signal (au)')
set(gca,'fontsize',12,'ytick',0.5:0.1:1.1)
xlim([0 16])
end
end
%
gc = get(gcf,'children');
axes(gc(6))
text(-5,0.62,'180° pulses','rotation',90,'fontsize',18,'fontweight','bold')
axes(gc(3))
text(-5,0.62,'120° pulses','rotation',90,'fontsize',18,'fontweight','bold')
%
%%% reposition
ww=850;hh=650;
setpospap([100 100 ww*0.9 hh*0.9])
set(gc(9),'Position',[0.025 0.55 0.3*([1 (ww/hh)])])
set(gc(8),'Position',[0.35 0.55 0.3*([1 (ww/hh)])])
set(gc(7),'Position',[0.675 0.55 0.3*([1 (ww/hh)])])
for ii=1:3
gc(ii).Position = [0.7-0.3*(ii-1) 0.07 0.23 0.18];
gc(ii+3).Position = [0.7-0.3*(ii-1) 0.3 0.23 0.18];
end
print -dpng -r300 bin/Test4_fig1.png