-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
122 lines (104 loc) · 4.36 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import math
import argparse
import random
import tensorflow as tf
from tensorflow import initializers
from torch.utils.tensorboard import SummaryWriter
from utils import *
from keras import Sequential, layers
from keras import regularizers as reg
def buildModel(l2) -> Sequential:
'''
todo
'''
wInit = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=42)
bInit = initializers.Constant(1e-1)
model = Sequential([
layers.Bidirectional(
layers.LSTM(
units=64,
dropout=0.1,
recurrent_dropout=0.1,
activation='elu',
#recurrent_activation='elu',
bias_initializer=bInit,
kernel_initializer=wInit,
kernel_regularizer=l2,
return_sequences=True),
input_shape=(100,21)),
layers.BatchNormalization(),
layers.Bidirectional(
layers.LSTM(
units=64,
dropout=0.2,
recurrent_dropout=0.2,
activation='elu',
#recurrent_activation='elu',
bias_initializer=bInit,
kernel_initializer=wInit,
kernel_regularizer=l2,
return_sequences=True)),
layers.Flatten(),
layers.Dense(
units=256,
activation='relu',
kernel_regularizer=l2),
#layers.Dropout(0.2),
layers.Dense(units=21, activation='softmax'),
])
return model
def main() -> None:
parser = argparse.ArgumentParser(description='BiLSTM for Protein Sequencing')
parser.add_argument('--train-model', action='store_true', default=False,
help='For loading the \'protein_bilstm\' Model')
parser.add_argument('--l2', action='store_true', default=False,
help='l2 regularizer')
parser.add_argument('--plot-freq', action='store_true', default=False,
help='plot various frequencies')
parser.add_argument('--plot-div', action='store_true', default=False,
help='plot diversity scores of train/test data')
parser.add_argument('--gen', action='store_true', default=False,
help='generate novel sequences')
parser.add_argument('--deptest', action='store_true', default=False,
help='test long-distance dependencies')
args = parser.parse_args()
diversity, seq_train, train_labels, seq_test, test_labels = buildDatasets(args)
if args.train_model:
if args.l2:
l2 = reg.l2(1e-3)
else:
l2 = None
model = buildModel(l2)
model.summary()
model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
optimizer=tf.optimizers.Adam(learning_rate=1e-3, epsilon=1e-8, decay=0.0),
#optimizer=tf.optimizers.SGD(learning_rate=1e-2),
metrics=["accuracy"])
historyMod = model.fit(x=seq_train.numpy(),
y=train_labels.numpy(),
epochs=25,
batch_size=128,
validation_data=(seq_test.numpy(), test_labels.numpy()),
shuffle=True)
writer = SummaryWriter('runs/train')
writer2 = SummaryWriter('runs/test')
for x,(y1,y2) in enumerate(zip(historyMod.history['accuracy'], historyMod.history['val_accuracy'])):
writer.add_scalar('acc', y1, x)
writer2.add_scalar('acc', y2, x)
for x,(y1,y2) in enumerate(zip(historyMod.history['loss'], historyMod.history['val_loss'])):
writer.add_scalar('loss', y1, x)
writer2.add_scalar('loss', y2, x)
for x,(y1,y2) in enumerate(zip(historyMod.history['loss'], historyMod.history['val_loss'])):
writer.add_scalar('perp', math.exp(y1), x)
writer2.add_scalar('perp', math.exp(y2), x)
model.save('protein_bilstm')
else:
model: keras.Sequential = keras.models.load_model('protein_bilstm')
if args.gen:
seqDict = testGeneration(model)
plotGenerated(seqDict)
if args.deptest:
dependencyTest(model, seq_test, test_labels)
#plotDependencies()
if __name__ == '__main__':
main()