-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
63 lines (48 loc) · 1.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import random
import logging
import numpy as np
import torch
from sklearn.metrics import f1_score
from transformers import (
ElectraConfig,
ElectraTokenizer,
BertConfig,
BertTokenizer
)
from model import (
ElectraForBiasClassification,
BertForBiasClassification
)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"koelectra-base": (ElectraConfig, ElectraForBiasClassification, ElectraTokenizer),
"koelectra-small": (ElectraConfig, ElectraForBiasClassification, ElectraTokenizer),
"koelectra-base-v2": (ElectraConfig, ElectraForBiasClassification, ElectraTokenizer),
"koelectra-small-v2": (ElectraConfig, ElectraForBiasClassification, ElectraTokenizer),
"kcbert-base": (BertConfig, BertForBiasClassification, BertTokenizer),
}
def load_tokenizer(args):
return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path)
def init_logger():
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(pred_bias_labels, pred_hate_labels, gt_bias_labels, gt_hate_labels):
bias_weighted_f1 = f1_score(gt_bias_labels, pred_bias_labels, average="weighted")
hate_weighted_f1 = f1_score(gt_hate_labels, pred_hate_labels, average="weighted")
bias_macro_f1 = f1_score(gt_bias_labels, pred_bias_labels, average="macro")
hate_macro_f1 = f1_score(gt_hate_labels, pred_hate_labels, average="macro")
mean_weighted_f1 = (bias_weighted_f1 + hate_weighted_f1) / 2
return {
"bias_weighted_f1": bias_weighted_f1,
"hate_weighted_f1": hate_weighted_f1,
"mean_weighted_f1": mean_weighted_f1,
"bias_macro_f1": bias_macro_f1,
"hate_macro_f1": hate_macro_f1
}