-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsave_vgg_feature.py
166 lines (136 loc) · 6.16 KB
/
save_vgg_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import time
import argparse
import torch
import torch.nn as nn
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from PIL import Image
import numpy as np
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGG16_NoTop(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG16_NoTop, self).__init__()
self.features = features # Only use this part
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
return self.features(x)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG16_NoTop(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)
return model
def vgg16_notop(pretrained=False, progress=True, **kwargs):
r"""VGG 16-layer model (configuration "D")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default="data", type=str, help="Path for data dir")
parser.add_argument("--img_dir", default="ner_img", type=str, help="Path for img dir")
parser.add_argument("--feature_file", default="img_vgg_features.pt", type=str, help="Filename for preprocessed image features")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
model = vgg16_notop(pretrained=True)
model.to(device)
model.eval()
# Only load the images that is in train/dev/test
img_id_lst = []
for text_filename in ['train', 'dev', 'test']:
with open(os.path.join(args.data_dir, text_filename), 'r', encoding='utf-8') as f:
for line in f:
if line.startswith("IMGID:"):
img_id_lst.append(int(line.replace("IMGID:", "").strip()))
mean_pixel = [103.939, 116.779, 123.68] # From original code setting
img_features = {}
cur_time = time.time()
for idx, img_id in enumerate(img_id_lst):
img_path = os.path.join(args.data_dir, args.img_dir, '{}.jpg'.format(img_id))
try:
im = Image.open(img_path)
im = im.resize((224, 224))
im = np.array(im)
if im.shape == (224, 224): # Check whether the channel of image is 1
im = np.concatenate((np.expand_dims(im, axis=-1),) * 3, axis=-1) # Change the channel 1 to 3
im = im[:, :, :3] # Some images have 4th channel, which is transparency value
except Exception as inst:
print("{} error!".format(img_id))
print(inst)
continue
for c in range(3):
im[:, :, c] = im[:, :, c] - mean_pixel[c]
im = im.transpose((2, 0, 1))
im = np.expand_dims(im, axis=0)
im = torch.Tensor(im).to(device)
with torch.no_grad():
img_feature = model(im)
img_feature = img_feature.squeeze(0).view(512, 7 * 7)
img_feature = img_feature.transpose(1, 0)
img_features[img_id] = img_feature.to("cpu") # Save as cpu
if (idx + 1) % 100 == 0:
print("{} done - extracted in {:.2f} sec".format(idx + 1, time.time() - cur_time))
cur_time = time.time()
# Save features with torch.save
torch.save(img_features, os.path.join(args.data_dir, args.feature_file))