-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path2.0- Bahdanau_attention.py
41 lines (32 loc) · 1.81 KB
/
2.0- Bahdanau_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#from pytorch
class BahdanauAttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, n_layers=1, dropout_p=0.1):
super(AttnDecoderRNN, self).__init__()
# Define parameters
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout_p = dropout_p
self.max_length = max_length
# Define layers
self.embedding = nn.Embedding(output_size, hidden_size)
self.dropout = nn.Dropout(dropout_p)
self.attn = GeneralAttn(hidden_size)
self.gru = nn.GRU(hidden_size * 2, hidden_size, n_layers, dropout=dropout_p)
self.out = nn.Linear(hidden_size, output_size)
def forward(self, word_input, last_hidden, encoder_outputs):
# Note that we will only be running forward for a single decoder time step, but will use all encoder outputs
# Get the embedding of the current input word (last output word)
word_embedded = self.embedding(word_input).view(1, 1, -1) # S=1 x B x N
word_embedded = self.dropout(word_embedded)
# Calculate attention weights and apply to encoder outputs
attn_weights = self.attn(last_hidden[-1], encoder_outputs)
context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) # B x 1 x N
# Combine embedded input word and attended context, run through RNN
rnn_input = torch.cat((word_embedded, context), 2)
output, hidden = self.gru(rnn_input, last_hidden)
# Final output layer
output = output.squeeze(0) # B x N
output = F.log_softmax(self.out(torch.cat((output, context), 1)))
# Return final output, hidden state, and attention weights (for visualization)
return output, hidden, attn_weights