-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoutlierDetection.py
391 lines (330 loc) · 17.6 KB
/
outlierDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#-*- coding: utf8
'''
Created on Aug 9, 2016
@author: zahran
'''
#from __future__ import division, print_function
from scipy.stats import chisquare
from collections import OrderedDict
from multiprocessing import Process, Queue
import time
import pandas as pd
#import plac
import numpy as np
import math
import os.path
from MyEnums import *
from TestSample import *
from DetectionTechnique import *
#from Tribeflow import *
#from Tribeflowpp import *
#from MyWord2vec import *
#from NgramLM import *
#from RNNLM import *
from HMM import *
import sys
#from bagOfActions import BagOfActions
#sys.path.append('/homes/mohame11/framework_for_detecting_outlier_in_trajectories/Cython')
sys.path.append('myCython')
#sys.path.insert(0,'/homes/mohame11/framework_for_detecting_outlier_in_trajectories/Cython/')
#import cythonOptimize
import pyximport; pyximport.install()
import cythonOptimize
#from cythonOptimize import *
#from myCython import cythonOptimize
class OutlierDetection:
def __init__(self):
#COMMON
self.CORES = 40
#cythonOptimize.getLogProb([],0)
'''
self.PATH = '/u/scratch1/mohame11/lastFm/'
self.RESULTS_PATH = self.PATH + 'simulatedData/pvalues_trpp9_www_simData_perUser20'
self.SEQ_FILE_PATH = self.PATH + 'simulatedData/trpp9_www_simData_perUser20'
self.MODEL_PATH = self.PATH + 'lastfm_win10_trace_tribeflowpp_model/lastfm_win10_trace_tribeflowpp_model.mcmc'
self.seq_prob = SEQ_PROB.TRIBEFLOWPP
self.useWindow = USE_WINDOW.FALSE
'''
self.PATH = '/u/scratch1/mohame11/lastfm_WWW/'
self.RESULTS_PATH = self.PATH + 'pvalues_hmm9_30states_www_simData'
self.SEQ_FILE_PATH = self.PATH + 'hmm30_www_simData'
self.MODEL_PATH = self.PATH + 'lastfm_win10_trace_top5000_HMM_MODEL_30hiddenStates.pkl'
self.seq_prob = SEQ_PROB.HMM
self.useWindow = USE_WINDOW.FALSE
####################################
'''
self.PATH = '/u/scratch1/mohame11/pins_repins_fixedcat/'
self.RESULTS_PATH = self.PATH + 'allLikes/pvalues_tribeflowpp'
self.SEQ_FILE_PATH = self.PATH + 'allLikes/likes.trace'
self.MODEL_PATH = self.PATH + 'pins_repins_win10.trace_tribeflowpp_model/pins_repins_win10_tribeflowpp.h5.mcmc'
self.seq_prob = SEQ_PROB.TRIBEFLOWPP
self.useWindow = USE_WINDOW.FALSE
'''
#####################################
self.groupActionsByUser = True # True will just append all sequences for a user into a long sequence
self.DATA_HAS_USER_INFO = False
self.VARIABLE_SIZED_DATA = True
#TRIBEFLOW
#self.TRACE_PATH = self.PATH + 'pins_repins_win10.trace'
#self.TRACE_PATH = self.PATH + 'lastfm_win10_trace'
self.TRACE_PATH = self.PATH + 'lastfm_win10_trace_top5000'
#self.TRACE_PATH = self.PATH + 'pins_repins_win10.trace_tribeflowpp.tsv.gz'
self.STAT_FILE = self.PATH +'Stats_win10'
self.UNBIAS_CATS_WITH_FREQ = False
self.smoothingParam = 1.0 #smoothing parameter for unbiasing item counts.
#NGRM/RNNLM/WORD2VEC/TRIBEFLOWPP
self.HISTORY_SIZE = 9
self.ALL_ACTIONS_PATH = self.PATH + 'lastfm_win10_trace_top5000_forLM_ALL_ACTIONS'
self.nonExistingUserFile = self.PATH + 'lastfm_win10_trace_top5000_allClusters_HMM_simData_withUsers_injected_0.1_nonExistingUsers'
def getPvalueWithoutRanking(self, currentActionRank, keySortedProbs, probabilities):
#normConst = 0.0
#for i in range(len(probabilities)):
# normConst += probabilities[i]
cdf = 0.0
for i in range(currentActionRank+1):
cdf += probabilities[keySortedProbs[i]]
#prob = cdf/normConst
return cdf
#testDic, quota, coreId, q, store, true_mem_size, hyper2id, obj2id, Theta_zh, Psi_sz, smoothedProbs
def get_norm_from_logScores(self,logScores):
if(len(logScores) == 1):
return logScores[0]
pw = (-1)*logScores[0] + self.get_norm_from_logScores(logScores[1:])
try:
res = logScores[0] + math.log10(1+(math.pow(10,pw)))
except:
res = logScores[0] + pw
return res
def outlierDetection(self, coreTestDic, quota, coreId, q, myModel):
myCnt = 0
print('writing to: ',myModel.RESULTS_PATH+'/outlier_analysis_pvalues_'+str(coreId))
writer = open(myModel.RESULTS_PATH+'/outlier_analysis_pvalues_'+str(coreId),'w')
#print('Inside: coreId',coreId,' len(coreTestDic)', len(coreTestDic))
#print('10keys', coreTestDic.keys()[0:10])
for user in coreTestDic:
#print('user',user)
for testSample in coreTestDic[user]:
myCnt += 1
#print('myCnt=', myCnt)
seq = testSample.actions
goldMarkers = testSample.goldMarkers
actions = myModel.getAllPossibleActions()
#print 'len(actions)=', len(actions)
pValuesWithRanks = {}
pValuesWithoutRanks = {}
#print 'seq len=', len(seq)
for i in range(len(seq)): #for all actions in the sequence.
#Take the action with index i and replace it with all possible actions
probabilities = {}
scores = {}
newSeq = list(seq)
#currentActionId = myModel.obj2id[newSeq[i]] #current action id
currentActionIndex = actions.index(newSeq[i])# the current action index in the action list.
#cal scores (an un-normalized sequence prob in tribeflow)
#print 'current action: ',i
for j in range(len(actions)): #for all possible actions that can replace the current action
#print ' replacement# ',j
del newSeq[i]
newSeq.insert(i, actions[j])
userId = myModel.getUserId(user)
seqScore = myModel.getProbability(userId, newSeq)
scores[j] = seqScore
#print ' replacement# ',j, ' prob=', seqScore
#print 'finished all replacements'
#print 'calculating normalizing constant'
try:
allScores = np.array(scores.values(), dtype = 'd').copy()
logNormalizingConst = cythonOptimize.getLogProb(allScores,len(allScores))
#logNormalizingConst = self.get_norm_from_logScores(scores.values())
for j in range(len(actions)): #for all possible actions that can replace the current action
logProb = float(scores[j]) - float(logNormalizingConst)
probabilities[j] = math.pow(10, logProb)
except:
normConst = 0.0
for j in range(len(actions)):
scores[j] = math.pow(scores[j], 10)
normConst += scores[j]
for j in range(len(actions)):
prob = float(scores[j]) / float(normConst)
probabilities[j] = prob
#print 'prob[action j]', prob
#print 'normalizing sequence scores'
#sorting ascendingy
keySortedProbs = sorted(probabilities, key=lambda k: (-probabilities[k], k), reverse=True)
currentActionRank = keySortedProbs.index(currentActionIndex)
currentActionPvalueWithoutRanks = self.getPvalueWithoutRanking(currentActionRank, keySortedProbs, probabilities)
currentActionPvalueWithRanks = float(currentActionRank+1)/float(len(actions))
pValuesWithRanks[i] = currentActionPvalueWithRanks
pValuesWithoutRanks[i] = currentActionPvalueWithoutRanks
if(len(seq) == len(pValuesWithoutRanks)):
writer.write('user##'+str(user)+'||seq##'+str(seq)+'||PvaluesWithRanks##'+str(pValuesWithRanks)+'||PvaluesWithoutRanks##'+str(pValuesWithoutRanks)+'||goldMarkers##'+str(goldMarkers)+'\n')
#print 'writing sm'
else:
print('seq len not equal to the number of pvalues !')
#if(myCnt % 5 == 0):
writer.flush()
print('>>> proc: '+ str(coreId)+' finished '+ str(myCnt)+'/'+str(quota)+' instances ...')
writer.close()
#ret = [chiSqs, chiSqs_expected]
#q.put(ret)
def distributeOutlierDetection(self):
myModel = None
if(self.seq_prob == SEQ_PROB.NGRAM):
myModel = NgramLM()
myModel.useWindow = self.useWindow
myModel.model_path = self.MODEL_PATH
myModel.true_mem_size = self.HISTORY_SIZE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.ALL_ACTIONS_PATH = self.ALL_ACTIONS_PATH
myModel.groupActionsByUser = self.groupActionsByUser
myModel.loadModel()
elif(self.seq_prob == SEQ_PROB.RNNLM):
myModel = RNNLM()
myModel.useWindow = self.useWindow
myModel.model_path = self.MODEL_PATH
myModel.true_mem_size = self.HISTORY_SIZE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.RESULTS_PATH = self.RESULTS_PATH
myModel.ALL_ACTIONS_PATH = self.ALL_ACTIONS_PATH
myModel.groupActionsByUser = self.groupActionsByUser
myModel.loadModel()
elif(self.seq_prob == SEQ_PROB.WORD2VEC):
#w2v = MyWord2vec()
#w2v.model_path = '/u/scratch1/mohame11/pins_repins_fixedcat/pins_repins_win10.trace_word2vec_SKIPG'
#model = gensim.models.Word2Vec.load(w2v.model_path) # you can continue training with the loaded model!
#print('Fast word2vec =', gensim.models.word2vec.FAST_VERSION)
#print('Fast word2vec_inner=', gensim.models.word2vec_inner.FAST_VERSION)
myModel = MyWord2vec()
myModel.useWindow = self.useWindow
myModel.model_path = self.MODEL_PATH
myModel.true_mem_size = self.HISTORY_SIZE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.RESULTS_PATH = self.RESULTS_PATH
myModel.ALL_ACTIONS_PATH = self.ALL_ACTIONS_PATH
myModel.groupActionsByUser = self.groupActionsByUser
myModel.nonExistingUserFile = self.nonExistingUserFile
myModel.loadModel()
elif(self.seq_prob == SEQ_PROB.HMM):
myModel = HMM()
myModel.useWindow = self.useWindow
myModel.model_path = self.MODEL_PATH
myModel.true_mem_size = self.HISTORY_SIZE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.RESULTS_PATH = self.RESULTS_PATH
#myModel.ALL_ACTIONS_PATH = self.ALL_ACTIONS_PATH
myModel.groupActionsByUser = self.groupActionsByUser
myModel.nonExistingUserFile = self.nonExistingUserFile
myModel.actionMappingsPath = self.PATH + 'lastfm_win10_trace_top5000_HMM_ACTION_MAPPINGS'
myModel.loadModel()
elif(self.seq_prob == SEQ_PROB.TRIBEFLOWPP):
myModel = TribeFlowpp()
myModel.useWindow = self.useWindow
myModel.model_path = self.MODEL_PATH
myModel.true_mem_size = self.HISTORY_SIZE
myModel.trace_fpath = self.TRACE_PATH
myModel.UNBIAS_CATS_WITH_FREQ = self.UNBIAS_CATS_WITH_FREQ
myModel.STAT_FILE = self.STAT_FILE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.groupActionsByUser = self.groupActionsByUser
#myModel.userMappingsPath = self.PATH + 'pins_repins_win10.trace_tribeflowpp_userMappings'
#myModel.actionMappingsPath = self.PATH + 'pins_repins_win10.trace_tribeflowpp_actionMappings'
myModel.userMappingsPath = self.PATH + 'lastfm_win10_trace_tribeflowpp_userMappings'
myModel.actionMappingsPath = self.PATH + 'lastfm_win10_trace_tribeflowpp_actionMappings'
if(self.UNBIAS_CATS_WITH_FREQ):
print('>>> calculating statistics for unbiasing categories ...')
myModel.calculatingItemsFreq(self.smoothingParam)
myModel.loadModel()
elif(self.seq_prob == SEQ_PROB.TRIBEFLOW):
myModel = TribeFlow()
myModel.useWindow = self.useWindow
myModel.model_path = self.MODEL_PATH
myModel.store = pd.HDFStore(self.MODEL_PATH)
myModel.Theta_zh = myModel.store['Theta_zh'].values
myModel.Psi_sz = myModel.store['Psi_sz'].values
myModel.true_mem_size = myModel.store['Dts'].values.shape[1]
myModel.hyper2id = dict(myModel.store['hyper2id'].values)
myModel.obj2id = dict(myModel.store['source2id'].values)
#myModel.trace_fpath = myModel.store['trace_fpath'][0][0]
myModel.trace_fpath = self.TRACE_PATH
myModel.UNBIAS_CATS_WITH_FREQ = self.UNBIAS_CATS_WITH_FREQ
myModel.STAT_FILE = self.STAT_FILE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.groupActionsByUser = self.groupActionsByUser
if(self.UNBIAS_CATS_WITH_FREQ):
print('>>> calculating statistics for unbiasing categories ...')
myModel.calculatingItemsFreq(self.smoothingParam)
elif(self.seq_prob == SEQ_PROB.BAG_OF_ACTIONS):
myModel = BagOfActions()
myModel.trace_fpath = self.TRACE_PATH
myModel.smoothingParam = self.smoothingParam
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.DATA_HAS_USER_INFO = self.DATA_HAS_USER_INFO
myModel.VARIABLE_SIZED_DATA = self.VARIABLE_SIZED_DATA
myModel.true_mem_size = self.HISTORY_SIZE
myModel.SEQ_FILE_PATH = self.SEQ_FILE_PATH
myModel.RESULTS_PATH = self.RESULTS_PATH
myModel.useWindow = self.useWindow
myModel.groupActionsByUser = self.groupActionsByUser
myModel.loadModel()
print('Model is loaded !')
myModel.RESULTS_PATH = self.RESULTS_PATH
testDic,testSetCount = myModel.prepareTestSet()
print('Number of test samples: '+str(testSetCount))
start_time = time.time()
myProcs = []
workTot = 0
idealCoreQuota = testSetCount // self.CORES
userList = testDic.keys()
uid = 0
q = Queue()
for i in range(self.CORES):
coreTestDic = {}
coreShare = 0
while uid < len(userList):
coreShare += len(testDic[userList[uid]])
coreTestDic[userList[uid]] = testDic[userList[uid]]
uid += 1
if(coreShare >= idealCoreQuota):
p = Process(target = self.outlierDetection, args=(coreTestDic, coreShare, i, q, myModel))
#self.outlierDetection(coreTestDic, coreShare, i, q, myModel)
myProcs.append(p)
testSetCount -= coreShare
leftCores = (self.CORES-(i+1))
if(leftCores >0):
idealCoreQuota = testSetCount // leftCores
print('>>> Starting process: '+str(i)+' on '+str(coreShare)+' samples.')
workTot += coreShare
p.start()
break
#myProcs.append(p)
print('Total workload', workTot)
for i in range(self.CORES):
myProcs[i].join()
print('>>> process: '+str(i)+' finished')
elapsed_time = time.time() - start_time
print 'Elapsed Time=', elapsed_time
#results = []
#for i in range(CORES):
# results.append(q.get(True))
print('\n>>> All DONE!')
#store.close()
def work():
detect = OutlierDetection()
detect.distributeOutlierDetection()
if __name__ == "__main__":
work()
#cProfile.run('distributeOutlierDetection()')
#plac.call(main)
print('DONE!')