-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAuthorId.py
176 lines (139 loc) · 8.57 KB
/
AuthorId.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
Created on Nov 1, 2015
@author: Mohamed Zahran
'''
import onlineLearning_HW2
from Helper import Helper
import random
def tryOnlineLearn():
testShare = 0.25
valShare = 0.25
trainingFeatures, trainingLabels = Helper.parseGenderBlogDatasetWithLabels('blog-gender-dataset.csv')
#trainingFeatures = random.shuffle(trainingFeatures)
if(onlineLearning_HW2.FEATURE_TYPE == 'word2vec'):
trainingFeatures = onlineLearning_HW2.readDataVecs('genderBlogDatasetVectors.txt')
else:
vocab = onlineLearning_HW2.buildVocab(trainingFeatures)
trainingFeatures = onlineLearning_HW2.data2bow(trainingFeatures,vocab)
tln = len(trainingFeatures)
valData = trainingFeatures[0:int(tln*valShare)]
valLabel = trainingLabels[0:int(tln*valShare)]
vln = len(valData)
testData = trainingFeatures[vln:int(vln+tln*testShare)]
testLabel = trainingLabels[vln:int(vln+tln*testShare)]
ln = len(valData)+len(testData)
trainingFeatures = trainingFeatures[ln:]
trainingLabels = trainingLabels[ln:]
model = onlineLearning_HW2.avgPerceptron(trainingFeatures, trainingLabels)
predictionsTraining = onlineLearning_HW2.classify(trainingFeatures, trainingLabels, model, trainingFeatures, trainingLabels)
predictionsVal = onlineLearning_HW2.classify(valData, valLabel, model, trainingFeatures, trainingLabels)
predictionsTest = onlineLearning_HW2.classify(testData, testLabel, model, trainingFeatures, trainingLabels)
print('Training set:')
res = onlineLearning_HW2.checkPerformance(trainingLabels, predictionsTraining)
print(res)
print('Validation set:')
res = onlineLearning_HW2.checkPerformance(valLabel, predictionsVal)
print(res)
print('Test set:')
res = onlineLearning_HW2.checkPerformance(testLabel, predictionsTest)
print(res)
def paramSelectOnlineLearning():
writer = open('results_log.txt','w')
# reading the training data, validation data, test data
print ('>> Parsing all data sets ...')
testShare = 0.25
valShare = 0.25
trainingData, trainingLabels = Helper.parseGenderBlogDatasetWithLabels('blog-gender-dataset.csv')
print ('>> Building vocabulary ...')
#vocab = buildVocab(trainingData, valData)
bestVal = 0
bestValParam = ''
bestTest = 0
bestTestParam = ''
bestTrain = 0
bestTrainParam = ''
for feat in onlineLearning_HW2.FEATURE_TYPE_LIST:
global FEATURE_TYPE
FEATURE_TYPE = feat
for boolean in onlineLearning_HW2.BOOLEAN_TYPE_LIST:
global BOOLEAN_TYPE
BOOLEAN_TYPE = boolean
if(feat != 'word2vec'):
vocab = onlineLearning_HW2.buildVocab(trainingData)
trainingFeatures = onlineLearning_HW2.data2bow(trainingData,vocab)
if(feat == 'word2vec'):
trainingFeatures = onlineLearning_HW2.readDataVecs('genderBlogDatasetVectors.txt')
tln = len(trainingFeatures)
valFeatures = trainingFeatures[0:int(tln*valShare)]
valLabel = trainingLabels[0:int(tln*valShare)]
vln = len(valFeatures)
testFeatures = trainingFeatures[vln:int(vln+tln*testShare)]
testLabel = trainingLabels[vln:int(vln+tln*testShare)]
ln = len(valFeatures)+len(testFeatures)
trainingFeatures = trainingFeatures[ln:]
trainingOnlyLabels = trainingLabels[ln:]
#print ('>> Starting Training ...')
for typee in onlineLearning_HW2.LEARNING_TYPE_LIST:
for margin in onlineLearning_HW2.MARGIN_LIST:
for maxIter in onlineLearning_HW2.MAX_ITERATION_LIST:
for lrate in onlineLearning_HW2.LEARNING_RATE_LIST:
#try:
#global onlineLearning_HW2.MARGIN
onlineLearning_HW2.MARGIN = margin
#global onlineLearning_HW2.MAX_ITERATION
onlineLearning_HW2.MAX_ITERATION = maxIter
#global onlineLearning_HW2.LEARNING_RATE
onlineLearning_HW2.LEARNING_RATE = lrate
#global onlineLearning_HW2.LEARNING_TYPE
onlineLearning_HW2.LEARNING_TYPE = typee
myStr = 'FEATURE_TYPE='+str(feat) +' BOOLEAN_FEATURES='+str(boolean) +' LEARNING_TYPE='+str(typee)+ ' MARGIN='+str(margin) + ' MAX_ITERATION='+str(maxIter)+' LEARNING_RATE='+str(lrate)
writer.write('\n'+myStr)
writer.flush()
print (myStr)
#print ('>> Starting training ...')
if(onlineLearning_HW2.LEARNING_TYPE == 'p'):
model = onlineLearning_HW2.perceptron(trainingFeatures, trainingOnlyLabels)
elif(onlineLearning_HW2.LEARNING_TYPE == 'avgP'):
model = onlineLearning_HW2.avgPerceptron(trainingFeatures, trainingOnlyLabels)
elif(onlineLearning_HW2.LEARNING_TYPE == 'w'):
model = onlineLearning_HW2.winnow(trainingFeatures, trainingOnlyLabels)
else:
model = onlineLearning_HW2.kernelPerceptron(trainingFeatures, trainingOnlyLabels)
#print ('>> Making predictions ...')
predictionsTraining = onlineLearning_HW2.classify(trainingFeatures, trainingOnlyLabels, model, trainingFeatures, trainingOnlyLabels)
predictionsVal = onlineLearning_HW2.classify(valFeatures, valLabel, model, trainingFeatures, trainingOnlyLabels)
predictionsTest = onlineLearning_HW2.classify(testFeatures, testLabel, model, trainingFeatures, trainingOnlyLabels)
#print ('>> Calculating performance ...')
#print('Training set:')
res, trainAcc = onlineLearning_HW2.checkPerformance(trainingOnlyLabels, predictionsTraining)
writer.write('\nTRAIN: '+res)
#print('Validation set:')
res, valAcc = onlineLearning_HW2.checkPerformance(valLabel, predictionsVal)
writer.write('\nVAL : '+res)
#print('Test set:')
res, testAcc = onlineLearning_HW2.checkPerformance(testLabel, predictionsTest)
writer.write('\nTEST : '+res)
writer.flush()
# except:
# writer.write('>> Expection !')
# writer.flush()
if(trainAcc > bestTrain):
bestTrain = trainAcc
bestTrainParam = myStr
if(valAcc > bestVal):
bestVal = valAcc
bestValParam = myStr
if(testAcc > bestTest):
bestTest = testAcc
bestTestParam = myStr
writer.write('BEST train param:\n'+bestTrainParam)
writer.write('BEST val param:\n'+bestValParam)
writer.write('BEST test param:\n'+bestTestParam)
print('DONE !')
def main():
#trainingData,trainingLabels,valData,valLables,testData,testLabels = Helper.parseData('train.csv', 'validation.csv', 'test.csv')
#cVect = CountVectorizer()
#xTrain = cVect.fit_transform(trainingData)
#tryOnlineLearn()
paramSelectOnlineLearning()
main()