You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
File ~/tensorflow-test/env/lib/python3.8/site-packages/IPython/core/formatters.py:973, in MimeBundleFormatter.__call__(self, obj, include, exclude)
970 method = get_real_method(obj, self.print_method)
972 if method is not None:
--> 973 return method(include=include, exclude=exclude)
974 return None
975 else:
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:614, in BaseEstimator._repr_mimebundle_(self, **kwargs)
612 def _repr_mimebundle_(self, **kwargs):
613 """Mime bundle used by jupyter kernels to display estimator"""
--> 614 output = {"text/plain": repr(self)}
615 if get_config()["display"] == "diagram":
616 output["text/html"] = estimator_html_repr(self)
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:279, in BaseEstimator.__repr__(self, N_CHAR_MAX)
271 # use ellipsis for sequences with a lot of elements
272 pp = _EstimatorPrettyPrinter(
273 compact=True,
274 indent=1,
275 indent_at_name=True,
276 n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW,
277 )
--> 279 repr_ = pp.pformat(self)
281 # Use bruteforce ellipsis when there are a lot of non-blank characters
282 n_nonblank = len("".join(repr_.split()))
File ~/tensorflow-test/env/lib/python3.8/pprint.py:153, in PrettyPrinter.pformat(self, object)
151 def pformat(self, object):
152 sio = _StringIO()
--> 153 self._format(object, sio, 0, 0, {}, 0)
154 return sio.getvalue()
File ~/tensorflow-test/env/lib/python3.8/pprint.py:170, in PrettyPrinter._format(self, object, stream, indent, allowance, context, level)
168 self._readable = False
169 return
--> 170 rep = self._repr(object, context, level)
171 max_width = self._width - indent - allowance
172 if len(rep) > max_width:
File ~/tensorflow-test/env/lib/python3.8/pprint.py:404, in PrettyPrinter._repr(self, object, context, level)
403 def _repr(self, object, context, level):
--> 404 repr, readable, recursive = self.format(object, context.copy(),
405 self._depth, level)
406 if not readable:
407 self._readable = False
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/utils/_pprint.py:189, in _EstimatorPrettyPrinter.format(self, object, context, maxlevels, level)
188 def format(self, object, context, maxlevels, level):
--> 189 return _safe_repr(
190 object, context, maxlevels, level, changed_only=self._changed_only
191 )
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/utils/_pprint.py:440, in _safe_repr(object, context, maxlevels, level, changed_only)
438 recursive = False
439 if changed_only:
--> 440 params = _changed_params(object)
441 else:
442 params = object.get_params(deep=False)
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/utils/_pprint.py:93, in _changed_params(estimator)
89 def _changed_params(estimator):
90 """Return dict (param_name: value) of parameters that were given to
91 estimator with non-default values."""
---> 93 params = estimator.get_params(deep=False)
94 init_func = getattr(estimator.__init__, "deprecated_original", estimator.__init__)
95 init_params = inspect.signature(init_func).parameters
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:210, in BaseEstimator.get_params(self, deep)
208 out = dict()
209 for key in self._get_param_names():
--> 210 value = getattr(self, key)
211 if deep and hasattr(value, "get_params"):
212 deep_items = value.get_params().items()
AttributeError: 'ActiveLearner' object has no attribute 'bootstrap_init'---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
File ~/tensorflow-test/env/lib/python3.8/site-packages/IPython/core/formatters.py:707, in PlainTextFormatter.__call__(self, obj)
700 stream = StringIO()
701 printer = pretty.RepresentationPrinter(stream, self.verbose,
702 self.max_width, self.newline,
703 max_seq_length=self.max_seq_length,
704 singleton_pprinters=self.singleton_printers,
705 type_pprinters=self.type_printers,
706 deferred_pprinters=self.deferred_printers)
--> 707 printer.pretty(obj)
708 printer.flush()
709 return stream.getvalue()
File ~/tensorflow-test/env/lib/python3.8/site-packages/IPython/lib/pretty.py:410, in RepresentationPrinter.pretty(self, obj)
407 return meth(obj, self, cycle)
408 if cls is not object \
409 and callable(cls.__dict__.get('__repr__')):
--> 410 return _repr_pprint(obj, self, cycle)
412 return _default_pprint(obj, self, cycle)
413 finally:
File ~/tensorflow-test/env/lib/python3.8/site-packages/IPython/lib/pretty.py:778, in _repr_pprint(obj, p, cycle)
776 """A pprint that just redirects to the normal repr function."""
777 # Find newlines and replace them with p.break_()
--> 778 output = repr(obj)
779 lines = output.splitlines()
780 with p.group():
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:279, in BaseEstimator.__repr__(self, N_CHAR_MAX)
271 # use ellipsis for sequences with a lot of elements
272 pp = _EstimatorPrettyPrinter(
273 compact=True,
274 indent=1,
275 indent_at_name=True,
276 n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW,
277 )
--> 279 repr_ = pp.pformat(self)
281 # Use bruteforce ellipsis when there are a lot of non-blank characters
282 n_nonblank = len("".join(repr_.split()))
File ~/tensorflow-test/env/lib/python3.8/pprint.py:153, in PrettyPrinter.pformat(self, object)
151 def pformat(self, object):
152 sio = _StringIO()
--> 153 self._format(object, sio, 0, 0, {}, 0)
154 return sio.getvalue()
File ~/tensorflow-test/env/lib/python3.8/pprint.py:170, in PrettyPrinter._format(self, object, stream, indent, allowance, context, level)
168 self._readable = False
169 return
--> 170 rep = self._repr(object, context, level)
171 max_width = self._width - indent - allowance
172 if len(rep) > max_width:
File ~/tensorflow-test/env/lib/python3.8/pprint.py:404, in PrettyPrinter._repr(self, object, context, level)
403 def _repr(self, object, context, level):
--> 404 repr, readable, recursive = self.format(object, context.copy(),
405 self._depth, level)
406 if not readable:
407 self._readable = False
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/utils/_pprint.py:189, in _EstimatorPrettyPrinter.format(self, object, context, maxlevels, level)
188 def format(self, object, context, maxlevels, level):
--> 189 return _safe_repr(
190 object, context, maxlevels, level, changed_only=self._changed_only
191 )
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/utils/_pprint.py:440, in _safe_repr(object, context, maxlevels, level, changed_only)
438 recursive = False
439 if changed_only:
--> 440 params = _changed_params(object)
441 else:
442 params = object.get_params(deep=False)
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/utils/_pprint.py:93, in _changed_params(estimator)
89 def _changed_params(estimator):
90 """Return dict (param_name: value) of parameters that were given to
91 estimator with non-default values."""
---> 93 params = estimator.get_params(deep=False)
94 init_func = getattr(estimator.__init__, "deprecated_original", estimator.__init__)
95 init_params = inspect.signature(init_func).parameters
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:210, in BaseEstimator.get_params(self, deep)
208 out = dict()
209 for key in self._get_param_names():
--> 210 value = getattr(self, key)
211 if deep and hasattr(value, "get_params"):
212 deep_items = value.get_params().items()
AttributeError: 'ActiveLearner' object has no attribute 'bootstrap_init'
I have to run it with python 3.8 as I am using tensorflow under the mac M1 chip and this still has some dependency issues. For the rest, there is nothing different from the usual way I feed in the RF model (data formats are correct). Any idea why is it calling this attribute?
The text was updated successfully, but these errors were encountered:
I ran into the same issue because after an active learning loop I wanted to print the learner, analogous to printing the model in pure torch. For my use case print(learner.estimator) instead of print(learner) is what I needed.
I am trying to apply the package for sklearn RandomForestClassifier like this:
Then the following error appears:
I have to run it with python 3.8 as I am using tensorflow under the mac M1 chip and this still has some dependency issues. For the rest, there is nothing different from the usual way I feed in the RF model (data formats are correct). Any idea why is it calling this attribute?
The text was updated successfully, but these errors were encountered: