-
Notifications
You must be signed in to change notification settings - Fork 3
/
predict.py
138 lines (121 loc) · 4.66 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
from typing import List
import torch
from cog import BasePredictor, Input, Path
from diffusers import (
StableDiffusionDepth2ImgPipeline,
PNDMScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from PIL import Image
MODEL_ID = "stabilityai/stable-diffusion-2-depth"
MODEL_CACHE = "diffusers-cache"
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
print("Loading pipeline...")
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
MODEL_ID,
cache_dir=MODEL_CACHE,
local_files_only=True,
revision='fp16',
torch_dtype=torch.float16,
).to("cuda")
# Needs xformers
# self.pipe.enable_xformers_memory_efficient_attention()
# self.pipe.enable_vae_slicing()
@torch.inference_mode()
def predict(
self,
prompt: str = Input(
description="The prompt to guide the image generation.",
default="A fantasy landscape, trending on artstation",
),
negative_prompt: str = Input(
description="The prompt NOT to guide the image generation. Ignored when not using guidance",
default=None,
),
image: Path = Input(
description="Image that will be used as the starting point for the process.",
),
prompt_strength: float = Input(
description="Prompt strength when providing the image. 1.0 corresponds to full destruction of information in init image.",
default=0.8,
),
num_outputs: int = Input(
description="Number of images to output. Higher number of outputs may OOM.",
ge=1,
le=8,
default=1,
),
num_inference_steps: int = Input(
description="The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.",
ge=1,
le=500,
default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.",
ge=1,
le=20,
default=7.5
),
scheduler: str = Input(
default="DPMSolverMultistep",
choices=[
"DDIM",
"K_EULER",
"DPMSolverMultistep",
"K_EULER_ANCESTRAL",
"PNDM",
"KLMS",
],
description="Choose a scheduler.",
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
self.pipe.scheduler = make_scheduler(scheduler, self.pipe.scheduler.config)
generator = torch.Generator("cuda").manual_seed(seed)
extra_kwargs = {
"image": Image.open(image).convert("RGB"),
"strength": prompt_strength,
}
output = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_outputs,
num_inference_steps=num_inference_steps,
**extra_kwargs,
# This will OOM if num_outputs > 1
# prompt=[prompt] * num_outputs if prompt is not None else None,
# negative_prompt=[negative_prompt] * num_outputs if negative_prompt is not None else None,
)
output_paths = []
for i, sample in enumerate(output.images):
output_path = f"/tmp/out-{i}.png"
sample.save(output_path)
output_paths.append(Path(output_path))
return output_paths
def make_scheduler(name, config):
return {
"PNDM": PNDMScheduler.from_config(config),
"KLMS": LMSDiscreteScheduler.from_config(config),
"DDIM": DDIMScheduler.from_config(config),
"K_EULER": EulerDiscreteScheduler.from_config(config),
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler.from_config(config),
"DPMSolverMultistep": DPMSolverMultistepScheduler.from_config(config),
}[name]