-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_and_eval.py
205 lines (173 loc) · 7.63 KB
/
load_and_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import json
import os
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from accelerate import PartialState
from accelerate.utils import gather_object
from datasets import load_from_disk
from tqdm.auto import tqdm
from transformers import pipeline
from transformers.pipelines.pt_utils import KeyDataset
import wandb
from src.utils import TRLParser
@dataclass
class EvalScriptArguments:
model_name_or_path: str = None
ref_model_name: Optional[str] = None
sanity_check: Optional[bool] = False
wandb_run_id: Optional[str] = field(default=None)
gold_model_name: Optional[str] = field(default="EleutherAI/pythia-410m", metadata={"help": "the model name"})
gold_model_revision: Optional[str] = field(default=None)
torch_dtype: Optional[str] = field(default="auto")
batch_size: Optional[int] = field(default=16)
gold_tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
dataset_path: str = None
def evaluate(args, all_reference, all_generations, all_episodes, log_to_wandb=False):
state = PartialState()
torch_dtype = args.torch_dtype if args.torch_dtype in ["auto", None] else getattr(torch, args.torch_dtype)
model_kwargs = dict(
torch_dtype=torch_dtype,
device_map={"": state.process_index},
)
tokenizer_name = args.gold_tokenizer_name if args.gold_tokenizer_name is not None else args.gold_model_name
reward_pipeline = pipeline(
task="text-classification",
model=args.gold_model_name,
tokenizer=tokenizer_name,
function_to_apply="none",
model_kwargs=model_kwargs,
)
if not reward_pipeline.tokenizer.pad_token:
reward_pipeline.tokenizer.pad_token_id = reward_pipeline.tokenizer.eos_token_id
reward_pipeline.model.config.pad_token_id = reward_pipeline.tokenizer.pad_token_id
ppl_pipeline = pipeline(
task="perplexity",
model=args.ref_model_name,
model_kwargs=model_kwargs,
)
ref_rewards = []
with state.split_between_processes(all_reference) as reference:
for out in tqdm(
reward_pipeline(reference, batch_size=args.batch_size),
total=len(reference),
disable=not state.is_local_main_process,
desc="Reference",
):
if isinstance(out, dict):
out = [out]
ref_rewards.extend([o["score"] for o in out])
ref_rewards = gather_object(ref_rewards)
ref_rewards = np.array(ref_rewards)
step = 0
for step_str, all_query_response in all_generations.items():
gen_rewards = []
gen_ppls = []
episode = all_episodes[step_str]
with state.split_between_processes(all_query_response) as query_response:
for out in tqdm(
reward_pipeline(query_response, batch_size=args.batch_size),
total=len(query_response),
disable=not state.is_local_main_process,
desc=f"Reward Step {step_str}",
):
if isinstance(out, dict):
out = [out]
gen_rewards.extend([o["score"] for o in out])
for out in tqdm(
ppl_pipeline(query_response, prompt_template="TL;DR:", batch_size=args.batch_size),
total=len(query_response),
disable=not state.is_local_main_process,
desc=f"PPL Step {step_str}",
):
gen_ppls += [r["ppl"] for r in out]
gen_rewards = gather_object(gen_rewards)
gen_rewards = np.array(gen_rewards)
gen_ppls = gather_object(gen_ppls)
gen_ppls = np.array(gen_ppls)
mean_ppl = gen_ppls.mean().item()
win_rate = (gen_rewards > ref_rewards).mean().item()
norm_reward = (gen_rewards - ref_rewards).mean().item()
mean_reward = gen_rewards.mean().item()
if step_str.startswith("checkpoint-"):
step_str = step_str.removeprefix("checkpoint-")
if step_str.isdigit():
step = int(step_str)
else:
state.print(f"Warning step name {step_str} is not an integer")
step = step + 1
if log_to_wandb and state.is_main_process:
num_samples = 32
sample_generations = wandb.Table(
columns=["Prompt", "Policy", "Policy Reward", "Reference", "Reference Reward"],
rows=[
[prompt, pol[len(prompt) :], pol_reward, ref[len(prompt) :], ref_reward]
for prompt, pol, pol_reward, ref, ref_reward in zip(
prompts[:num_samples],
query_response[:num_samples],
gen_rewards[:num_samples],
reference[:num_samples],
ref_rewards[:num_samples],
)
],
)
wandb.log(
{
"gold/win_rate": win_rate,
"gold/norm_reward": norm_reward,
"gold/reward": mean_reward,
"gold/ppl": mean_ppl,
"gold/samples": sample_generations,
"train/global_step": step,
"train/episode": episode,
},
)
state.print(f"step {step}: reward {mean_reward} win-rate {win_rate} norm-reward {norm_reward} ppl {mean_ppl}")
if __name__ == "__main__":
parser = TRLParser([EvalScriptArguments])
args = parser.parse_args_and_config()[0]
if args.dataset_path is not None:
generated_dataset_path = args.dataset_path
else:
generated_dataset_path = os.path.join(args.model_name_or_path, "_generations")
dataset = load_from_disk(generated_dataset_path)
with open(os.path.join(generated_dataset_path, "trainer_states.json"), "r") as f:
trainer_states = json.load(f)
prompts = dataset["query"]
reference = KeyDataset(dataset, "query_reference_response")
generations_cols = [name for name in dataset.column_names if name.startswith("generation")]
generations = {}
episodes = {}
for col_name in generations_cols:
# column name should be generations_{step name}
checkpoint_name = col_name.split("_")[1]
generations[checkpoint_name] = KeyDataset(dataset, col_name)
if "episode" in trainer_states[checkpoint_name]:
eps = trainer_states[checkpoint_name]["episode"]
elif "dpo" in args.model_name_or_path:
# assume offline dpo, which uses a pref dataset of 92858, although this is slightly off in practice
eps = round(trainer_states[checkpoint_name]["epoch"] * 92858)
else:
# for sft and others
eps = 0
episodes[checkpoint_name] = eps
if args.sanity_check:
args.wandb_run_id = None
first_ckpt = next(iter(generations.keys()))
generations = {first_ckpt: generations[first_ckpt]}
generations[first_ckpt].dataset = generations[first_ckpt].dataset.select(range(100))
reference.dataset = reference.dataset.select(range(100))
if args.wandb_run_id == "snow":
# remove extra / at end
normpath = os.path.normpath(args.model_name_or_path)
path_parts = normpath.split("/")
config_name = path_parts[-1]
run_id = path_parts[-2]
args.wandb_run_id = run_id + "_" + config_name
log_to_wandb = args.wandb_run_id is not None
state = PartialState()
if log_to_wandb and state.is_main_process:
wandb.init(id=args.wandb_run_id, resume="allow")
print(f"Logging to WandB {args.wandb_run_id}")
evaluate(args, reference, generations, episodes, log_to_wandb)