-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_client.py
67 lines (53 loc) · 1.91 KB
/
test_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import dill as pickle, json, requests, base64
from sklearn import datasets
from sklearn.model_selection import train_test_split
import keras
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.utils import np_utils
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils.np_utils import to_categorical
keras.backend.set_floatx('float64')
def create_dataset():
iris = datasets.load_iris()
X = iris.data
y = iris.target
y = to_categorical(y, num_classes=None)
# y[y > 0] = 12
# y[y == 0] = -12
print(X[0:2,:])
print(y[0:2,:])
return (X , y)
def create_model():
model = Sequential()
model.add(Dense(5, input_shape=(4,) , activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(3))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
def fit_model():
(X, y) = create_dataset()
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.5, test_size=0.5, random_state=1960)
clf = KerasClassifier(build_fn=create_model, epochs=12, batch_size=1, verbose=0)
clf.fit(train_X, train_y, verbose=0, batch_size=1)
# print(test_X.shape)
# preds = clf.predict(test_X[0,:].reshape(1,4))
# print(preds)
return clf
def test_ws_sql_gen(pickle_data):
WS_URL="https://sklearn2sql.herokuapp.com/model"
# WS_URL="http://localhost:1888/model"
b64_data = base64.b64encode(pickle_data).decode('utf-8')
data={"Name":"keras_iris_dense_model", "PickleData":b64_data , "SQLDialect":"postgresql"}
r = requests.post(WS_URL, json=data)
# r.raise_for_status()
content = r.json()
# print(content.keys())
# print(content)
lSQL = content["model"]["SQLGenrationResult"][0]["SQL"]
return lSQL;
clf = fit_model()
pickle_data = pickle.dumps(clf)
lSQL = test_ws_sql_gen(pickle_data)
print(lSQL)