-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathtransformer.py
212 lines (172 loc) · 9.5 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import torch.nn as nn
from copy import deepcopy
from torch import Tensor
from torch.nn.modules import Module
from typing import Optional, Tuple, Union
from . import Hopfield
class HopfieldEncoderLayer(Module):
"""
Module with underlying Hopfield association to be used as an encoder in transformer-like architectures.
"""
def __init__(self,
hopfield_association: Hopfield,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: str = r'relu'
):
"""
Initialise a new instance of a Hopfield association-based encoder module.
:param hopfield_association: instance of Hopfield association module
:param dim_feedforward: depth of the linear projections applied internally
:param activation: activation to be applied on the result of the internal linear projections
:param dropout: dropout probability to be applied internally
"""
super(HopfieldEncoderLayer, self).__init__()
self.hopfield_association = deepcopy(hopfield_association)
self.linear_residual = nn.Linear(self.hopfield_association.state_pattern_dim, dim_feedforward)
self.dropout_residual = nn.Dropout(dropout)
self.linear_output = nn.Linear(dim_feedforward, self.hopfield_association.state_pattern_dim)
self.norm_residual = nn.LayerNorm(self.hopfield_association.state_pattern_dim)
self.norm_output = nn.LayerNorm(self.hopfield_association.state_pattern_dim)
self.dropout_hopfield_association = nn.Dropout(dropout)
self.dropout_output = nn.Dropout(dropout)
self.activation_residual = getattr(torch, activation, None)
assert self.activation_residual is not None, r'invalid activation function supplied.'
self.reset_parameters()
def reset_parameters(self) -> None:
"""
Reset parameters, including Hopfield association.
:return: None
"""
for module in (self.hopfield_association, self.linear_residual,
self.linear_output, self.norm_residual, self.norm_output):
if hasattr(module, r'reset_parameters'):
module.reset_parameters()
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
"""
Apply Hopfield encoding on specified data.
:param src: data to be processed by Hopfield encoder module
:param src_mask: mask to be applied on association matrix
:param src_key_padding_mask: mask to be applied on stored patterns
:return: Hopfield-encoded input data
"""
data_associated = self.hopfield_association(
input=src, stored_pattern_padding_mask=src_key_padding_mask, association_mask=src_mask)
src = src + self.dropout_hopfield_association(input=data_associated)
src = self.norm_residual(input=src)
result_residual_inner = self.activation_residual(input=self.linear_residual(input=src))
data_associated = self.linear_output(input=self.dropout_residual(input=result_residual_inner))
src = src + self.dropout_output(input=data_associated)
return self.norm_output(input=src)
def get_association_matrix(self, input: Union[Tensor, Tuple[Tensor, Tensor, Tensor]]) -> Tensor:
"""
Fetch Hopfield association matrix gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:return: association matrix as computed by the Hopfield core module
"""
return self.hopfield_association.get_association_matrix(input=input)
@property
def batch_first(self) -> int:
return self.hopfield_association.batch_first
@property
def input_size(self) -> int:
return self.hopfield_association.input_size
@property
def output_size(self) -> int:
return self.linear_output.out_features
class HopfieldDecoderLayer(Module):
"""
Module with underlying Hopfield associations to be used as a decoder in transformer-like architectures.
"""
def __init__(self,
hopfield_association_self: Hopfield,
hopfield_association_cross: Hopfield,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: str = r'relu'
):
"""
Initialise a new instance of a Hopfield association-based encoder module.
:param hopfield_association_self: instance of Hopfield self-association module
:param hopfield_association_cross: instance of Hopfield cross-association module
:param dim_feedforward: depth of the linear projections applied internally
:param dropout: dropout probability to be applied internally
:param activation: activation to be applied on the result of the internal linear projections
"""
super(HopfieldDecoderLayer, self).__init__()
self.hopfield_association_self = deepcopy(hopfield_association_self)
self.hopfield_association_cross = deepcopy(hopfield_association_cross)
self.linear_residual = nn.Linear(self.hopfield_association_self.state_pattern_dim, dim_feedforward)
self.dropout_residual = nn.Dropout(dropout)
self.linear_output = nn.Linear(dim_feedforward, self.hopfield_association_self.state_pattern_dim)
self.norm_residual_self = nn.LayerNorm(self.hopfield_association_self.state_pattern_dim)
self.norm_residual_cross = nn.LayerNorm(self.hopfield_association_self.state_pattern_dim)
self.norm_output = nn.LayerNorm(self.hopfield_association_self.state_pattern_dim)
self.dropout_hopfield_association_self = nn.Dropout(dropout)
self.dropout_hopfield_association_cross = nn.Dropout(dropout)
self.dropout_output = nn.Dropout(dropout)
self.activation_residual = getattr(torch, activation, None)
assert self.activation_residual is not None, r'invalid activation function supplied.'
self.reset_parameters()
def reset_parameters(self) -> None:
"""
Reset parameters, including Hopfield association.
:return: None
"""
for module in (self.hopfield_association_self, self.hopfield_association_cross,
self.linear_residual, self.linear_output, self.norm_residual_self,
self.norm_residual_cross, self.norm_output):
if hasattr(module, r'reset_parameters'):
module.reset_parameters()
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
"""
Apply Hopfield decoding on specified data.
:param tgt: data to be processed by Hopfield decoder module (self-association)
:param memory: data to be processed by Hopfield encoder module (cross-association)
:param tgt_mask: mask to be applied on self-association matrix
:param memory_mask: mask to be applied on cross-association matrix
:param tgt_key_padding_mask: mask to be applied on stored patterns
:param memory_key_padding_mask: mask to be applied on state patterns as well as pattern projection
:return: Hopfield-decoded input
"""
data_associated = self.hopfield_association_self(
input=tgt, stored_pattern_padding_mask=tgt_key_padding_mask,
association_mask=tgt_mask)
tgt = tgt + self.dropout_hopfield_association_self(input=data_associated)
tgt = self.norm_residual_self(input=tgt)
data_associated = self.hopfield_association_cross(
input=(memory, tgt, memory), stored_pattern_padding_mask=memory_key_padding_mask,
association_mask=memory_mask)
tgt = tgt + self.dropout_hopfield_association_cross(input=data_associated)
tgt = self.norm_residual_cross(input=tgt)
result_residual_inner = self.activation_residual(input=self.linear_residual(input=tgt))
data_associated = self.linear_output(input=self.dropout_residual(input=result_residual_inner))
tgt = tgt + self.dropout_output(input=data_associated)
return self.norm_output(input=tgt)
def get_association_matrix_self(self, input: Union[Tensor, Tuple[Tensor, Tensor, Tensor]]) -> Tensor:
"""
Fetch Hopfield self-association matrix gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:return: association matrix as computed by the Hopfield core module
"""
return self.hopfield_association_self.get_association_matrix(input=input)
def get_association_matrix_cross(self, input: Union[Tensor, Tuple[Tensor, Tensor, Tensor]]) -> Tensor:
"""
Fetch Hopfield cross-association matrix gathered by passing through the specified data.
:param input: data to be passed through the Hopfield association
:return: association matrix as computed by the Hopfield core module
"""
return self.hopfield_association_cross.get_association_matrix(input=input)
@property
def batch_first(self) -> int:
return self.hopfield_association_self.batch_first
@property
def input_size(self) -> int:
return self.hopfield_association_self.input_size
@property
def output_size(self) -> int:
return self.linear_output_self.out_features