-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSoham_Exercise_A.m
255 lines (214 loc) · 6.77 KB
/
Soham_Exercise_A.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
%% Mapping from filenames to exercise number
clear; clc; close all;
% 'Exercise A,B' = exercise 2 on/off. Velocity = 13.4 Km/hr
% 'Exercise C,D' = exercise 3 on/off. velocity = 14.4 Km/hr
% 'Exercise E,F' = exercise 4 on/off. velocity = 15.7 Km/hr
% Exercise 2
HR2_on = importdata('Exercise A.txt');
HR2_off = importdata('Exercise B.txt');
% Exercise 3
HR3_on = importdata('Exercise C.txt');
HR3_off = importdata('Exercise D.txt');
% Exercise 4
HR4_on = importdata('Exercise E.txt');
HR4_off = importdata('Exercise F.txt');
%%% Retrieve initial heart rates for solving ODE for each exercise
HR2_on_initcond = HR2_on(1,2);
HR3_on_initcond = HR3_on(1,2);
HR4_on_initcond = HR4_on(1,2);
HR2_off_initcond = HR2_off(1,2);
HR3_off_initcond = HR3_off(1,2);
HR4_off_initcond = HR4_off(1,2);
%%% Define oxygen demand (these are taken from table 1)
D2_on = 156;
D2_off = 72;
D3_on = 166;
D3_off = 72;
D4_on = 175;
D4_off = 70; % The paper says this is non-constant. Maybe try adjusting this?
%%% Define time span for each exercise (taken from S1_dataset)
HR2on_tend = find_tend(HR2_on);
HR2off_tend = find_tend(HR2_off);
HR3on_tend = find_tend(HR3_on);
HR3off_tend = find_tend(HR3_off);
HR4on_tend = find_tend(HR4_on);
HR4off_tend = find_tend(HR4_off);
%% HR for each exercise
% Exercise 2
a = HR2_on;
b = HR2_off;
% Exercise 3
c = HR3_on;
d = HR3_off;
% Exercise 4
e = HR4_on;
f = HR4_off;
%resize matrix to remove zeros
at = a(1:962,1);
ahr = a(1:962,2);
bt = b(1:705,1);
bhr = b(1:705,2);
ct = c(1:922,1);
chr = c(1:922,2);
dt = d(1:734,1);
dhr = d(1:734,2);
et = e(1:933,1);
ehr = e(1:933,2);
ft = f(1:786,1);
fhr = f(1:786,2);
%add time from exercise time vector to recovery vector
btnew = bt + at(end,1);
dtnew = dt+ct(end,1);
ftnew = ft + et(end,1);
%append time and heart rate vectors
ex2t = [at; btnew];
ex2hr = [ahr; bhr];
ex3t = [ct; dtnew];
ex3hr = [chr; dhr];
ex4t = [et; ftnew];
ex4hr = [ehr; fhr];
%% Solve ODE for exercise 2
%%% Solve for on state
tspan = [0, HR2on_tend];
x0 = HR2_on_initcond; % CHANGE THIS VARIABLE FOR EXERCISES
D = D2_on; % CHANGE THIS VARIABLE FOR EXERCISES
[t_on,HR2on_fit] = ode23(@(t,x) odeFun(t,x,D), tspan, x0);
%%% Solve for off state
tspan = [HR2on_tend, HR2off_tend];
x0 = HR2on_fit(end); % set this equal to the final value of ON state
D = D2_off; % CHANGE THIS VARIABLE FOR EXERCISES
[t_off,HR2off_fit] = ode23(@(t,x) odeFun(t,x,D), tspan, x0);
%%% Plot ODE solution for exercise 2
figure;
% Plot ON state
%plot(t_on, HR2on_fit, 'LineWidth', 3); hold on;
% Overlay OFF state
%plot(t_off, HR2off_fit, 'LineWidth', 3);
%%% Overlay the raw data for exercise 2
%scatter(ex2t, ex2hr);
%%% plot features
xlabel('Time (s)','FontSize',14);
ylabel('Heart Rate (bpm)','FontSize',14);
title('Exercise 2 - Fitted ODE');
grid on;
xlim([t_on(1), t_off(end)]);
%% Solve ODE for exercise 3
%%% Solve for on state
tspan = [0, HR3on_tend];
x0 = HR3_on_initcond; % CHANGE THIS VARIABLE FOR EXERCISES
D = D3_on; % CHANGE THIS VARIABLE FOR EXERCISES
[t_on,HR3on_fit] = ode23(@(t,x) odeFun(t,x,D), tspan, x0);
%%% Solve for off state
tspan = [HR3on_tend, HR3off_tend];
x0 = HR3on_fit(end); % set this equal to the final value of ON state
D = D3_off; % CHANGE THIS VARIABLE FOR EXERCISES
[t_off,HR3off_fit] = ode23(@(t,x) odeFun(t,x,D), tspan, x0);
%%% Plot ODE solution for exercise 3
figure;
% Plot ON state
%plot(t_on, HR3on_fit, 'LineWidth', 3); hold on;
% Overlay OFF state
%plot(t_off, HR3off_fit, 'LineWidth', 3);
%%% Overlay the raw data for exercise 3
%scatter(ex3t, ex3hr);
%%% plot features
xlabel('Time (s)','FontSize',14);
ylabel('Heart Rate (bpm)','FontSize',14);
title('Exercise 3 - Fitted ODE');
grid on;
xlim([t_on(1), t_off(end)]);
%% Solve ODE for exercise 4
%%% Solve for on state
tspan = [0, HR4on_tend];
x0 = HR4_on_initcond; % CHANGE THIS VARIABLE FOR EXERCISES
D = D4_on; % CHANGE THIS VARIABLE FOR EXERCISES
[t_on,HR4on_fit] = ode23(@(t,x) odeFun(t,x,D), tspan, x0);
%%% Solve for off state
tspan = [HR4on_tend, HR4off_tend];
x0 = HR4on_fit(end); % set this equal to the final value of ON state
D = D4_off; % CHANGE THIS VARIABLE FOR EXERCISES
[t_off,HR4off_fit] = ode23(@(t,x) odeFun(t,x,D), tspan, x0);
%%% Plot ODE solution for exercise 4
figure;
% Plot ON state
plot(t_on, HR4on_fit, 'LineWidth', 3); hold on;
% Overlay OFF state
plot(t_off, HR4off_fit, 'LineWidth', 3);
%%% Overlay the raw data for exercise 4
%scatter(ex4t, ex4hr);
%%% plot features
legend
xlabel('Time (s)','FontSize',14);
ylabel('Heart Rate (bpm)','FontSize',14);
title('Exercise 4 - Fitted ODE');
grid on;
xlim([t_on(1), t_off(end)]);
%% Eigenvalue 2
%{
% Define constants (non-normalized)
A = 3.217e-8; % ( (beats/min)^(-3.38) ) / minute
B = 1.63; % slope for leaving/approaching HR_min (dimensionless)
C = 1.75; % slope for approaching/leaving HR_max (dimensionless)
E = 1.0; % gives plateu shape (dimensionless)
% Define HRmin and HRmax from data
HRmin = 40;
HRmax = 185;
%%% Define D(v) between min/max HR
D = linspace(HRmin, HRmax, 100);
% Define eigenvalue for HRmin < D < HRmax
Lbound = -A.*((D-HRmin).^B).*((HRmax-D)).^C;
% Plot eigenvalue
figure;
plot(D, Lbound);
xlabel('Oxygen Demand (D)');
ylabel('Eigenvalue');
title({'Eigenvalue','HRmin < D < HRmax'});
%%% Define D(v) > max HR
D = linspace(HRmax, (HRmax+10), 100);
% Define eigenvalue for D > HRmax
Lunbound = -A.*((D-HRmin).^B).*((HRmax-D)).^C;
% Define real and imaginary components
Lreal = real(Lunbound);
Limag = imag(Lunbound);
% Plot real and imaginary components of eigenvalue
figure;
scatter(Lreal, Limag, 'g*');
xlabel('Real');
ylabel('Imaginary');
title({'Eigenvalue','D > HRmax'});
% Plot eigenvalue
% figure;
% plot(D, Lunbound);
% xlabel('Oxygen Demand (D)');
% ylabel('Eigenvalue');
% title({'Eigenvalue','D > HRmax'});
%}
%% Define ODE
function [dhrdt] = odeFun(~, x, D)
% Input ~: this is a dummy variable that Matlab requires as a placeholder
% Input x: this is A array
% x(1) = heart rate (HR) (beats/minute)
% x(2) = oxygen demand (D(v,t)) (beats/minute)
% Define absolute HR min/max
HRmin = 50;
HRmax = 190;
% Define constants (non-normalized)
A = 3.217e-8; % ( (beats/min)^(-3.38) ) / minute
B = 1.63; % slope for leaving/approaching HR_min (dimensionless)
C = 1.75; % slope for approaching/leaving HR_max (dimensionless)
E = 1.0; % gives plateu shape (dimensionless)
%%% Define non-normalized ODE
% d/dt(hr) = A * [hr - HRmin]^B * [HRmax - hr]^C * [D(v,t) - hr]^E
HR = x(1);
dhrdt = A.*(( HR-HRmin ).^(B)) .* ((HRmax-x(1)).^C) .* ((D-HR).^E);
end
%% Find the last recording for each dataset
function [tend] = find_tend(recording)
% data: the raw dataset
% this will be the first zero element
[~,ind] = min(recording(:,2));
% the previous index is the final data point
ind = ind-1;
% take respective timestamp
tend = recording(ind,1);
end