-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensity_plots.qmd
203 lines (159 loc) · 3.93 KB
/
density_plots.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Density plots {#sec-density-plots}
```{r}
#| label: setup
#| message: false
#| warning: false
#| include: false
library(tidyverse)
library(lubridate)
library(scales)
library(knitr)
library(kableExtra)
library(colorblindr)
library(downlit)
# fonts ----
library(extrafont)
library(sysfonts)
source("_common.R")
# use font
showtext::showtext_auto()
# set theme
ggplot2::theme_set(theme_ggp2g(
base_size = 15))
```
```{r}
#| label: status
#| results: "asis"
#| echo: false
# status ----
# polishing, restructuring, drafting, complete
status("complete")
```
:::: {.callout-note collapse="false" icon=false}
::: {style="font-size: 1.25em; color: #02577A;"}
:::
<br>
```{r}
#| label: full_code_display
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| out-height: '60%'
#| out-width: '60%'
#| fig-align: right
library(palmerpenguins)
library(ggplot2)
penguins <- palmerpenguins::penguins
labs_density <- labs(
title = "Adult foraging penguins",
subtitle = "Distribution of flipper length",
x = "Flipper length (millimeters)")
ggp2_density <- ggplot(data = penguins,
aes(x = flipper_length_mm)) +
geom_density()
ggp2_density +
labs_density
```
::: {style="font-size: 1.10em; color: #02577A;"}
**This graph requires:**
:::
::: {style="font-size: 1.05em; color: #282b2d;"}
**`r emo::ji("check")` a numeric (continuous) variable**
:::
::::
## Description
A density plot displays data distribution using a smooth curve instead of bars. It helps compare multiple sets of data and the area under the curve represents the total probability. Instead of dividing the `x` axis into discrete ‘bins’ to create groupings for the variable's values, density plots transform the distribution according to a kernel density estimate. Legends are used to explain each curve, and different colors are used to differentiate them.
## Set up
::: {style="font-size: 1.10em; color: #1e83c8;"}
**PACKAGES:**
:::
::: {style="font-size: 0.95rem;"}
Install packages.
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: pkg_code_density
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
#| results: hide
install.packages("palmerpenguins")
library(palmerpenguins)
library(ggplot2)
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**DATA:**
:::
::: {.column-margin}
![Artwork by Allison Horst](www/lter_penguins.png){fig-align="right" width="100%" height="100%"}
:::
::: {style="font-size: 0.95rem;"}
The `penguins` data.
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: data_code_density
#| code-fold: show
#| eval: true
#| echo: true
penguins <- palmerpenguins::penguins
glimpse(penguins)
```
:::
## Grammar
::: {style="font-size: 1.10em; color: #1e83c8;"}
**CODE:**
:::
::: {style="font-size: 0.95rem;"}
Create labels with `labs()`
Initialize the graph with `ggplot()` and provide `data`
Map `flipper_length_mm` to the `x` axis
Add the `geom_density()` layer
:::
::: {style="font-size: 0.85em;"}
```{r}
#| label: code_graph_density
#| code-fold: show
#| eval: false
#| echo: true
#| warning: false
#| message: false
labs_density <- labs(
title = "Adult foraging penguins",
subtitle = "Distribution of flipper length",
x = "Flipper length (millimeters)")
ggp2_density <- ggplot(data = penguins,
aes(x = flipper_length_mm)) +
geom_density()
ggp2_density +
labs_density
```
:::
::: {style="font-size: 1.10em; color: #1e83c8;"}
**GRAPH:**
:::
```{r}
#| label: create_graph_density
#| eval: true
#| echo: false
#| warning: false
#| message: false
#| layout-nrow: 1
#| column: page-inset-right
labs_density <- labs(
title = "Adult foraging penguins",
subtitle = "Distribution of flipper length",
x = "Flipper length (millimeters)")
ggp2_density <- ggplot(data = penguins,
aes(x = flipper_length_mm)) +
geom_density()
ggp2_density +
labs_density
```
::: {style="font-size: 0.95rem;"}
A downside of using density plots is the lack of interpretability of the `y` axis.
:::