-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
40 lines (34 loc) · 1.36 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import sys
sys.path.append("./")
import torch
class EmpathicStoriesDataset(torch.utils.data.Dataset):
def __init__(self, task, data_pairs, data_stories, labels):
self.data_pairs = data_pairs
self.data_stories = data_stories
self.task = task
self.labels = labels
def __getitem__(self, idx):
if self.task == "similarity":
i = self.data_pairs.iloc[idx]
s1 = i["story_A"].replace("\n", "")
s2 = i["story_B"].replace("\n", "")
score = i["similarity_empathy_human_AGG"]
return [s1, s2, score]
elif self.task == "summary":
story = self.data_stories.iloc[idx]["story"].replace("\n", "")
event = self.data_stories.iloc[idx]["Main Event"]
emotion = self.data_stories.iloc[idx]["Emotion Description"]
moral = self.data_stories.iloc[idx]["Moral"]
combined = ""
if "EVE" in self.labels:
combined += "[EVE]" + event
if "EMO" in self.labels:
combined += "[EMO]" + emotion
if "MOR" in self.labels:
combined += "[MOR]" + moral
return story, combined
def __len__(self):
if self.task == "summary":
return len(self.stories)
else:
return len(self.story_pairs)