-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinit_folds.py
64 lines (50 loc) · 2.03 KB
/
init_folds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Initialise CV folds and save them to file(s) for reproducibility.
import os
import argparse
import numpy as np
from sklearn.model_selection import StratifiedKFold
from models.data import IHDP, JOBS, TWINS, NEWS
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str)
parser.add_argument('--dtype', type=str, choices=['ihdp', 'jobs', 'news', 'twins'])
parser.add_argument('--n_iters', type=int)
parser.add_argument('--n_folds', type=int)
parser.add_argument('-o', type=str, dest='output_path', default='./')
return parser
def get_dataset(name, path, iters):
result = None
if name == 'ihdp':
result = IHDP(path, iters)
elif name == 'jobs':
result = JOBS(path, iters)
elif name == 'twins':
result = TWINS(path, iters, static_splits=True)
elif name == 'news':
result = NEWS(path, iters, static_splits=True)
else:
raise ValueError('Unknown dataset type selected.')
return result
if __name__ == "__main__":
parser = get_parser()
options = parser.parse_args()
dataset = get_dataset(options.dtype, options.data_path, options.n_iters)
train_iters = []
valid_iters = []
for data_i in range(options.n_iters):
X, t = dataset.get_train_xt(data_i)
kf_obj = StratifiedKFold(options.n_folds)
train_folds = []
valid_folds = []
for train_idx, valid_idx in kf_obj.split(X, t):
train_folds.append(train_idx)
valid_folds.append(valid_idx)
train_iters.append(np.array(train_folds, dtype=object))
valid_iters.append(np.array(valid_folds, dtype=object))
train_arr = np.array(train_iters, dtype=object)
valid_arr = np.array(valid_iters, dtype=object)
# Save iters to files
# Structure:
# (n_iters, n_folds, train_fold_size)
# (n_iters, n_folds, valid_fold_size)
np.savez(os.path.join(options.output_path, f'{options.dtype}_splits_{options.n_iters}iters_{options.n_folds}folds'), train=train_arr, valid=valid_arr)