-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMachineLearning.cpp
75 lines (75 loc) · 3.54 KB
/
MachineLearning.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "MachineLearning.hpp"
#include <thread>
void MachineLearning::addTrainingData(ImageReader* input){
size_t previousSize = featureExtractor.getFeatureTrainingSet().size();
size_t inputNImages = input->getImages().size();
featureExtractor.getFeatureTrainingSet().resize(previousSize + inputNImages);
featureExtractor.getLabelTrainingSet().resize(previousSize + inputNImages);
vector<thread> workerThreads;
int first, last;
int nImagesForAThread = input->getImages().size()/NTHREADS;
for (int i=0; i < NTHREADS; ++i){
first = nImagesForAThread * i;
if (i < NTHREADS-1) last = first + nImagesForAThread - 1;
else last = inputNImages - 1;
workerThreads.push_back(thread(&FeatureExtractor::createFeatureTrainingSet, &featureExtractor, input, true, first, last, previousSize));
}
for (int i=0; i < NTHREADS; ++i){
workerThreads[i].join();
}
}
void MachineLearning::addTestingData(ImageReader* input){
size_t previousSize = featureExtractor.getFeatureTestingSet().size();
size_t inputNImages = input->getImages().size();
featureExtractor.getFeatureTestingSet().resize(previousSize + inputNImages);
featureExtractor.getLabelTestingSet().resize(previousSize + inputNImages);
vector<thread> workerThreads;
int first, last;
int nImagesForAThread = input->getImages().size()/NTHREADS;
for (int i=0; i < NTHREADS; ++i){
first = nImagesForAThread * i;
if (i < NTHREADS-1) last = first + nImagesForAThread - 1;
else last = inputNImages - 1;
workerThreads.push_back(thread(&FeatureExtractor::createFeatureTrainingSet, &featureExtractor, input, false, first, last, previousSize));
}
for (int i=0; i < NTHREADS; ++i){
workerThreads[i].join();
}
}
void MachineLearning::recognise(){
vector<vector<int>> trainingFeatures = featureExtractor.getFeatureTrainingSet();
vector<int> trainingLabels = featureExtractor.getLabelTrainingSet();
vector<vector<int>> testingFeature = featureExtractor.getFeatureTestingSet();
int nColsTraining = trainingFeatures.size();
int nRows = trainingFeatures[0].size();
int nColsTesting = testingFeature.size();
arma::mat featureTrainingSet(nRows, nColsTraining);
arma::mat featureTestingSet(nRows, nColsTesting);
std::cout << "Converting vectors to Armadillo matrices" << std::endl;
for (int i=0; i < nRows; ++i){
for (int j=0; j < nColsTraining; ++j)
featureTrainingSet(i, j) = trainingFeatures[j][i];
for (int j=0; j < nColsTesting; ++j)
featureTestingSet(i, j) = testingFeature[j][i];
}
NeighborSearch<NearestNeighborSort, metric::EuclideanDistance> a(featureTrainingSet);
// The matrices we will store output in.
arma::Mat<size_t> resultingNeighbors;
arma::mat resultingDistances;
std::cout << "Searching neighbours" << std::endl;
a.Search(featureTestingSet, 1, resultingNeighbors, resultingDistances);
std::cout << "Finish searching, putting results in place" << std::endl;
for (unsigned int i=0; i < resultingNeighbors.n_cols; ++i){
results.push_back(trainingLabels[resultingNeighbors(0,i)]);
}
std::cout << "Recognition done. Returning..." << std::endl;
}
void MachineLearning::selfValidate(){
vector<int> referenceResults = featureExtractor.getLabelTestingSet();
int nTests = referenceResults.size();
int nCorrect = 0;
for(int i=0; i < nTests; ++i){
if (results[i] == referenceResults[i]) ++nCorrect;
}
cout << "Accuracy:" << (double)nCorrect/nTests * 100 <<"%" << endl;
}