forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_training_dict.py
188 lines (170 loc) · 7.6 KB
/
unet_training_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
from glob import glob
import nibabel as nib
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import monai
from monai.data import create_test_image_3d, list_data_collate, decollate_batch
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
EnsureChannelFirstd,
AsDiscrete,
Compose,
LoadImaged,
RandCropByPosNegLabeld,
RandRotate90d,
ScaleIntensityd,
)
from monai.visualize import plot_2d_or_3d_image
def main(tempdir):
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# create a temporary directory and 40 random image, mask pairs
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(40):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))
images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
train_files = [{"img": img, "seg": seg} for img, seg in zip(images[:20], segs[:20])]
val_files = [{"img": img, "seg": seg} for img, seg in zip(images[-20:], segs[-20:])]
# define transforms for image and segmentation
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
),
RandRotate90d(keys=["img", "seg"], prob=0.5, spatial_axes=[0, 2]),
]
)
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
]
)
# define dataset, data loader
check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
check_loader = DataLoader(check_ds, batch_size=2, num_workers=4, collate_fn=list_data_collate)
check_data = monai.utils.misc.first(check_loader)
print(check_data["img"].shape, check_data["seg"].shape)
# create a training data loader
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(
train_ds,
batch_size=2,
shuffle=True,
num_workers=4,
collate_fn=list_data_collate,
pin_memory=torch.cuda.is_available(),
)
# create a validation data loader
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = monai.networks.nets.UNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
loss_function = monai.losses.DiceLoss(sigmoid=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-3)
# start a typical PyTorch training
val_interval = 2
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter()
for epoch in range(5):
print("-" * 10)
print(f"epoch {epoch + 1}/{5}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, labels = batch_data["img"].to(device), batch_data["seg"].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = len(train_ds) // train_loader.batch_size
print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
val_images = None
val_labels = None
val_outputs = None
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device)
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
# compute metric for current iteration
dice_metric(y_pred=val_outputs, y=val_labels)
# aggregate the final mean dice result
metric = dice_metric.aggregate().item()
# reset the status for next validation round
dice_metric.reset()
metric_values.append(metric)
if metric > best_metric:
best_metric = metric
best_metric_epoch = epoch + 1
torch.save(model.state_dict(), "best_metric_model_segmentation3d_dict.pth")
print("saved new best metric model")
print(
"current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
epoch + 1, metric, best_metric, best_metric_epoch
)
)
writer.add_scalar("val_mean_dice", metric, epoch + 1)
# plot the last model output as GIF image in TensorBoard with the corresponding image and label
plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag="image")
plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=0, tag="label")
plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag="output")
print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close()
if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)