forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet_training_array.py
146 lines (121 loc) · 6.63 KB
/
densenet_training_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import numpy as np
import torch
from ignite.engine import Events, create_supervised_evaluator, create_supervised_trainer
from ignite.handlers import EarlyStopping, ModelCheckpoint
from ignite.metrics import Accuracy
import monai
from monai.data import ImageDataset, decollate_batch, DataLoader
from monai.handlers import StatsHandler, TensorBoardStatsHandler, stopping_fn_from_metric
from monai.transforms import EnsureChannelFirst, Compose, RandRotate90, Resize, ScaleIntensity
def main():
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
# the path of ixi IXI-T1 dataset
data_path = os.sep.join([".", "workspace", "data", "medical", "ixi", "IXI-T1"])
images = [
"IXI314-IOP-0889-T1.nii.gz",
"IXI249-Guys-1072-T1.nii.gz",
"IXI609-HH-2600-T1.nii.gz",
"IXI173-HH-1590-T1.nii.gz",
"IXI020-Guys-0700-T1.nii.gz",
"IXI342-Guys-0909-T1.nii.gz",
"IXI134-Guys-0780-T1.nii.gz",
"IXI577-HH-2661-T1.nii.gz",
"IXI066-Guys-0731-T1.nii.gz",
"IXI130-HH-1528-T1.nii.gz",
"IXI607-Guys-1097-T1.nii.gz",
"IXI175-HH-1570-T1.nii.gz",
"IXI385-HH-2078-T1.nii.gz",
"IXI344-Guys-0905-T1.nii.gz",
"IXI409-Guys-0960-T1.nii.gz",
"IXI584-Guys-1129-T1.nii.gz",
"IXI253-HH-1694-T1.nii.gz",
"IXI092-HH-1436-T1.nii.gz",
"IXI574-IOP-1156-T1.nii.gz",
"IXI585-Guys-1130-T1.nii.gz",
]
images = [os.sep.join([data_path, f]) for f in images]
# 2 binary labels for gender classification: man and woman
labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)
# define transforms
train_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96)), RandRotate90()])
val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96))])
# define image dataset, data loader
check_ds = ImageDataset(image_files=images, labels=labels, transform=train_transforms)
check_loader = DataLoader(check_ds, batch_size=2, num_workers=2, pin_memory=torch.cuda.is_available())
im, label = monai.utils.misc.first(check_loader)
print(type(im), im.shape, label)
# create DenseNet121, CrossEntropyLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = monai.networks.nets.DenseNet121(spatial_dims=3, in_channels=1, out_channels=2).to(device)
loss = torch.nn.CrossEntropyLoss()
lr = 1e-5
opt = torch.optim.Adam(net.parameters(), lr)
# Ignite trainer expects batch=(img, label) and returns output=loss at every iteration,
# user can add output_transform to return other values, like: y_pred, y, etc.
trainer = create_supervised_trainer(net, opt, loss, device, False)
# adding checkpoint handler to save models (network params and optimizer stats) during training
checkpoint_handler = ModelCheckpoint("./runs_array/", "net", n_saved=10, require_empty=False)
trainer.add_event_handler(
event_name=Events.EPOCH_COMPLETED, handler=checkpoint_handler, to_save={"net": net, "opt": opt}
)
# StatsHandler prints loss at every iteration and print metrics at every epoch,
# we don't set metrics for trainer here, so just print loss, user can also customize print functions
# and can use output_transform to convert engine.state.output if it's not loss value
train_stats_handler = StatsHandler(name="trainer", output_transform=lambda x: x)
train_stats_handler.attach(trainer)
# TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
train_tensorboard_stats_handler = TensorBoardStatsHandler(output_transform=lambda x: x)
train_tensorboard_stats_handler.attach(trainer)
# set parameters for validation
validation_every_n_epochs = 1
metric_name = "Accuracy"
# add evaluation metric to the evaluator engine
val_metrics = {metric_name: Accuracy()}
# Ignite evaluator expects batch=(img, label) and returns output=(y_pred, y) at every iteration,
# user can add output_transform to return other values
evaluator = create_supervised_evaluator(net, val_metrics, device, True)
# add stats event handler to print validation stats via evaluator
val_stats_handler = StatsHandler(
name="evaluator",
output_transform=lambda x: None, # no need to print loss value, so disable per iteration output
global_epoch_transform=lambda x: trainer.state.epoch,
) # fetch global epoch number from trainer
val_stats_handler.attach(evaluator)
# add handler to record metrics to TensorBoard at every epoch
val_tensorboard_stats_handler = TensorBoardStatsHandler(
output_transform=lambda x: None, # no need to plot loss value, so disable per iteration output
global_epoch_transform=lambda x: trainer.state.epoch,
) # fetch global epoch number from trainer
val_tensorboard_stats_handler.attach(evaluator)
# add early stopping handler to evaluator
early_stopper = EarlyStopping(patience=4, score_function=stopping_fn_from_metric(metric_name), trainer=trainer)
evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=early_stopper)
# create a validation data loader
val_ds = ImageDataset(image_files=images[-10:], labels=labels[-10:], transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=2, num_workers=2, pin_memory=torch.cuda.is_available())
@trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
def run_validation(engine):
evaluator.run(val_loader)
# create a training data loader
train_ds = ImageDataset(image_files=images[:10], labels=labels[:10], transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())
train_epochs = 30
state = trainer.run(train_loader, train_epochs)
print(state)
if __name__ == "__main__":
main()