This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 170
/
Copy pathmain.py
82 lines (60 loc) · 3.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import click
from src.pipeline_manager import PipelineManager
pipeline_manager = PipelineManager()
@click.group()
def main():
pass
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def train(pipeline_name, dev_mode):
pipeline_manager.train(pipeline_name, dev_mode)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def evaluate(pipeline_name, dev_mode):
pipeline_manager.evaluate(pipeline_name, dev_mode)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
def predict(pipeline_name, dev_mode, submit_predictions):
pipeline_manager.predict(pipeline_name, dev_mode, submit_predictions)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def train_evaluate_predict(pipeline_name, submit_predictions, dev_mode):
pipeline_manager.train(pipeline_name, dev_mode)
pipeline_manager.evaluate(pipeline_name, dev_mode)
pipeline_manager.predict(pipeline_name, dev_mode, submit_predictions)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def train_evaluate(pipeline_name, dev_mode):
pipeline_manager.train(pipeline_name, dev_mode)
pipeline_manager.evaluate(pipeline_name, dev_mode)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def evaluate_predict(pipeline_name, submit_predictions, dev_mode):
pipeline_manager.evaluate(pipeline_name, dev_mode)
pipeline_manager.predict(pipeline_name, dev_mode, submit_predictions)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-l', '--model_level', help='level of modeling first or second are available', default='first',
required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def train_evaluate_cv(pipeline_name, model_level, dev_mode):
pipeline_manager.train_evaluate_cv(pipeline_name, model_level, dev_mode)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-l', '--model_level', help='level of modeling first or second are available', default='first',
required=True)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def train_evaluate_predict_cv(pipeline_name, model_level, dev_mode, submit_predictions):
pipeline_manager.train_evaluate_predict_cv(pipeline_name, model_level, dev_mode, submit_predictions)
if __name__ == "__main__":
main()