diff --git a/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip b/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip index e89eb6b5..2f0b0468 100644 Binary files a/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip and b/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip differ diff --git a/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip b/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip index 6791dcb6..dfeb28a6 100644 Binary files a/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip and b/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip differ diff --git a/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip b/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip index e73a442f..e323720f 100644 Binary files a/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip and b/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip differ diff --git a/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip b/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip index 3620a40f..21281067 100644 Binary files a/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip and b/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip differ diff --git a/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip b/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip index 766d1e96..3b3d491e 100644 Binary files a/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip and b/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip differ diff --git a/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip b/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip index 39eedd96..3c443964 100644 Binary files a/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip and b/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip differ diff --git a/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip b/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip index 3a885133..c34f282e 100644 Binary files a/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip and b/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip differ diff --git a/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip b/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip index bfba33bb..1d2a71cb 100644 Binary files a/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip and b/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip differ diff --git a/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip b/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip index 000d68a6..383fc621 100644 Binary files a/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip and b/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip differ diff --git a/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip b/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip index 4e87c77e..03f79d98 100644 Binary files a/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip and b/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip differ diff --git a/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip b/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip index 8cb17929..6619a0b9 100644 Binary files a/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip and b/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip differ diff --git a/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip b/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip index fccba4fd..f9e35e13 100644 Binary files a/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip and b/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip differ diff --git a/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip b/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip index 031ff9aa..ecf23d9c 100644 Binary files a/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip and b/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip differ diff --git a/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip b/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip index f8dbd137..e4024830 100644 Binary files a/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip and b/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip differ diff --git a/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip b/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip index 9bc7f018..06acbae5 100644 Binary files a/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip and b/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip differ diff --git a/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip b/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip index 5737f8b8..5fb2d89d 100644 Binary files a/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip and b/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip differ diff --git a/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip b/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip index 0b40749e..003ad250 100644 Binary files a/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip and b/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip differ diff --git a/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip b/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip index dabfe51b..4b946739 100644 Binary files a/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip and b/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip differ diff --git a/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip b/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip index db800385..28a1befb 100644 Binary files a/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip and b/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip differ diff --git a/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip b/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip index d6a1853a..1f2b950e 100644 Binary files a/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip and b/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip differ diff --git a/_images/mrinufft_learn_2d_sampling_pattern.gif b/_images/mrinufft_learn_2d_sampling_pattern.gif index 498781e4..e7e017ea 100644 Binary files a/_images/mrinufft_learn_2d_sampling_pattern.gif and b/_images/mrinufft_learn_2d_sampling_pattern.gif differ diff --git a/_images/mrinufft_learn_traj.gif b/_images/mrinufft_learn_traj.gif index 4f208c75..f41ccdcb 100644 Binary files a/_images/mrinufft_learn_traj.gif and b/_images/mrinufft_learn_traj.gif differ diff --git a/_images/mrinufft_learn_traj_mc.gif b/_images/mrinufft_learn_traj_mc.gif index 3d18b07a..702e195e 100644 Binary files a/_images/mrinufft_learn_traj_mc.gif and b/_images/mrinufft_learn_traj_mc.gif differ diff --git a/_images/mrinufft_learn_unet.gif b/_images/mrinufft_learn_unet.gif index 31462d7b..05854f06 100644 Binary files a/_images/mrinufft_learn_unet.gif and b/_images/mrinufft_learn_unet.gif differ diff --git a/_images/sphx_glr_example_3D_trajectories_019.png b/_images/sphx_glr_example_3D_trajectories_019.png index dd873c85..9172f641 100644 Binary files a/_images/sphx_glr_example_3D_trajectories_019.png and b/_images/sphx_glr_example_3D_trajectories_019.png differ diff --git a/_images/sphx_glr_example_3D_trajectories_020.png b/_images/sphx_glr_example_3D_trajectories_020.png index 675847d8..f9e59d9d 100644 Binary files a/_images/sphx_glr_example_3D_trajectories_020.png and b/_images/sphx_glr_example_3D_trajectories_020.png differ diff --git a/_images/sphx_glr_example_cg_001.png b/_images/sphx_glr_example_cg_001.png index 63658689..b4aaed82 100644 Binary files a/_images/sphx_glr_example_cg_001.png and b/_images/sphx_glr_example_cg_001.png differ diff --git a/_images/sphx_glr_example_cg_thumb.png b/_images/sphx_glr_example_cg_thumb.png index 8af58009..c16644c5 100644 Binary files a/_images/sphx_glr_example_cg_thumb.png and b/_images/sphx_glr_example_cg_thumb.png differ diff --git a/_images/sphx_glr_example_density_005.png b/_images/sphx_glr_example_density_005.png index 2019e532..7053968d 100644 Binary files a/_images/sphx_glr_example_density_005.png and b/_images/sphx_glr_example_density_005.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_001.png b/_images/sphx_glr_example_fastMRI_UNet_001.png index d49e0dfe..bd417757 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_001.png and b/_images/sphx_glr_example_fastMRI_UNet_001.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_002.png b/_images/sphx_glr_example_fastMRI_UNet_002.png index 8c0a4072..180d17c1 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_002.png and b/_images/sphx_glr_example_fastMRI_UNet_002.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_thumb.gif b/_images/sphx_glr_example_fastMRI_UNet_thumb.gif index 31462d7b..05854f06 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_thumb.gif and b/_images/sphx_glr_example_fastMRI_UNet_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_samples_001.png b/_images/sphx_glr_example_learn_samples_001.png index 0510200e..13480342 100644 Binary files a/_images/sphx_glr_example_learn_samples_001.png and b/_images/sphx_glr_example_learn_samples_001.png differ diff --git a/_images/sphx_glr_example_learn_samples_002.png b/_images/sphx_glr_example_learn_samples_002.png index da8bf1a4..60682861 100644 Binary files a/_images/sphx_glr_example_learn_samples_002.png and b/_images/sphx_glr_example_learn_samples_002.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_001.png b/_images/sphx_glr_example_learn_samples_multicoil_001.png index c591fc04..936cae2e 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_001.png and b/_images/sphx_glr_example_learn_samples_multicoil_001.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_003.png b/_images/sphx_glr_example_learn_samples_multicoil_003.png index 3ccfd3da..be88c3a7 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_003.png and b/_images/sphx_glr_example_learn_samples_multicoil_003.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif b/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif index 3d18b07a..702e195e 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif and b/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_samples_thumb.gif b/_images/sphx_glr_example_learn_samples_thumb.gif index 4f208c75..f41ccdcb 100644 Binary files a/_images/sphx_glr_example_learn_samples_thumb.gif and b/_images/sphx_glr_example_learn_samples_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_001.png b/_images/sphx_glr_example_learn_straight_line_readouts_001.png index 94da96b4..4cb9cbe7 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_001.png and b/_images/sphx_glr_example_learn_straight_line_readouts_001.png differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_002.png b/_images/sphx_glr_example_learn_straight_line_readouts_002.png index cba324ac..a15653b8 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_002.png and b/_images/sphx_glr_example_learn_straight_line_readouts_002.png differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif b/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif index 498781e4..e7e017ea 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif and b/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif differ diff --git a/_images/sphx_glr_example_sampling_densities_012.png b/_images/sphx_glr_example_sampling_densities_012.png index 5a34dc43..84bc761a 100644 Binary files a/_images/sphx_glr_example_sampling_densities_012.png and b/_images/sphx_glr_example_sampling_densities_012.png differ diff --git a/_images/sphx_glr_example_sampling_densities_013.png b/_images/sphx_glr_example_sampling_densities_013.png index ab6c783e..0dcc1094 100644 Binary files a/_images/sphx_glr_example_sampling_densities_013.png and b/_images/sphx_glr_example_sampling_densities_013.png differ diff --git a/_images/sphx_glr_example_sampling_densities_014.png b/_images/sphx_glr_example_sampling_densities_014.png index 96d5cc68..e83237e1 100644 Binary files a/_images/sphx_glr_example_sampling_densities_014.png and b/_images/sphx_glr_example_sampling_densities_014.png differ diff --git a/_images/sphx_glr_example_sampling_densities_015.png b/_images/sphx_glr_example_sampling_densities_015.png index 57d5d549..f16eb481 100644 Binary files a/_images/sphx_glr_example_sampling_densities_015.png and b/_images/sphx_glr_example_sampling_densities_015.png differ diff --git a/_images/sphx_glr_example_sampling_densities_016.png b/_images/sphx_glr_example_sampling_densities_016.png index 4c9f6d55..62e39fce 100644 Binary files a/_images/sphx_glr_example_sampling_densities_016.png and b/_images/sphx_glr_example_sampling_densities_016.png differ diff --git a/_images/sphx_glr_example_sampling_densities_017.png b/_images/sphx_glr_example_sampling_densities_017.png index 66999075..d3185513 100644 Binary files a/_images/sphx_glr_example_sampling_densities_017.png and b/_images/sphx_glr_example_sampling_densities_017.png differ diff --git a/_images/sphx_glr_example_sampling_densities_018.png b/_images/sphx_glr_example_sampling_densities_018.png index 3f5f561e..cb623e17 100644 Binary files a/_images/sphx_glr_example_sampling_densities_018.png and b/_images/sphx_glr_example_sampling_densities_018.png differ diff --git a/_images/sphx_glr_example_sampling_densities_019.png b/_images/sphx_glr_example_sampling_densities_019.png index 60d76ab8..07728652 100644 Binary files a/_images/sphx_glr_example_sampling_densities_019.png and b/_images/sphx_glr_example_sampling_densities_019.png differ diff --git a/_images/sphx_glr_example_sampling_densities_020.png b/_images/sphx_glr_example_sampling_densities_020.png index c60dfc44..13a1b058 100644 Binary files a/_images/sphx_glr_example_sampling_densities_020.png and b/_images/sphx_glr_example_sampling_densities_020.png differ diff --git a/_modules/mrinufft/operators/base.html b/_modules/mrinufft/operators/base.html index 4dfc94e3..cbb0d785 100644 --- a/_modules/mrinufft/operators/base.html +++ b/_modules/mrinufft/operators/base.html @@ -678,8 +678,9 @@

Source code for mrinufft.operators.base

 
 from abc import ABC, abstractmethod
 from functools import partial
-
+from typing import ClassVar, Callable
 import numpy as np
+from numpy.typing import NDArray
 
 from mrinufft._array_compat import with_numpy, with_numpy_cupy, AUTOGRAD_AVAILABLE
 from mrinufft._utils import auto_cast, power_method
@@ -687,10 +688,6 @@ 

Source code for mrinufft.operators.base

 from mrinufft.extras import get_smaps
 from mrinufft.operators.interfaces.utils import is_cuda_array, is_host_array
 
-if AUTOGRAD_AVAILABLE:
-    from mrinufft.operators.autodiff import MRINufftAutoGrad
-
-
 # Mapping between numpy float and complex types.
 DTYPE_R2C = {"float32": "complex64", "float64": "complex128"}
 
@@ -801,6 +798,9 @@ 

Source code for mrinufft.operators.base

     _grad_wrt_data = False
     _grad_wrt_traj = False
 
+    backend: ClassVar[str]
+    available: ClassVar[bool]
+
     def __init__(self):
         if not self.available:
             raise RuntimeError(f"'{self.backend}' backend is not available.")
@@ -897,27 +897,27 @@ 

Source code for mrinufft.operators.base

 
 
[docs] - def data_consistency(self, image, obs_data): + def data_consistency(self, image_data, obs_data): """Compute the gradient data consistency. This is the naive implementation using adj_op(op(x)-y). Specific backend can (and should!) implement a more efficient version. """ - return self.adj_op(self.op(image) - obs_data)
+ return self.adj_op(self.op(image_data) - obs_data)
[docs] def with_off_resonance_correction(self, B, C, indices): """Return a new operator with Off Resonnance Correction.""" - from ..off_resonance import MRIFourierCorrected + from .off_resonance import MRIFourierCorrected return MRIFourierCorrected(self, B, C, indices)
[docs] - def compute_smaps(self, method=None): + def compute_smaps(self, method: NDArray | Callable | str | dict | None = None): """Compute the sensitivity maps and set it. Parameters @@ -985,6 +985,8 @@

Source code for mrinufft.operators.base

         if not self.autograd_available:
             raise ValueError("Backend does not support auto-differentiation.")
 
+        from mrinufft.operators.autodiff import MRINufftAutoGrad
+
         return MRINufftAutoGrad(self, wrt_data=wrt_data, wrt_traj=wrt_traj)
@@ -1107,9 +1109,9 @@

Source code for mrinufft.operators.base

         return self._smaps
 
     @smaps.setter
-    def smaps(self, smaps):
-        self._check_smaps_shape(smaps)
-        self._smaps = smaps
+    def smaps(self, new_smaps):
+        self._check_smaps_shape(new_smaps)
+        self._smaps = new_smaps
 
 
[docs] @@ -1130,13 +1132,13 @@

Source code for mrinufft.operators.base

         return self._density
 
     @density.setter
-    def density(self, density):
-        if density is None:
+    def density(self, new_density):
+        if new_density is None:
             self._density = None
-        elif len(density) != self.n_samples:
+        elif len(new_density) != self.n_samples:
             raise ValueError("Density and samples should have the same length")
         else:
-            self._density = density
+            self._density = new_density
 
     @property
     def dtype(self):
@@ -1144,8 +1146,8 @@ 

Source code for mrinufft.operators.base

         return self._dtype
 
     @dtype.setter
-    def dtype(self, dtype):
-        self._dtype = np.dtype(dtype)
+    def dtype(self, new_dtype):
+        self._dtype = np.dtype(new_dtype)
 
     @property
     def cpx_dtype(self):
@@ -1158,8 +1160,8 @@ 

Source code for mrinufft.operators.base

         return self._samples
 
     @samples.setter
-    def samples(self, samples):
-        self._samples = samples
+    def samples(self, new_samples):
+        self._samples = new_samples
 
     @property
     def n_samples(self):
diff --git a/_modules/mrinufft/operators/interfaces/cufinufft.html b/_modules/mrinufft/operators/interfaces/cufinufft.html
index 4ff3f723..fc6df76b 100644
--- a/_modules/mrinufft/operators/interfaces/cufinufft.html
+++ b/_modules/mrinufft/operators/interfaces/cufinufft.html
@@ -694,7 +694,6 @@ 

Source code for mrinufft.operators.interfaces.cufinufft

except ImportError: CUFINUFFT_AVAILABLE = False - OPTS_FIELD_DECODE = { "gpu_method": {1: "nonuniform pts driven", 2: "shared memory"}, "gpu_sort": {0: "no sort (GM)", 1: "sort (GM-sort)"}, @@ -951,10 +950,12 @@

Source code for mrinufft.operators.interfaces.cufinufft

self._smaps = new_smaps @FourierOperatorBase.samples.setter - def samples(self, samples): + def samples(self, new_samples): """Update the plans when changing the samples.""" self._samples = np.asfortranarray( - proper_trajectory(samples, normalize="pi").astype(np.float32, copy=False) + proper_trajectory(new_samples, normalize="pi").astype( + np.float32, copy=False + ) ) for typ in [1, 2, "grad"]: if typ == "grad" and not self._grad_wrt_traj: diff --git a/_modules/mrinufft/operators/interfaces/gpunufft.html b/_modules/mrinufft/operators/interfaces/gpunufft.html index 5e4e735f..00c1e381 100644 --- a/_modules/mrinufft/operators/interfaces/gpunufft.html +++ b/_modules/mrinufft/operators/interfaces/gpunufft.html @@ -1238,7 +1238,7 @@

Source code for mrinufft.operators.interfaces.gpunufft

self.raw_op.set_smaps(smaps=new_smaps) @FourierOperatorBase.samples.setter - def samples(self, samples): + def samples(self, new_samples): """Set the samples for the Fourier Operator. Parameters @@ -1247,7 +1247,7 @@

Source code for mrinufft.operators.interfaces.gpunufft

The samples for the Fourier Operator. """ self._samples = proper_trajectory( - samples.astype(np.float32, copy=False), normalize="unit" + new_samples.astype(np.float32, copy=False), normalize="unit" ) # TODO: gpuNUFFT needs to sort the points twice in this case. # It could help to have access to directly dorted arrays from gpuNUFFT. @@ -1258,7 +1258,7 @@

Source code for mrinufft.operators.interfaces.gpunufft

) @FourierOperatorBase.density.setter - def density(self, density): + def density(self, new_density): """Set the density for the Fourier Operator. Parameters @@ -1266,11 +1266,11 @@

Source code for mrinufft.operators.interfaces.gpunufft

density: np.ndarray The density for the Fourier Operator. """ - self._density = density + self._density = new_density if hasattr(self, "raw_op"): # edge case for init self.raw_op.set_pts( self._samples, - density=density, + density=new_density, )
diff --git a/_modules/mrinufft/operators/interfaces/tfnufft.html b/_modules/mrinufft/operators/interfaces/tfnufft.html index 1aabb57d..a7d69b42 100644 --- a/_modules/mrinufft/operators/interfaces/tfnufft.html +++ b/_modules/mrinufft/operators/interfaces/tfnufft.html @@ -812,7 +812,7 @@

Source code for mrinufft.operators.interfaces.tfnufft

[docs] @with_tensorflow - def data_consistency(self, data, obs_data): + def data_consistency(self, image_data, obs_data): """Compute the data consistency. Parameters @@ -827,7 +827,7 @@

Source code for mrinufft.operators.interfaces.tfnufft

Tensor The data consistency error in image space. """ - return self.adj_op(self.op(data) - obs_data)
+ return self.adj_op(self.op(image_data) - obs_data)
diff --git a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst index 4bd8cc13..97001463 100644 --- a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst +++ b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst @@ -50,5 +50,7 @@ FourierOperatorBase ~FourierOperatorBase.smaps ~FourierOperatorBase.uses_density ~FourierOperatorBase.uses_sense + ~FourierOperatorBase.backend + ~FourierOperatorBase.available \ No newline at end of file diff --git a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst index b8f74657..0421de63 100644 --- a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst +++ b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst @@ -50,5 +50,7 @@ FourierOperatorCPU ~FourierOperatorCPU.smaps ~FourierOperatorCPU.uses_density ~FourierOperatorCPU.uses_sense + ~FourierOperatorCPU.backend + ~FourierOperatorCPU.available \ No newline at end of file diff --git a/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst b/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst index a2e4cc7c..c2d84635 100644 --- a/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst +++ b/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst @@ -52,5 +52,6 @@ MRITorchKbNufft ~MRITorchKbNufft.smaps ~MRITorchKbNufft.uses_density ~MRITorchKbNufft.uses_sense + ~MRITorchKbNufft.backend \ No newline at end of file diff --git a/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst b/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst index f8e80ded..4a592a1d 100644 --- a/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst +++ b/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst @@ -51,5 +51,7 @@ MRIFourierCorrected ~MRIFourierCorrected.smaps ~MRIFourierCorrected.uses_density ~MRIFourierCorrected.uses_sense + ~MRIFourierCorrected.backend + ~MRIFourierCorrected.available \ No newline at end of file diff --git a/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst b/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst index 6e17d391..15fabece 100644 --- a/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst +++ b/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst @@ -50,5 +50,7 @@ MRISubspace ~MRISubspace.smaps ~MRISubspace.uses_density ~MRISubspace.uses_sense + ~MRISubspace.backend + ~MRISubspace.available \ No newline at end of file diff --git a/_sources/generated/autoexamples/GPU/example_cg.rst b/_sources/generated/autoexamples/GPU/example_cg.rst index bbf5f3fe..35205a11 100644 --- a/_sources/generated/autoexamples/GPU/example_cg.rst +++ b/_sources/generated/autoexamples/GPU/example_cg.rst @@ -170,7 +170,7 @@ Display the results .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 1.149 seconds) + **Total running time of the script:** (0 minutes 1.494 seconds) .. _sphx_glr_download_generated_autoexamples_GPU_example_cg.py: diff --git a/_sources/generated/autoexamples/GPU/example_density.rst b/_sources/generated/autoexamples/GPU/example_density.rst index 0e30ac02..0f62f386 100644 --- a/_sources/generated/autoexamples/GPU/example_density.rst +++ b/_sources/generated/autoexamples/GPU/example_density.rst @@ -103,7 +103,7 @@ Create sample data /volatile/github-ci-mind-inria/gpu_runner2/_work/_tool/Python/3.10.16/x64/lib/python3.10/site-packages/finufft/_interfaces.py:329: UserWarning: Argument `data` does not satisfy the following requirement: C. Copying array (this may reduce performance) warnings.warn(f"Argument `{name}` does not satisfy the following requirement: {prop}. Copying array (this may reduce performance)") - + @@ -331,7 +331,7 @@ Pipe's method is an iterative scheme, that use the interpolation and spreading k .. code-block:: none - [0.00881 0.04010868 0.08096503 ... 3.2314696 2.6597955 3.4447331 ] + [0.00884288 0.04072602 0.08075811 ... 3.229551 2.6582165 3.442688 ] @@ -339,7 +339,7 @@ Pipe's method is an iterative scheme, that use the interpolation and spreading k .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 4.500 seconds) + **Total running time of the script:** (0 minutes 5.638 seconds) .. _sphx_glr_download_generated_autoexamples_GPU_example_density.py: diff --git a/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst b/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst index 7d277359..2a9fc85b 100644 --- a/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst +++ b/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst @@ -456,9 +456,9 @@ Start training loop .. code-block:: none - 0%| | 0/100 [00:00coverage: 81.81%coverage81.81% \ No newline at end of file +coverage: 81.83%coverage81.83% \ No newline at end of file diff --git a/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html b/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html index 11786e39..987502fe 100644 --- a/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html +++ b/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html @@ -860,6 +860,12 @@

FourierOperatorBase

uses_sense

Return True if the operator uses sensitivity maps.

+

backend

+

+ +

available

+

+

@@ -918,7 +924,7 @@

FourierOperatorBase
-data_consistency(image, obs_data)[source]#
+data_consistency(image_data, obs_data)[source]#

Compute the gradient data consistency.

This is the naive implementation using adj_op(op(x)-y). Specific backend can (and should!) implement a more efficient version.

diff --git a/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html b/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html index 85b369ab..56b7044c 100644 --- a/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html +++ b/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html @@ -854,6 +854,12 @@

FourierOperatorCPU

uses_sense

Return True if the operator uses sensitivity maps.

+

backend

+

+ +

available

+

+

diff --git a/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html b/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html index 8fd60334..d4d32fa4 100644 --- a/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html +++ b/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html @@ -908,7 +908,7 @@

MRITensorflowNUFFT
-data_consistency(data, obs_data)[source]#
+data_consistency(image_data, obs_data)[source]#

Compute the data consistency.

Parameters:
diff --git a/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html b/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html index ac7878a3..b257cf6f 100644 --- a/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html +++ b/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html @@ -876,6 +876,9 @@

MRITorchKbNufft

uses_sense

Return True if the operator uses sensitivity maps.

+

backend

+

+

diff --git a/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html b/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html index 73934bce..38e4db75 100644 --- a/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html +++ b/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html @@ -877,6 +877,12 @@

MRIFourierCorrected

uses_sense

Return True if the operator uses sensitivity maps.

+

backend

+

+ +

available

+

+

diff --git a/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html b/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html index 0dc8a280..4d828952 100644 --- a/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html +++ b/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html @@ -864,6 +864,12 @@

MRISubspace

uses_sense

Return True if the operator uses sensitivity maps.

+

backend

+

+ +

available

+

+

diff --git a/generated/autoexamples/GPU/example_cg.html b/generated/autoexamples/GPU/example_cg.html index 31e21e0f..e5bfd7de 100644 --- a/generated/autoexamples/GPU/example_cg.html +++ b/generated/autoexamples/GPU/example_cg.html @@ -831,7 +831,7 @@

Referencesplt.show()

-Original image, Conjugate gradient, Adjoint NUFFT

Total running time of the script: (0 minutes 1.149 seconds)

+Original image, Conjugate gradient, Adjoint NUFFT

Total running time of the script: (0 minutes 1.494 seconds)

-Ground Truth, no density compensation, Pipe density compensation
[0.00881    0.04010868 0.08096503 ... 3.2314696  2.6597955  3.4447331 ]
+Ground Truth, no density compensation, Pipe density compensation
[0.00884288 0.04072602 0.08075811 ... 3.229551   2.6582165  3.442688  ]
 
-

Total running time of the script: (0 minutes 4.500 seconds)

+

Total running time of the script: (0 minutes 5.638 seconds)

  0%|          | 0/100 [00:00<?, ?steps/s]
-  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.843]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
+  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.92]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
   axs[0].imshow(np.abs(mri_2D[0]), cmap="gray")
 
-  1%|          | 1/100 [00:00<01:34,  1.05steps/s, loss=0.843]
-  1%|          | 1/100 [00:01<01:34,  1.05steps/s, loss=0.708]
-  2%|▏         | 2/100 [00:01<01:27,  1.11steps/s, loss=0.708]
-  2%|▏         | 2/100 [00:01<01:27,  1.11steps/s, loss=0.634]
-  3%|▎         | 3/100 [00:02<01:24,  1.15steps/s, loss=0.634]
-  3%|▎         | 3/100 [00:02<01:24,  1.15steps/s, loss=0.594]
-  4%|▍         | 4/100 [00:03<01:22,  1.16steps/s, loss=0.594]
-  4%|▍         | 4/100 [00:03<01:22,  1.16steps/s, loss=0.57]
-  5%|▌         | 5/100 [00:04<01:21,  1.17steps/s, loss=0.57]
-  5%|▌         | 5/100 [00:04<01:21,  1.17steps/s, loss=0.554]
-  6%|▌         | 6/100 [00:05<01:20,  1.17steps/s, loss=0.554]
-  6%|▌         | 6/100 [00:05<01:20,  1.17steps/s, loss=0.528]
-  7%|▋         | 7/100 [00:06<01:26,  1.07steps/s, loss=0.528]
-  7%|▋         | 7/100 [00:06<01:26,  1.07steps/s, loss=0.505]
-  8%|▊         | 8/100 [00:07<01:24,  1.09steps/s, loss=0.505]
-  8%|▊         | 8/100 [00:07<01:24,  1.09steps/s, loss=0.485]
-  9%|▉         | 9/100 [00:08<01:21,  1.11steps/s, loss=0.485]
-  9%|▉         | 9/100 [00:08<01:21,  1.11steps/s, loss=0.468]
- 10%|█         | 10/100 [00:08<01:19,  1.13steps/s, loss=0.468]
- 10%|█         | 10/100 [00:08<01:19,  1.13steps/s, loss=0.451]
- 11%|█         | 11/100 [00:09<01:17,  1.15steps/s, loss=0.451]
- 11%|█         | 11/100 [00:09<01:17,  1.15steps/s, loss=0.436]
- 12%|█▏        | 12/100 [00:10<01:16,  1.15steps/s, loss=0.436]
- 12%|█▏        | 12/100 [00:10<01:16,  1.15steps/s, loss=0.42]
- 13%|█▎        | 13/100 [00:11<01:15,  1.16steps/s, loss=0.42]
- 13%|█▎        | 13/100 [00:11<01:15,  1.16steps/s, loss=0.404]
- 14%|█▍        | 14/100 [00:12<01:13,  1.16steps/s, loss=0.404]
- 14%|█▍        | 14/100 [00:12<01:13,  1.16steps/s, loss=0.388]
- 15%|█▌        | 15/100 [00:13<01:13,  1.16steps/s, loss=0.388]
- 15%|█▌        | 15/100 [00:13<01:13,  1.16steps/s, loss=0.371]
- 16%|█▌        | 16/100 [00:14<01:12,  1.16steps/s, loss=0.371]
- 16%|█▌        | 16/100 [00:14<01:12,  1.16steps/s, loss=0.355]
- 17%|█▋        | 17/100 [00:15<01:17,  1.06steps/s, loss=0.355]
- 17%|█▋        | 17/100 [00:15<01:17,  1.06steps/s, loss=0.339]
- 18%|█▊        | 18/100 [00:16<01:15,  1.09steps/s, loss=0.339]
- 18%|█▊        | 18/100 [00:16<01:15,  1.09steps/s, loss=0.323]
- 19%|█▉        | 19/100 [00:16<01:13,  1.11steps/s, loss=0.323]
- 19%|█▉        | 19/100 [00:16<01:13,  1.11steps/s, loss=0.308]
- 20%|██        | 20/100 [00:17<01:11,  1.13steps/s, loss=0.308]
- 20%|██        | 20/100 [00:17<01:11,  1.13steps/s, loss=0.293]
- 21%|██        | 21/100 [00:18<01:09,  1.14steps/s, loss=0.293]
- 21%|██        | 21/100 [00:18<01:09,  1.14steps/s, loss=0.279]
- 22%|██▏       | 22/100 [00:19<01:07,  1.15steps/s, loss=0.279]
- 22%|██▏       | 22/100 [00:19<01:07,  1.15steps/s, loss=0.266]
- 23%|██▎       | 23/100 [00:20<01:06,  1.16steps/s, loss=0.266]
- 23%|██▎       | 23/100 [00:20<01:06,  1.16steps/s, loss=0.254]
- 24%|██▍       | 24/100 [00:21<01:05,  1.16steps/s, loss=0.254]
- 24%|██▍       | 24/100 [00:21<01:05,  1.16steps/s, loss=0.242]
- 25%|██▌       | 25/100 [00:21<01:04,  1.17steps/s, loss=0.242]
- 25%|██▌       | 25/100 [00:22<01:04,  1.17steps/s, loss=0.231]
- 26%|██▌       | 26/100 [00:22<01:03,  1.16steps/s, loss=0.231]
- 26%|██▌       | 26/100 [00:22<01:03,  1.16steps/s, loss=0.22]
- 27%|██▋       | 27/100 [00:24<01:09,  1.05steps/s, loss=0.22]
- 27%|██▋       | 27/100 [00:24<01:09,  1.05steps/s, loss=0.21]
- 28%|██▊       | 28/100 [00:24<01:06,  1.08steps/s, loss=0.21]
- 28%|██▊       | 28/100 [00:24<01:06,  1.08steps/s, loss=0.201]
- 29%|██▉       | 29/100 [00:25<01:04,  1.10steps/s, loss=0.201]
- 29%|██▉       | 29/100 [00:25<01:04,  1.10steps/s, loss=0.193]
- 30%|███       | 30/100 [00:26<01:02,  1.11steps/s, loss=0.193]
- 30%|███       | 30/100 [00:26<01:02,  1.11steps/s, loss=0.185]
- 31%|███       | 31/100 [00:27<01:01,  1.12steps/s, loss=0.185]
- 31%|███       | 31/100 [00:27<01:01,  1.12steps/s, loss=0.178]
- 32%|███▏      | 32/100 [00:28<01:00,  1.12steps/s, loss=0.178]
- 32%|███▏      | 32/100 [00:28<01:00,  1.12steps/s, loss=0.171]
- 33%|███▎      | 33/100 [00:29<00:59,  1.13steps/s, loss=0.171]
- 33%|███▎      | 33/100 [00:29<00:59,  1.13steps/s, loss=0.165]
- 34%|███▍      | 34/100 [00:30<00:57,  1.14steps/s, loss=0.165]
- 34%|███▍      | 34/100 [00:30<00:57,  1.14steps/s, loss=0.158]
- 35%|███▌      | 35/100 [00:31<00:57,  1.14steps/s, loss=0.158]
- 35%|███▌      | 35/100 [00:31<00:57,  1.14steps/s, loss=0.152]
- 36%|███▌      | 36/100 [00:31<00:56,  1.14steps/s, loss=0.152]
- 36%|███▌      | 36/100 [00:31<00:56,  1.14steps/s, loss=0.147]
- 37%|███▋      | 37/100 [00:33<01:00,  1.04steps/s, loss=0.147]
- 37%|███▋      | 37/100 [00:33<01:00,  1.04steps/s, loss=0.141]
- 38%|███▊      | 38/100 [00:33<00:57,  1.08steps/s, loss=0.141]
- 38%|███▊      | 38/100 [00:34<00:57,  1.08steps/s, loss=0.136]
- 39%|███▉      | 39/100 [00:34<00:55,  1.10steps/s, loss=0.136]
- 39%|███▉      | 39/100 [00:34<00:55,  1.10steps/s, loss=0.131]
- 40%|████      | 40/100 [00:35<00:53,  1.11steps/s, loss=0.131]
- 40%|████      | 40/100 [00:35<00:53,  1.11steps/s, loss=0.127]
- 41%|████      | 41/100 [00:36<00:52,  1.13steps/s, loss=0.127]
- 41%|████      | 41/100 [00:36<00:52,  1.13steps/s, loss=0.122]
- 42%|████▏     | 42/100 [00:37<00:51,  1.13steps/s, loss=0.122]
- 42%|████▏     | 42/100 [00:37<00:51,  1.13steps/s, loss=0.118]
- 43%|████▎     | 43/100 [00:38<00:49,  1.14steps/s, loss=0.118]
- 43%|████▎     | 43/100 [00:38<00:49,  1.14steps/s, loss=0.114]
- 44%|████▍     | 44/100 [00:39<00:48,  1.15steps/s, loss=0.114]
- 44%|████▍     | 44/100 [00:39<00:48,  1.15steps/s, loss=0.111]
- 45%|████▌     | 45/100 [00:39<00:47,  1.15steps/s, loss=0.111]
- 45%|████▌     | 45/100 [00:40<00:47,  1.15steps/s, loss=0.109]
- 46%|████▌     | 46/100 [00:40<00:47,  1.15steps/s, loss=0.109]
- 46%|████▌     | 46/100 [00:40<00:47,  1.15steps/s, loss=0.108]
- 47%|████▋     | 47/100 [00:41<00:46,  1.15steps/s, loss=0.108]
- 47%|████▋     | 47/100 [00:41<00:46,  1.15steps/s, loss=0.105]
- 48%|████▊     | 48/100 [00:42<00:49,  1.05steps/s, loss=0.105]
- 48%|████▊     | 48/100 [00:42<00:49,  1.05steps/s, loss=0.0989]
- 49%|████▉     | 49/100 [00:43<00:47,  1.08steps/s, loss=0.0989]
- 49%|████▉     | 49/100 [00:43<00:47,  1.08steps/s, loss=0.0956]
- 50%|█████     | 50/100 [00:44<00:45,  1.10steps/s, loss=0.0956]
- 50%|█████     | 50/100 [00:44<00:45,  1.10steps/s, loss=0.0947]
- 51%|█████     | 51/100 [00:45<00:44,  1.11steps/s, loss=0.0947]
- 51%|█████     | 51/100 [00:45<00:44,  1.11steps/s, loss=0.0912]
- 52%|█████▏    | 52/100 [00:46<00:42,  1.12steps/s, loss=0.0912]
- 52%|█████▏    | 52/100 [00:46<00:42,  1.12steps/s, loss=0.0891]
- 53%|█████▎    | 53/100 [00:47<00:41,  1.13steps/s, loss=0.0891]
- 53%|█████▎    | 53/100 [00:47<00:41,  1.13steps/s, loss=0.0869]
- 54%|█████▍    | 54/100 [00:48<00:40,  1.14steps/s, loss=0.0869]
- 54%|█████▍    | 54/100 [00:48<00:40,  1.14steps/s, loss=0.0869]
- 55%|█████▌    | 55/100 [00:48<00:39,  1.14steps/s, loss=0.0869]
- 55%|█████▌    | 55/100 [00:49<00:39,  1.14steps/s, loss=0.0886]
- 56%|█████▌    | 56/100 [00:49<00:38,  1.15steps/s, loss=0.0886]
- 56%|█████▌    | 56/100 [00:49<00:38,  1.15steps/s, loss=0.0848]
- 57%|█████▋    | 57/100 [00:50<00:37,  1.15steps/s, loss=0.0848]
- 57%|█████▋    | 57/100 [00:50<00:37,  1.15steps/s, loss=0.0787]
- 58%|█████▊    | 58/100 [00:51<00:39,  1.05steps/s, loss=0.0787]
- 58%|█████▊    | 58/100 [00:51<00:39,  1.05steps/s, loss=0.0756]
- 59%|█████▉    | 59/100 [00:52<00:38,  1.07steps/s, loss=0.0756]
- 59%|█████▉    | 59/100 [00:52<00:38,  1.07steps/s, loss=0.0753]
- 60%|██████    | 60/100 [00:53<00:36,  1.09steps/s, loss=0.0753]
- 60%|██████    | 60/100 [00:53<00:36,  1.09steps/s, loss=0.0765]
- 61%|██████    | 61/100 [00:54<00:35,  1.11steps/s, loss=0.0765]
- 61%|██████    | 61/100 [00:54<00:35,  1.11steps/s, loss=0.0726]
- 62%|██████▏   | 62/100 [00:55<00:33,  1.12steps/s, loss=0.0726]
- 62%|██████▏   | 62/100 [00:55<00:33,  1.12steps/s, loss=0.0698]
- 63%|██████▎   | 63/100 [00:56<00:33,  1.11steps/s, loss=0.0698]
- 63%|██████▎   | 63/100 [00:56<00:33,  1.11steps/s, loss=0.0678]
- 64%|██████▍   | 64/100 [00:57<00:32,  1.12steps/s, loss=0.0678]
- 64%|██████▍   | 64/100 [00:57<00:32,  1.12steps/s, loss=0.0681]
- 65%|██████▌   | 65/100 [00:57<00:31,  1.13steps/s, loss=0.0681]
- 65%|██████▌   | 65/100 [00:58<00:31,  1.13steps/s, loss=0.067]
- 66%|██████▌   | 66/100 [00:58<00:30,  1.13steps/s, loss=0.067]
- 66%|██████▌   | 66/100 [00:58<00:30,  1.13steps/s, loss=0.0667]
- 67%|██████▋   | 67/100 [00:59<00:29,  1.14steps/s, loss=0.0667]
- 67%|██████▋   | 67/100 [00:59<00:29,  1.14steps/s, loss=0.0671]
- 68%|██████▊   | 68/100 [01:00<00:30,  1.04steps/s, loss=0.0671]
- 68%|██████▊   | 68/100 [01:00<00:30,  1.04steps/s, loss=0.0655]
- 69%|██████▉   | 69/100 [01:01<00:28,  1.07steps/s, loss=0.0655]
- 69%|██████▉   | 69/100 [01:01<00:28,  1.07steps/s, loss=0.0628]
- 70%|███████   | 70/100 [01:02<00:27,  1.09steps/s, loss=0.0628]
- 70%|███████   | 70/100 [01:02<00:27,  1.09steps/s, loss=0.0617]
- 71%|███████   | 71/100 [01:03<00:26,  1.11steps/s, loss=0.0617]
- 71%|███████   | 71/100 [01:03<00:26,  1.11steps/s, loss=0.058]
- 72%|███████▏  | 72/100 [01:04<00:25,  1.12steps/s, loss=0.058]
- 72%|███████▏  | 72/100 [01:04<00:25,  1.12steps/s, loss=0.0565]
- 73%|███████▎  | 73/100 [01:05<00:23,  1.13steps/s, loss=0.0565]
- 73%|███████▎  | 73/100 [01:05<00:23,  1.13steps/s, loss=0.0559]
- 74%|███████▍  | 74/100 [01:06<00:22,  1.14steps/s, loss=0.0559]
- 74%|███████▍  | 74/100 [01:06<00:22,  1.14steps/s, loss=0.0559]
- 75%|███████▌  | 75/100 [01:06<00:21,  1.15steps/s, loss=0.0559]
- 75%|███████▌  | 75/100 [01:07<00:21,  1.15steps/s, loss=0.0578]
- 76%|███████▌  | 76/100 [01:07<00:20,  1.15steps/s, loss=0.0578]
- 76%|███████▌  | 76/100 [01:07<00:20,  1.15steps/s, loss=0.0554]
- 77%|███████▋  | 77/100 [01:08<00:19,  1.16steps/s, loss=0.0554]
- 77%|███████▋  | 77/100 [01:08<00:19,  1.16steps/s, loss=0.0526]
- 78%|███████▊  | 78/100 [01:09<00:20,  1.06steps/s, loss=0.0526]
- 78%|███████▊  | 78/100 [01:09<00:20,  1.06steps/s, loss=0.0544]
- 79%|███████▉  | 79/100 [01:10<00:19,  1.09steps/s, loss=0.0544]
- 79%|███████▉  | 79/100 [01:10<00:19,  1.09steps/s, loss=0.0601]
- 80%|████████  | 80/100 [01:11<00:18,  1.11steps/s, loss=0.0601]
- 80%|████████  | 80/100 [01:11<00:18,  1.11steps/s, loss=0.0568]
- 81%|████████  | 81/100 [01:12<00:16,  1.12steps/s, loss=0.0568]
- 81%|████████  | 81/100 [01:12<00:16,  1.12steps/s, loss=0.0551]
- 82%|████████▏ | 82/100 [01:13<00:15,  1.13steps/s, loss=0.0551]
- 82%|████████▏ | 82/100 [01:13<00:15,  1.13steps/s, loss=0.0522]
- 83%|████████▎ | 83/100 [01:14<00:14,  1.14steps/s, loss=0.0522]
- 83%|████████▎ | 83/100 [01:14<00:14,  1.14steps/s, loss=0.0533]
- 84%|████████▍ | 84/100 [01:14<00:13,  1.15steps/s, loss=0.0533]
- 84%|████████▍ | 84/100 [01:15<00:13,  1.15steps/s, loss=0.0534]
- 85%|████████▌ | 85/100 [01:15<00:13,  1.15steps/s, loss=0.0534]
- 85%|████████▌ | 85/100 [01:15<00:13,  1.15steps/s, loss=0.0492]
- 86%|████████▌ | 86/100 [01:16<00:12,  1.15steps/s, loss=0.0492]
- 86%|████████▌ | 86/100 [01:16<00:12,  1.15steps/s, loss=0.048]
- 87%|████████▋ | 87/100 [01:17<00:11,  1.15steps/s, loss=0.048]
- 87%|████████▋ | 87/100 [01:17<00:11,  1.15steps/s, loss=0.0494]
- 88%|████████▊ | 88/100 [01:18<00:11,  1.05steps/s, loss=0.0494]
- 88%|████████▊ | 88/100 [01:18<00:11,  1.05steps/s, loss=0.0482]
- 89%|████████▉ | 89/100 [01:19<00:10,  1.09steps/s, loss=0.0482]
- 89%|████████▉ | 89/100 [01:19<00:10,  1.09steps/s, loss=0.047]
- 90%|█████████ | 90/100 [01:20<00:09,  1.11steps/s, loss=0.047]
- 90%|█████████ | 90/100 [01:20<00:09,  1.11steps/s, loss=0.0453]
- 91%|█████████ | 91/100 [01:21<00:08,  1.12steps/s, loss=0.0453]
- 91%|█████████ | 91/100 [01:21<00:08,  1.12steps/s, loss=0.0458]
- 92%|█████████▏| 92/100 [01:22<00:07,  1.13steps/s, loss=0.0458]
- 92%|█████████▏| 92/100 [01:22<00:07,  1.13steps/s, loss=0.0453]
- 93%|█████████▎| 93/100 [01:23<00:06,  1.14steps/s, loss=0.0453]
- 93%|█████████▎| 93/100 [01:23<00:06,  1.14steps/s, loss=0.0486]
- 94%|█████████▍| 94/100 [01:23<00:05,  1.14steps/s, loss=0.0486]
- 94%|█████████▍| 94/100 [01:24<00:05,  1.14steps/s, loss=0.0552]
- 95%|█████████▌| 95/100 [01:24<00:04,  1.14steps/s, loss=0.0552]
- 95%|█████████▌| 95/100 [01:24<00:04,  1.14steps/s, loss=0.0495]
- 96%|█████████▌| 96/100 [01:25<00:03,  1.14steps/s, loss=0.0495]
- 96%|█████████▌| 96/100 [01:25<00:03,  1.14steps/s, loss=0.0442]
- 97%|█████████▋| 97/100 [01:26<00:02,  1.15steps/s, loss=0.0442]
- 97%|█████████▋| 97/100 [01:26<00:02,  1.15steps/s, loss=0.0417]
- 98%|█████████▊| 98/100 [01:27<00:01,  1.05steps/s, loss=0.0417]
- 98%|█████████▊| 98/100 [01:27<00:01,  1.05steps/s, loss=0.0437]
- 99%|█████████▉| 99/100 [01:28<00:00,  1.08steps/s, loss=0.0437]
- 99%|█████████▉| 99/100 [01:28<00:00,  1.08steps/s, loss=0.051]
-100%|██████████| 100/100 [01:29<00:00,  1.09steps/s, loss=0.051]
-100%|██████████| 100/100 [01:29<00:00,  1.12steps/s, loss=0.051]
+  1%|          | 1/100 [00:01<02:47,  1.69s/steps, loss=0.92]
+  1%|          | 1/100 [00:02<02:47,  1.69s/steps, loss=0.874]
+  2%|▏         | 2/100 [00:03<02:46,  1.70s/steps, loss=0.874]
+  2%|▏         | 2/100 [00:03<02:46,  1.70s/steps, loss=0.838]
+  3%|▎         | 3/100 [00:05<03:11,  1.97s/steps, loss=0.838]
+  3%|▎         | 3/100 [00:06<03:11,  1.97s/steps, loss=0.809]
+  4%|▍         | 4/100 [00:07<03:07,  1.96s/steps, loss=0.809]
+  4%|▍         | 4/100 [00:08<03:07,  1.96s/steps, loss=0.786]
+  5%|▌         | 5/100 [00:09<02:59,  1.89s/steps, loss=0.786]
+  5%|▌         | 5/100 [00:09<02:59,  1.89s/steps, loss=0.766]
+  6%|▌         | 6/100 [00:11<03:07,  2.00s/steps, loss=0.766]
+  6%|▌         | 6/100 [00:12<03:07,  2.00s/steps, loss=0.726]
+  7%|▋         | 7/100 [00:13<03:13,  2.08s/steps, loss=0.726]
+  7%|▋         | 7/100 [00:14<03:13,  2.08s/steps, loss=0.694]
+  8%|▊         | 8/100 [00:15<03:11,  2.08s/steps, loss=0.694]
+  8%|▊         | 8/100 [00:16<03:11,  2.08s/steps, loss=0.667]
+  9%|▉         | 9/100 [00:18<03:17,  2.17s/steps, loss=0.667]
+  9%|▉         | 9/100 [00:18<03:17,  2.17s/steps, loss=0.641]
+ 10%|█         | 10/100 [00:19<02:59,  2.00s/steps, loss=0.641]
+ 10%|█         | 10/100 [00:20<02:59,  2.00s/steps, loss=0.616]
+ 11%|█         | 11/100 [00:21<02:58,  2.01s/steps, loss=0.616]
+ 11%|█         | 11/100 [00:22<02:58,  2.01s/steps, loss=0.592]
+ 12%|█▏        | 12/100 [00:23<02:41,  1.83s/steps, loss=0.592]
+ 12%|█▏        | 12/100 [00:23<02:41,  1.83s/steps, loss=0.568]
+ 13%|█▎        | 13/100 [00:24<02:26,  1.69s/steps, loss=0.568]
+ 13%|█▎        | 13/100 [00:24<02:26,  1.69s/steps, loss=0.545]
+ 14%|█▍        | 14/100 [00:26<02:14,  1.56s/steps, loss=0.545]
+ 14%|█▍        | 14/100 [00:26<02:14,  1.56s/steps, loss=0.523]
+ 15%|█▌        | 15/100 [00:27<02:05,  1.48s/steps, loss=0.523]
+ 15%|█▌        | 15/100 [00:27<02:05,  1.48s/steps, loss=0.502]
+ 16%|█▌        | 16/100 [00:28<02:01,  1.44s/steps, loss=0.502]
+ 16%|█▌        | 16/100 [00:28<02:01,  1.44s/steps, loss=0.481]
+ 17%|█▋        | 17/100 [00:30<02:10,  1.57s/steps, loss=0.481]
+ 17%|█▋        | 17/100 [00:30<02:10,  1.57s/steps, loss=0.462]
+ 18%|█▊        | 18/100 [00:31<02:05,  1.53s/steps, loss=0.462]
+ 18%|█▊        | 18/100 [00:32<02:05,  1.53s/steps, loss=0.443]
+ 19%|█▉        | 19/100 [00:33<02:04,  1.54s/steps, loss=0.443]
+ 19%|█▉        | 19/100 [00:33<02:04,  1.54s/steps, loss=0.424]
+ 20%|██        | 20/100 [00:34<02:01,  1.52s/steps, loss=0.424]
+ 20%|██        | 20/100 [00:35<02:01,  1.52s/steps, loss=0.405]
+ 21%|██        | 21/100 [00:36<01:59,  1.51s/steps, loss=0.405]
+ 21%|██        | 21/100 [00:36<01:59,  1.51s/steps, loss=0.388]
+ 22%|██▏       | 22/100 [00:37<01:54,  1.46s/steps, loss=0.388]
+ 22%|██▏       | 22/100 [00:38<01:54,  1.46s/steps, loss=0.371]
+ 23%|██▎       | 23/100 [00:39<01:56,  1.51s/steps, loss=0.371]
+ 23%|██▎       | 23/100 [00:39<01:56,  1.51s/steps, loss=0.356]
+ 24%|██▍       | 24/100 [00:40<01:51,  1.47s/steps, loss=0.356]
+ 24%|██▍       | 24/100 [00:41<01:51,  1.47s/steps, loss=0.341]
+ 25%|██▌       | 25/100 [00:42<01:52,  1.49s/steps, loss=0.341]
+ 25%|██▌       | 25/100 [00:42<01:52,  1.49s/steps, loss=0.327]
+ 26%|██▌       | 26/100 [00:44<01:59,  1.62s/steps, loss=0.327]
+ 26%|██▌       | 26/100 [00:44<01:59,  1.62s/steps, loss=0.313]
+ 27%|██▋       | 27/100 [00:46<02:02,  1.68s/steps, loss=0.313]
+ 27%|██▋       | 27/100 [00:46<02:02,  1.68s/steps, loss=0.3]
+ 28%|██▊       | 28/100 [00:47<02:05,  1.74s/steps, loss=0.3]
+ 28%|██▊       | 28/100 [00:48<02:05,  1.74s/steps, loss=0.288]
+ 29%|██▉       | 29/100 [00:49<02:07,  1.79s/steps, loss=0.288]
+ 29%|██▉       | 29/100 [00:50<02:07,  1.79s/steps, loss=0.276]
+ 30%|███       | 30/100 [00:51<02:04,  1.77s/steps, loss=0.276]
+ 30%|███       | 30/100 [00:51<02:04,  1.77s/steps, loss=0.264]
+ 31%|███       | 31/100 [00:53<01:55,  1.67s/steps, loss=0.264]
+ 31%|███       | 31/100 [00:53<01:55,  1.67s/steps, loss=0.253]
+ 32%|███▏      | 32/100 [00:54<01:57,  1.72s/steps, loss=0.253]
+ 32%|███▏      | 32/100 [00:55<01:57,  1.72s/steps, loss=0.243]
+ 33%|███▎      | 33/100 [00:56<01:57,  1.75s/steps, loss=0.243]
+ 33%|███▎      | 33/100 [00:56<01:57,  1.75s/steps, loss=0.234]
+ 34%|███▍      | 34/100 [00:57<01:44,  1.58s/steps, loss=0.234]
+ 34%|███▍      | 34/100 [00:58<01:44,  1.58s/steps, loss=0.225]
+ 35%|███▌      | 35/100 [00:59<01:40,  1.55s/steps, loss=0.225]
+ 35%|███▌      | 35/100 [00:59<01:40,  1.55s/steps, loss=0.216]
+ 36%|███▌      | 36/100 [01:01<01:49,  1.71s/steps, loss=0.216]
+ 36%|███▌      | 36/100 [01:01<01:49,  1.71s/steps, loss=0.208]
+ 37%|███▋      | 37/100 [01:03<01:53,  1.79s/steps, loss=0.208]
+ 37%|███▋      | 37/100 [01:04<01:53,  1.79s/steps, loss=0.2]
+ 38%|███▊      | 38/100 [01:05<01:58,  1.91s/steps, loss=0.2]
+ 38%|███▊      | 38/100 [01:06<01:58,  1.91s/steps, loss=0.193]
+ 39%|███▉      | 39/100 [01:07<01:58,  1.95s/steps, loss=0.193]
+ 39%|███▉      | 39/100 [01:08<01:58,  1.95s/steps, loss=0.186]
+ 40%|████      | 40/100 [01:09<01:51,  1.85s/steps, loss=0.186]
+ 40%|████      | 40/100 [01:09<01:51,  1.85s/steps, loss=0.179]
+ 41%|████      | 41/100 [01:11<01:49,  1.86s/steps, loss=0.179]
+ 41%|████      | 41/100 [01:11<01:49,  1.86s/steps, loss=0.173]
+ 42%|████▏     | 42/100 [01:12<01:42,  1.78s/steps, loss=0.173]
+ 42%|████▏     | 42/100 [01:13<01:42,  1.78s/steps, loss=0.167]
+ 43%|████▎     | 43/100 [01:14<01:40,  1.76s/steps, loss=0.167]
+ 43%|████▎     | 43/100 [01:14<01:40,  1.76s/steps, loss=0.162]
+ 44%|████▍     | 44/100 [01:15<01:32,  1.65s/steps, loss=0.162]
+ 44%|████▍     | 44/100 [01:16<01:32,  1.65s/steps, loss=0.157]
+ 45%|████▌     | 45/100 [01:17<01:30,  1.65s/steps, loss=0.157]
+ 45%|████▌     | 45/100 [01:17<01:30,  1.65s/steps, loss=0.152]
+ 46%|████▌     | 46/100 [01:19<01:26,  1.60s/steps, loss=0.152]
+ 46%|████▌     | 46/100 [01:19<01:26,  1.60s/steps, loss=0.145]
+ 47%|████▋     | 47/100 [01:21<01:31,  1.72s/steps, loss=0.145]
+ 47%|████▋     | 47/100 [01:21<01:31,  1.72s/steps, loss=0.14]
+ 48%|████▊     | 48/100 [01:22<01:25,  1.65s/steps, loss=0.14]
+ 48%|████▊     | 48/100 [01:22<01:25,  1.65s/steps, loss=0.135]
+ 49%|████▉     | 49/100 [01:23<01:21,  1.59s/steps, loss=0.135]
+ 49%|████▉     | 49/100 [01:24<01:21,  1.59s/steps, loss=0.131]
+ 50%|█████     | 50/100 [01:25<01:17,  1.54s/steps, loss=0.131]
+ 50%|█████     | 50/100 [01:25<01:17,  1.54s/steps, loss=0.131]
+ 51%|█████     | 51/100 [01:26<01:16,  1.55s/steps, loss=0.131]
+ 51%|█████     | 51/100 [01:27<01:16,  1.55s/steps, loss=0.132]
+ 52%|█████▏    | 52/100 [01:28<01:12,  1.50s/steps, loss=0.132]
+ 52%|█████▏    | 52/100 [01:28<01:12,  1.50s/steps, loss=0.126]
+ 53%|█████▎    | 53/100 [01:29<01:09,  1.48s/steps, loss=0.126]
+ 53%|█████▎    | 53/100 [01:30<01:09,  1.48s/steps, loss=0.119]
+ 54%|█████▍    | 54/100 [01:31<01:08,  1.48s/steps, loss=0.119]
+ 54%|█████▍    | 54/100 [01:31<01:08,  1.48s/steps, loss=0.117]
+ 55%|█████▌    | 55/100 [01:32<01:05,  1.46s/steps, loss=0.117]
+ 55%|█████▌    | 55/100 [01:32<01:05,  1.46s/steps, loss=0.113]
+ 56%|█████▌    | 56/100 [01:34<01:03,  1.45s/steps, loss=0.113]
+ 56%|█████▌    | 56/100 [01:34<01:03,  1.45s/steps, loss=0.109]
+ 57%|█████▋    | 57/100 [01:36<01:08,  1.60s/steps, loss=0.109]
+ 57%|█████▋    | 57/100 [01:36<01:08,  1.60s/steps, loss=0.108]
+ 58%|█████▊    | 58/100 [01:37<01:07,  1.61s/steps, loss=0.108]
+ 58%|█████▊    | 58/100 [01:38<01:07,  1.61s/steps, loss=0.104]
+ 59%|█████▉    | 59/100 [01:39<01:04,  1.57s/steps, loss=0.104]
+ 59%|█████▉    | 59/100 [01:39<01:04,  1.57s/steps, loss=0.1]
+ 60%|██████    | 60/100 [01:40<01:01,  1.53s/steps, loss=0.1]
+ 60%|██████    | 60/100 [01:40<01:01,  1.53s/steps, loss=0.0969]
+ 61%|██████    | 61/100 [01:41<00:57,  1.48s/steps, loss=0.0969]
+ 61%|██████    | 61/100 [01:42<00:57,  1.48s/steps, loss=0.0935]
+ 62%|██████▏   | 62/100 [01:43<00:52,  1.38s/steps, loss=0.0935]
+ 62%|██████▏   | 62/100 [01:43<00:52,  1.38s/steps, loss=0.0936]
+ 63%|██████▎   | 63/100 [01:44<00:50,  1.36s/steps, loss=0.0936]
+ 63%|██████▎   | 63/100 [01:44<00:50,  1.36s/steps, loss=0.0956]
+ 64%|██████▍   | 64/100 [01:45<00:48,  1.36s/steps, loss=0.0956]
+ 64%|██████▍   | 64/100 [01:46<00:48,  1.36s/steps, loss=0.0986]
+ 65%|██████▌   | 65/100 [01:47<00:46,  1.33s/steps, loss=0.0986]
+ 65%|██████▌   | 65/100 [01:47<00:46,  1.33s/steps, loss=0.0952]
+ 66%|██████▌   | 66/100 [01:48<00:44,  1.31s/steps, loss=0.0952]
+ 66%|██████▌   | 66/100 [01:48<00:44,  1.31s/steps, loss=0.0849]
+ 67%|██████▋   | 67/100 [01:49<00:43,  1.31s/steps, loss=0.0849]
+ 67%|██████▋   | 67/100 [01:49<00:43,  1.31s/steps, loss=0.0846]
+ 68%|██████▊   | 68/100 [01:51<00:46,  1.47s/steps, loss=0.0846]
+ 68%|██████▊   | 68/100 [01:51<00:46,  1.47s/steps, loss=0.0893]
+ 69%|██████▉   | 69/100 [01:52<00:44,  1.42s/steps, loss=0.0893]
+ 69%|██████▉   | 69/100 [01:53<00:44,  1.42s/steps, loss=0.0839]
+ 70%|███████   | 70/100 [01:54<00:42,  1.41s/steps, loss=0.0839]
+ 70%|███████   | 70/100 [01:54<00:42,  1.41s/steps, loss=0.0782]
+ 71%|███████   | 71/100 [01:55<00:40,  1.38s/steps, loss=0.0782]
+ 71%|███████   | 71/100 [01:55<00:40,  1.38s/steps, loss=0.0777]
+ 72%|███████▏  | 72/100 [01:57<00:40,  1.44s/steps, loss=0.0777]
+ 72%|███████▏  | 72/100 [01:57<00:40,  1.44s/steps, loss=0.0765]
+ 73%|███████▎  | 73/100 [01:58<00:38,  1.43s/steps, loss=0.0765]
+ 73%|███████▎  | 73/100 [01:58<00:38,  1.43s/steps, loss=0.0777]
+ 74%|███████▍  | 74/100 [01:59<00:34,  1.32s/steps, loss=0.0777]
+ 74%|███████▍  | 74/100 [01:59<00:34,  1.32s/steps, loss=0.0762]
+ 75%|███████▌  | 75/100 [02:00<00:32,  1.31s/steps, loss=0.0762]
+ 75%|███████▌  | 75/100 [02:01<00:32,  1.31s/steps, loss=0.0731]
+ 76%|███████▌  | 76/100 [02:02<00:32,  1.36s/steps, loss=0.0731]
+ 76%|███████▌  | 76/100 [02:02<00:32,  1.36s/steps, loss=0.0721]
+ 77%|███████▋  | 77/100 [02:03<00:31,  1.35s/steps, loss=0.0721]
+ 77%|███████▋  | 77/100 [02:03<00:31,  1.35s/steps, loss=0.0691]
+ 78%|███████▊  | 78/100 [02:05<00:32,  1.49s/steps, loss=0.0691]
+ 78%|███████▊  | 78/100 [02:05<00:32,  1.49s/steps, loss=0.0673]
+ 79%|███████▉  | 79/100 [02:06<00:30,  1.44s/steps, loss=0.0673]
+ 79%|███████▉  | 79/100 [02:06<00:30,  1.44s/steps, loss=0.069]
+ 80%|████████  | 80/100 [02:07<00:27,  1.36s/steps, loss=0.069]
+ 80%|████████  | 80/100 [02:08<00:27,  1.36s/steps, loss=0.0676]
+ 81%|████████  | 81/100 [02:09<00:25,  1.32s/steps, loss=0.0676]
+ 81%|████████  | 81/100 [02:09<00:25,  1.32s/steps, loss=0.0641]
+ 82%|████████▏ | 82/100 [02:10<00:24,  1.37s/steps, loss=0.0641]
+ 82%|████████▏ | 82/100 [02:10<00:24,  1.37s/steps, loss=0.0618]
+ 83%|████████▎ | 83/100 [02:12<00:23,  1.40s/steps, loss=0.0618]
+ 83%|████████▎ | 83/100 [02:12<00:23,  1.40s/steps, loss=0.0617]
+ 84%|████████▍ | 84/100 [02:13<00:23,  1.49s/steps, loss=0.0617]
+ 84%|████████▍ | 84/100 [02:14<00:23,  1.49s/steps, loss=0.0632]
+ 85%|████████▌ | 85/100 [02:15<00:21,  1.45s/steps, loss=0.0632]
+ 85%|████████▌ | 85/100 [02:15<00:21,  1.45s/steps, loss=0.0656]
+ 86%|████████▌ | 86/100 [02:16<00:19,  1.40s/steps, loss=0.0656]
+ 86%|████████▌ | 86/100 [02:16<00:19,  1.40s/steps, loss=0.0721]
+ 87%|████████▋ | 87/100 [02:17<00:18,  1.40s/steps, loss=0.0721]
+ 87%|████████▋ | 87/100 [02:18<00:18,  1.40s/steps, loss=0.0723]
+ 88%|████████▊ | 88/100 [02:19<00:17,  1.43s/steps, loss=0.0723]
+ 88%|████████▊ | 88/100 [02:19<00:17,  1.43s/steps, loss=0.06]
+ 89%|████████▉ | 89/100 [02:21<00:17,  1.59s/steps, loss=0.06]
+ 89%|████████▉ | 89/100 [02:21<00:17,  1.59s/steps, loss=0.0579]
+ 90%|█████████ | 90/100 [02:22<00:15,  1.57s/steps, loss=0.0579]
+ 90%|█████████ | 90/100 [02:23<00:15,  1.57s/steps, loss=0.0624]
+ 91%|█████████ | 91/100 [02:24<00:13,  1.54s/steps, loss=0.0624]
+ 91%|█████████ | 91/100 [02:24<00:13,  1.54s/steps, loss=0.0631]
+ 92%|█████████▏| 92/100 [02:25<00:12,  1.55s/steps, loss=0.0631]
+ 92%|█████████▏| 92/100 [02:26<00:12,  1.55s/steps, loss=0.0647]
+ 93%|█████████▎| 93/100 [02:27<00:10,  1.47s/steps, loss=0.0647]
+ 93%|█████████▎| 93/100 [02:27<00:10,  1.47s/steps, loss=0.0585]
+ 94%|█████████▍| 94/100 [02:28<00:08,  1.43s/steps, loss=0.0585]
+ 94%|█████████▍| 94/100 [02:28<00:08,  1.43s/steps, loss=0.0561]
+ 95%|█████████▌| 95/100 [02:29<00:07,  1.40s/steps, loss=0.0561]
+ 95%|█████████▌| 95/100 [02:30<00:07,  1.40s/steps, loss=0.055]
+ 96%|█████████▌| 96/100 [02:31<00:05,  1.33s/steps, loss=0.055]
+ 96%|█████████▌| 96/100 [02:31<00:05,  1.33s/steps, loss=0.0552]
+ 97%|█████████▋| 97/100 [02:32<00:04,  1.38s/steps, loss=0.0552]
+ 97%|█████████▋| 97/100 [02:32<00:04,  1.38s/steps, loss=0.0557]
+ 98%|█████████▊| 98/100 [02:33<00:02,  1.38s/steps, loss=0.0557]
+ 98%|█████████▊| 98/100 [02:34<00:02,  1.38s/steps, loss=0.0582]
+ 99%|█████████▉| 99/100 [02:35<00:01,  1.43s/steps, loss=0.0582]
+ 99%|█████████▉| 99/100 [02:36<00:01,  1.43s/steps, loss=0.0585]
+100%|██████████| 100/100 [02:38<00:00,  1.83s/steps, loss=0.0585]
+100%|██████████| 100/100 [02:38<00:00,  1.58s/steps, loss=0.0585]
 
example learn_samples

Reconstruction from partially trained U-Net model

@@ -1308,7 +1308,7 @@

Referencesfacebookresearch/fastMRI

-

Total running time of the script: (1 minutes 35.580 seconds)

+

Total running time of the script: (2 minutes 46.440 seconds)

-

Total running time of the script: (1 minutes 9.613 seconds)

+

Total running time of the script: (1 minutes 42.418 seconds)

-

Total running time of the script: (1 minutes 25.665 seconds)

+

Total running time of the script: (2 minutes 9.696 seconds)

-

Total running time of the script: (4 minutes 59.897 seconds)

+

Total running time of the script: (6 minutes 18.661 seconds)