diff --git a/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip b/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip index e89eb6b5..2f0b0468 100644 Binary files a/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip and b/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip differ diff --git a/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip b/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip index 6791dcb6..dfeb28a6 100644 Binary files a/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip and b/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip differ diff --git a/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip b/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip index e73a442f..e323720f 100644 Binary files a/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip and b/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip differ diff --git a/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip b/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip index 3620a40f..21281067 100644 Binary files a/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip and b/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip differ diff --git a/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip b/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip index 766d1e96..3b3d491e 100644 Binary files a/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip and b/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip differ diff --git a/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip b/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip index 39eedd96..3c443964 100644 Binary files a/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip and b/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip differ diff --git a/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip b/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip index 3a885133..c34f282e 100644 Binary files a/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip and b/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip differ diff --git a/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip b/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip index bfba33bb..1d2a71cb 100644 Binary files a/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip and b/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip differ diff --git a/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip b/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip index 000d68a6..383fc621 100644 Binary files a/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip and b/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip differ diff --git a/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip b/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip index 4e87c77e..03f79d98 100644 Binary files a/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip and b/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip differ diff --git a/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip b/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip index 8cb17929..6619a0b9 100644 Binary files a/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip and b/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip differ diff --git a/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip b/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip index fccba4fd..f9e35e13 100644 Binary files a/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip and b/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip differ diff --git a/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip b/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip index 031ff9aa..ecf23d9c 100644 Binary files a/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip and b/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip differ diff --git a/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip b/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip index f8dbd137..e4024830 100644 Binary files a/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip and b/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip differ diff --git a/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip b/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip index 9bc7f018..06acbae5 100644 Binary files a/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip and b/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip differ diff --git a/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip b/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip index 5737f8b8..5fb2d89d 100644 Binary files a/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip and b/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip differ diff --git a/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip b/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip index 0b40749e..003ad250 100644 Binary files a/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip and b/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip differ diff --git a/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip b/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip index dabfe51b..4b946739 100644 Binary files a/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip and b/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip differ diff --git a/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip b/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip index db800385..28a1befb 100644 Binary files a/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip and b/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip differ diff --git a/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip b/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip index d6a1853a..1f2b950e 100644 Binary files a/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip and b/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip differ diff --git a/_images/mrinufft_learn_2d_sampling_pattern.gif b/_images/mrinufft_learn_2d_sampling_pattern.gif index 498781e4..e7e017ea 100644 Binary files a/_images/mrinufft_learn_2d_sampling_pattern.gif and b/_images/mrinufft_learn_2d_sampling_pattern.gif differ diff --git a/_images/mrinufft_learn_traj.gif b/_images/mrinufft_learn_traj.gif index 4f208c75..f41ccdcb 100644 Binary files a/_images/mrinufft_learn_traj.gif and b/_images/mrinufft_learn_traj.gif differ diff --git a/_images/mrinufft_learn_traj_mc.gif b/_images/mrinufft_learn_traj_mc.gif index 3d18b07a..702e195e 100644 Binary files a/_images/mrinufft_learn_traj_mc.gif and b/_images/mrinufft_learn_traj_mc.gif differ diff --git a/_images/mrinufft_learn_unet.gif b/_images/mrinufft_learn_unet.gif index 31462d7b..05854f06 100644 Binary files a/_images/mrinufft_learn_unet.gif and b/_images/mrinufft_learn_unet.gif differ diff --git a/_images/sphx_glr_example_3D_trajectories_019.png b/_images/sphx_glr_example_3D_trajectories_019.png index dd873c85..9172f641 100644 Binary files a/_images/sphx_glr_example_3D_trajectories_019.png and b/_images/sphx_glr_example_3D_trajectories_019.png differ diff --git a/_images/sphx_glr_example_3D_trajectories_020.png b/_images/sphx_glr_example_3D_trajectories_020.png index 675847d8..f9e59d9d 100644 Binary files a/_images/sphx_glr_example_3D_trajectories_020.png and b/_images/sphx_glr_example_3D_trajectories_020.png differ diff --git a/_images/sphx_glr_example_cg_001.png b/_images/sphx_glr_example_cg_001.png index 63658689..b4aaed82 100644 Binary files a/_images/sphx_glr_example_cg_001.png and b/_images/sphx_glr_example_cg_001.png differ diff --git a/_images/sphx_glr_example_cg_thumb.png b/_images/sphx_glr_example_cg_thumb.png index 8af58009..c16644c5 100644 Binary files a/_images/sphx_glr_example_cg_thumb.png and b/_images/sphx_glr_example_cg_thumb.png differ diff --git a/_images/sphx_glr_example_density_005.png b/_images/sphx_glr_example_density_005.png index 2019e532..7053968d 100644 Binary files a/_images/sphx_glr_example_density_005.png and b/_images/sphx_glr_example_density_005.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_001.png b/_images/sphx_glr_example_fastMRI_UNet_001.png index d49e0dfe..bd417757 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_001.png and b/_images/sphx_glr_example_fastMRI_UNet_001.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_002.png b/_images/sphx_glr_example_fastMRI_UNet_002.png index 8c0a4072..180d17c1 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_002.png and b/_images/sphx_glr_example_fastMRI_UNet_002.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_thumb.gif b/_images/sphx_glr_example_fastMRI_UNet_thumb.gif index 31462d7b..05854f06 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_thumb.gif and b/_images/sphx_glr_example_fastMRI_UNet_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_samples_001.png b/_images/sphx_glr_example_learn_samples_001.png index 0510200e..13480342 100644 Binary files a/_images/sphx_glr_example_learn_samples_001.png and b/_images/sphx_glr_example_learn_samples_001.png differ diff --git a/_images/sphx_glr_example_learn_samples_002.png b/_images/sphx_glr_example_learn_samples_002.png index da8bf1a4..60682861 100644 Binary files a/_images/sphx_glr_example_learn_samples_002.png and b/_images/sphx_glr_example_learn_samples_002.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_001.png b/_images/sphx_glr_example_learn_samples_multicoil_001.png index c591fc04..936cae2e 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_001.png and b/_images/sphx_glr_example_learn_samples_multicoil_001.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_003.png b/_images/sphx_glr_example_learn_samples_multicoil_003.png index 3ccfd3da..be88c3a7 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_003.png and b/_images/sphx_glr_example_learn_samples_multicoil_003.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif b/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif index 3d18b07a..702e195e 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif and b/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_samples_thumb.gif b/_images/sphx_glr_example_learn_samples_thumb.gif index 4f208c75..f41ccdcb 100644 Binary files a/_images/sphx_glr_example_learn_samples_thumb.gif and b/_images/sphx_glr_example_learn_samples_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_001.png b/_images/sphx_glr_example_learn_straight_line_readouts_001.png index 94da96b4..4cb9cbe7 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_001.png and b/_images/sphx_glr_example_learn_straight_line_readouts_001.png differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_002.png b/_images/sphx_glr_example_learn_straight_line_readouts_002.png index cba324ac..a15653b8 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_002.png and b/_images/sphx_glr_example_learn_straight_line_readouts_002.png differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif b/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif index 498781e4..e7e017ea 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif and b/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif differ diff --git a/_images/sphx_glr_example_sampling_densities_012.png b/_images/sphx_glr_example_sampling_densities_012.png index 5a34dc43..84bc761a 100644 Binary files a/_images/sphx_glr_example_sampling_densities_012.png and b/_images/sphx_glr_example_sampling_densities_012.png differ diff --git a/_images/sphx_glr_example_sampling_densities_013.png b/_images/sphx_glr_example_sampling_densities_013.png index ab6c783e..0dcc1094 100644 Binary files a/_images/sphx_glr_example_sampling_densities_013.png and b/_images/sphx_glr_example_sampling_densities_013.png differ diff --git a/_images/sphx_glr_example_sampling_densities_014.png b/_images/sphx_glr_example_sampling_densities_014.png index 96d5cc68..e83237e1 100644 Binary files a/_images/sphx_glr_example_sampling_densities_014.png and b/_images/sphx_glr_example_sampling_densities_014.png differ diff --git a/_images/sphx_glr_example_sampling_densities_015.png b/_images/sphx_glr_example_sampling_densities_015.png index 57d5d549..f16eb481 100644 Binary files a/_images/sphx_glr_example_sampling_densities_015.png and b/_images/sphx_glr_example_sampling_densities_015.png differ diff --git a/_images/sphx_glr_example_sampling_densities_016.png b/_images/sphx_glr_example_sampling_densities_016.png index 4c9f6d55..62e39fce 100644 Binary files a/_images/sphx_glr_example_sampling_densities_016.png and b/_images/sphx_glr_example_sampling_densities_016.png differ diff --git a/_images/sphx_glr_example_sampling_densities_017.png b/_images/sphx_glr_example_sampling_densities_017.png index 66999075..d3185513 100644 Binary files a/_images/sphx_glr_example_sampling_densities_017.png and b/_images/sphx_glr_example_sampling_densities_017.png differ diff --git a/_images/sphx_glr_example_sampling_densities_018.png b/_images/sphx_glr_example_sampling_densities_018.png index 3f5f561e..cb623e17 100644 Binary files a/_images/sphx_glr_example_sampling_densities_018.png and b/_images/sphx_glr_example_sampling_densities_018.png differ diff --git a/_images/sphx_glr_example_sampling_densities_019.png b/_images/sphx_glr_example_sampling_densities_019.png index 60d76ab8..07728652 100644 Binary files a/_images/sphx_glr_example_sampling_densities_019.png and b/_images/sphx_glr_example_sampling_densities_019.png differ diff --git a/_images/sphx_glr_example_sampling_densities_020.png b/_images/sphx_glr_example_sampling_densities_020.png index c60dfc44..13a1b058 100644 Binary files a/_images/sphx_glr_example_sampling_densities_020.png and b/_images/sphx_glr_example_sampling_densities_020.png differ diff --git a/_modules/mrinufft/operators/base.html b/_modules/mrinufft/operators/base.html index 4dfc94e3..cbb0d785 100644 --- a/_modules/mrinufft/operators/base.html +++ b/_modules/mrinufft/operators/base.html @@ -678,8 +678,9 @@
from abc import ABC, abstractmethod
from functools import partial
-
+from typing import ClassVar, Callable
import numpy as np
+from numpy.typing import NDArray
from mrinufft._array_compat import with_numpy, with_numpy_cupy, AUTOGRAD_AVAILABLE
from mrinufft._utils import auto_cast, power_method
@@ -687,10 +688,6 @@ Source code for mrinufft.operators.base
from mrinufft.extras import get_smaps
from mrinufft.operators.interfaces.utils import is_cuda_array, is_host_array
-if AUTOGRAD_AVAILABLE:
- from mrinufft.operators.autodiff import MRINufftAutoGrad
-
-
# Mapping between numpy float and complex types.
DTYPE_R2C = {"float32": "complex64", "float64": "complex128"}
@@ -801,6 +798,9 @@ Source code for mrinufft.operators.base
_grad_wrt_data = False
_grad_wrt_traj = False
+ backend: ClassVar[str]
+ available: ClassVar[bool]
+
def __init__(self):
if not self.available:
raise RuntimeError(f"'{self.backend}' backend is not available.")
@@ -897,27 +897,27 @@ Source code for mrinufft.operators.base
[docs]
- def data_consistency(self, image, obs_data):
+ def data_consistency(self, image_data, obs_data):
"""Compute the gradient data consistency.
This is the naive implementation using adj_op(op(x)-y).
Specific backend can (and should!) implement a more efficient version.
"""
- return self.adj_op(self.op(image) - obs_data)
+ return self.adj_op(self.op(image_data) - obs_data)
[docs]
def with_off_resonance_correction(self, B, C, indices):
"""Return a new operator with Off Resonnance Correction."""
- from ..off_resonance import MRIFourierCorrected
+ from .off_resonance import MRIFourierCorrected
return MRIFourierCorrected(self, B, C, indices)
[docs]
- def compute_smaps(self, method=None):
+ def compute_smaps(self, method: NDArray | Callable | str | dict | None = None):
"""Compute the sensitivity maps and set it.
Parameters
@@ -985,6 +985,8 @@ Source code for mrinufft.operators.base
if not self.autograd_available:
raise ValueError("Backend does not support auto-differentiation.")
+ from mrinufft.operators.autodiff import MRINufftAutoGrad
+
return MRINufftAutoGrad(self, wrt_data=wrt_data, wrt_traj=wrt_traj)
@@ -1107,9 +1109,9 @@ Source code for mrinufft.operators.base
return self._smaps
@smaps.setter
- def smaps(self, smaps):
- self._check_smaps_shape(smaps)
- self._smaps = smaps
+ def smaps(self, new_smaps):
+ self._check_smaps_shape(new_smaps)
+ self._smaps = new_smaps
[docs]
@@ -1130,13 +1132,13 @@ Source code for mrinufft.operators.base
return self._density
@density.setter
- def density(self, density):
- if density is None:
+ def density(self, new_density):
+ if new_density is None:
self._density = None
- elif len(density) != self.n_samples:
+ elif len(new_density) != self.n_samples:
raise ValueError("Density and samples should have the same length")
else:
- self._density = density
+ self._density = new_density
@property
def dtype(self):
@@ -1144,8 +1146,8 @@ Source code for mrinufft.operators.base
return self._dtype
@dtype.setter
- def dtype(self, dtype):
- self._dtype = np.dtype(dtype)
+ def dtype(self, new_dtype):
+ self._dtype = np.dtype(new_dtype)
@property
def cpx_dtype(self):
@@ -1158,8 +1160,8 @@ Source code for mrinufft.operators.base
return self._samples
@samples.setter
- def samples(self, samples):
- self._samples = samples
+ def samples(self, new_samples):
+ self._samples = new_samples
@property
def n_samples(self):
diff --git a/_modules/mrinufft/operators/interfaces/cufinufft.html b/_modules/mrinufft/operators/interfaces/cufinufft.html
index 4ff3f723..fc6df76b 100644
--- a/_modules/mrinufft/operators/interfaces/cufinufft.html
+++ b/_modules/mrinufft/operators/interfaces/cufinufft.html
@@ -694,7 +694,6 @@ Source code for mrinufft.operators.interfaces.cufinufft
except ImportError:
CUFINUFFT_AVAILABLE = False
-
OPTS_FIELD_DECODE = {
"gpu_method": {1: "nonuniform pts driven", 2: "shared memory"},
"gpu_sort": {0: "no sort (GM)", 1: "sort (GM-sort)"},
@@ -951,10 +950,12 @@ Source code for mrinufft.operators.interfaces.cufinufft
self._smaps = new_smaps
@FourierOperatorBase.samples.setter
- def samples(self, samples):
+ def samples(self, new_samples):
"""Update the plans when changing the samples."""
self._samples = np.asfortranarray(
- proper_trajectory(samples, normalize="pi").astype(np.float32, copy=False)
+ proper_trajectory(new_samples, normalize="pi").astype(
+ np.float32, copy=False
+ )
)
for typ in [1, 2, "grad"]:
if typ == "grad" and not self._grad_wrt_traj:
diff --git a/_modules/mrinufft/operators/interfaces/gpunufft.html b/_modules/mrinufft/operators/interfaces/gpunufft.html
index 5e4e735f..00c1e381 100644
--- a/_modules/mrinufft/operators/interfaces/gpunufft.html
+++ b/_modules/mrinufft/operators/interfaces/gpunufft.html
@@ -1238,7 +1238,7 @@ Source code for mrinufft.operators.interfaces.gpunufft
self.raw_op.set_smaps(smaps=new_smaps)
@FourierOperatorBase.samples.setter
- def samples(self, samples):
+ def samples(self, new_samples):
"""Set the samples for the Fourier Operator.
Parameters
@@ -1247,7 +1247,7 @@ Source code for mrinufft.operators.interfaces.gpunufft
The samples for the Fourier Operator.
"""
self._samples = proper_trajectory(
- samples.astype(np.float32, copy=False), normalize="unit"
+ new_samples.astype(np.float32, copy=False), normalize="unit"
)
# TODO: gpuNUFFT needs to sort the points twice in this case.
# It could help to have access to directly dorted arrays from gpuNUFFT.
@@ -1258,7 +1258,7 @@ Source code for mrinufft.operators.interfaces.gpunufft
)
@FourierOperatorBase.density.setter
- def density(self, density):
+ def density(self, new_density):
"""Set the density for the Fourier Operator.
Parameters
@@ -1266,11 +1266,11 @@ Source code for mrinufft.operators.interfaces.gpunufft
density: np.ndarray
The density for the Fourier Operator.
"""
- self._density = density
+ self._density = new_density
if hasattr(self, "raw_op"): # edge case for init
self.raw_op.set_pts(
self._samples,
- density=density,
+ density=new_density,
)
diff --git a/_modules/mrinufft/operators/interfaces/tfnufft.html b/_modules/mrinufft/operators/interfaces/tfnufft.html
index 1aabb57d..a7d69b42 100644
--- a/_modules/mrinufft/operators/interfaces/tfnufft.html
+++ b/_modules/mrinufft/operators/interfaces/tfnufft.html
@@ -812,7 +812,7 @@ Source code for mrinufft.operators.interfaces.tfnufft
[docs]
@with_tensorflow
- def data_consistency(self, data, obs_data):
+ def data_consistency(self, image_data, obs_data):
"""Compute the data consistency.
Parameters
@@ -827,7 +827,7 @@ Source code for mrinufft.operators.interfaces.tfnufft
Tensor
The data consistency error in image space.
"""
- return self.adj_op(self.op(data) - obs_data)
+ return self.adj_op(self.op(image_data) - obs_data)
diff --git a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst
index 4bd8cc13..97001463 100644
--- a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst
+++ b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.rst
@@ -50,5 +50,7 @@ FourierOperatorBase
~FourierOperatorBase.smaps
~FourierOperatorBase.uses_density
~FourierOperatorBase.uses_sense
+ ~FourierOperatorBase.backend
+ ~FourierOperatorBase.available
\ No newline at end of file
diff --git a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst
index b8f74657..0421de63 100644
--- a/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst
+++ b/_sources/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.rst
@@ -50,5 +50,7 @@ FourierOperatorCPU
~FourierOperatorCPU.smaps
~FourierOperatorCPU.uses_density
~FourierOperatorCPU.uses_sense
+ ~FourierOperatorCPU.backend
+ ~FourierOperatorCPU.available
\ No newline at end of file
diff --git a/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst b/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst
index a2e4cc7c..c2d84635 100644
--- a/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst
+++ b/_sources/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.rst
@@ -52,5 +52,6 @@ MRITorchKbNufft
~MRITorchKbNufft.smaps
~MRITorchKbNufft.uses_density
~MRITorchKbNufft.uses_sense
+ ~MRITorchKbNufft.backend
\ No newline at end of file
diff --git a/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst b/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst
index f8e80ded..4a592a1d 100644
--- a/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst
+++ b/_sources/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.rst
@@ -51,5 +51,7 @@ MRIFourierCorrected
~MRIFourierCorrected.smaps
~MRIFourierCorrected.uses_density
~MRIFourierCorrected.uses_sense
+ ~MRIFourierCorrected.backend
+ ~MRIFourierCorrected.available
\ No newline at end of file
diff --git a/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst b/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst
index 6e17d391..15fabece 100644
--- a/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst
+++ b/_sources/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.rst
@@ -50,5 +50,7 @@ MRISubspace
~MRISubspace.smaps
~MRISubspace.uses_density
~MRISubspace.uses_sense
+ ~MRISubspace.backend
+ ~MRISubspace.available
\ No newline at end of file
diff --git a/_sources/generated/autoexamples/GPU/example_cg.rst b/_sources/generated/autoexamples/GPU/example_cg.rst
index bbf5f3fe..35205a11 100644
--- a/_sources/generated/autoexamples/GPU/example_cg.rst
+++ b/_sources/generated/autoexamples/GPU/example_cg.rst
@@ -170,7 +170,7 @@ Display the results
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 1.149 seconds)
+ **Total running time of the script:** (0 minutes 1.494 seconds)
.. _sphx_glr_download_generated_autoexamples_GPU_example_cg.py:
diff --git a/_sources/generated/autoexamples/GPU/example_density.rst b/_sources/generated/autoexamples/GPU/example_density.rst
index 0e30ac02..0f62f386 100644
--- a/_sources/generated/autoexamples/GPU/example_density.rst
+++ b/_sources/generated/autoexamples/GPU/example_density.rst
@@ -103,7 +103,7 @@ Create sample data
/volatile/github-ci-mind-inria/gpu_runner2/_work/_tool/Python/3.10.16/x64/lib/python3.10/site-packages/finufft/_interfaces.py:329: UserWarning: Argument `data` does not satisfy the following requirement: C. Copying array (this may reduce performance)
warnings.warn(f"Argument `{name}` does not satisfy the following requirement: {prop}. Copying array (this may reduce performance)")
-
+
@@ -331,7 +331,7 @@ Pipe's method is an iterative scheme, that use the interpolation and spreading k
.. code-block:: none
- [0.00881 0.04010868 0.08096503 ... 3.2314696 2.6597955 3.4447331 ]
+ [0.00884288 0.04072602 0.08075811 ... 3.229551 2.6582165 3.442688 ]
@@ -339,7 +339,7 @@ Pipe's method is an iterative scheme, that use the interpolation and spreading k
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 4.500 seconds)
+ **Total running time of the script:** (0 minutes 5.638 seconds)
.. _sphx_glr_download_generated_autoexamples_GPU_example_density.py:
diff --git a/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst b/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst
index 7d277359..2a9fc85b 100644
--- a/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst
+++ b/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst
@@ -456,9 +456,9 @@ Start training loop
.. code-block:: none
-
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.843]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
+
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.92]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
axs[0].imshow(np.abs(mri_2D[0]), cmap="gray")
-
1%| | 1/100 [00:00<01:34, 1.05steps/s, loss=0.843]
1%| | 1/100 [00:01<01:34, 1.05steps/s, loss=0.708]
2%|▏ | 2/100 [00:01<01:27, 1.11steps/s, loss=0.708]
2%|▏ | 2/100 [00:01<01:27, 1.11steps/s, loss=0.634]
3%|▎ | 3/100 [00:02<01:24, 1.15steps/s, loss=0.634]
3%|▎ | 3/100 [00:02<01:24, 1.15steps/s, loss=0.594]
4%|▍ | 4/100 [00:03<01:22, 1.16steps/s, loss=0.594]
4%|▍ | 4/100 [00:03<01:22, 1.16steps/s, loss=0.57]
5%|▌ | 5/100 [00:04<01:21, 1.17steps/s, loss=0.57]
5%|▌ | 5/100 [00:04<01:21, 1.17steps/s, loss=0.554]
6%|▌ | 6/100 [00:05<01:20, 1.17steps/s, loss=0.554]
6%|▌ | 6/100 [00:05<01:20, 1.17steps/s, loss=0.528]
7%|▋ | 7/100 [00:06<01:26, 1.07steps/s, loss=0.528]
7%|▋ | 7/100 [00:06<01:26, 1.07steps/s, loss=0.505]
8%|▊ | 8/100 [00:07<01:24, 1.09steps/s, loss=0.505]
8%|▊ | 8/100 [00:07<01:24, 1.09steps/s, loss=0.485]
9%|▉ | 9/100 [00:08<01:21, 1.11steps/s, loss=0.485]
9%|▉ | 9/100 [00:08<01:21, 1.11steps/s, loss=0.468]
10%|█ | 10/100 [00:08<01:19, 1.13steps/s, loss=0.468]
10%|█ | 10/100 [00:08<01:19, 1.13steps/s, loss=0.451]
11%|█ | 11/100 [00:09<01:17, 1.15steps/s, loss=0.451]
11%|█ | 11/100 [00:09<01:17, 1.15steps/s, loss=0.436]
12%|█▏ | 12/100 [00:10<01:16, 1.15steps/s, loss=0.436]
12%|█▏ | 12/100 [00:10<01:16, 1.15steps/s, loss=0.42]
13%|█▎ | 13/100 [00:11<01:15, 1.16steps/s, loss=0.42]
13%|█▎ | 13/100 [00:11<01:15, 1.16steps/s, loss=0.404]
14%|█▍ | 14/100 [00:12<01:13, 1.16steps/s, loss=0.404]
14%|█▍ | 14/100 [00:12<01:13, 1.16steps/s, loss=0.388]
15%|█▌ | 15/100 [00:13<01:13, 1.16steps/s, loss=0.388]
15%|█▌ | 15/100 [00:13<01:13, 1.16steps/s, loss=0.371]
16%|█▌ | 16/100 [00:14<01:12, 1.16steps/s, loss=0.371]
16%|█▌ | 16/100 [00:14<01:12, 1.16steps/s, loss=0.355]
17%|█▋ | 17/100 [00:15<01:17, 1.06steps/s, loss=0.355]
17%|█▋ | 17/100 [00:15<01:17, 1.06steps/s, loss=0.339]
18%|█▊ | 18/100 [00:16<01:15, 1.09steps/s, loss=0.339]
18%|█▊ | 18/100 [00:16<01:15, 1.09steps/s, loss=0.323]
19%|█▉ | 19/100 [00:16<01:13, 1.11steps/s, loss=0.323]
19%|█▉ | 19/100 [00:16<01:13, 1.11steps/s, loss=0.308]
20%|██ | 20/100 [00:17<01:11, 1.13steps/s, loss=0.308]
20%|██ | 20/100 [00:17<01:11, 1.13steps/s, loss=0.293]
21%|██ | 21/100 [00:18<01:09, 1.14steps/s, loss=0.293]
21%|██ | 21/100 [00:18<01:09, 1.14steps/s, loss=0.279]
22%|██▏ | 22/100 [00:19<01:07, 1.15steps/s, loss=0.279]
22%|██▏ | 22/100 [00:19<01:07, 1.15steps/s, loss=0.266]
23%|██▎ | 23/100 [00:20<01:06, 1.16steps/s, loss=0.266]
23%|██▎ | 23/100 [00:20<01:06, 1.16steps/s, loss=0.254]
24%|██▍ | 24/100 [00:21<01:05, 1.16steps/s, loss=0.254]
24%|██▍ | 24/100 [00:21<01:05, 1.16steps/s, loss=0.242]
25%|██▌ | 25/100 [00:21<01:04, 1.17steps/s, loss=0.242]
25%|██▌ | 25/100 [00:22<01:04, 1.17steps/s, loss=0.231]
26%|██▌ | 26/100 [00:22<01:03, 1.16steps/s, loss=0.231]
26%|██▌ | 26/100 [00:22<01:03, 1.16steps/s, loss=0.22]
27%|██▋ | 27/100 [00:24<01:09, 1.05steps/s, loss=0.22]
27%|██▋ | 27/100 [00:24<01:09, 1.05steps/s, loss=0.21]
28%|██▊ | 28/100 [00:24<01:06, 1.08steps/s, loss=0.21]
28%|██▊ | 28/100 [00:24<01:06, 1.08steps/s, loss=0.201]
29%|██▉ | 29/100 [00:25<01:04, 1.10steps/s, loss=0.201]
29%|██▉ | 29/100 [00:25<01:04, 1.10steps/s, loss=0.193]
30%|███ | 30/100 [00:26<01:02, 1.11steps/s, loss=0.193]
30%|███ | 30/100 [00:26<01:02, 1.11steps/s, loss=0.185]
31%|███ | 31/100 [00:27<01:01, 1.12steps/s, loss=0.185]
31%|███ | 31/100 [00:27<01:01, 1.12steps/s, loss=0.178]
32%|███▏ | 32/100 [00:28<01:00, 1.12steps/s, loss=0.178]
32%|███▏ | 32/100 [00:28<01:00, 1.12steps/s, loss=0.171]
33%|███▎ | 33/100 [00:29<00:59, 1.13steps/s, loss=0.171]
33%|███▎ | 33/100 [00:29<00:59, 1.13steps/s, loss=0.165]
34%|███▍ | 34/100 [00:30<00:57, 1.14steps/s, loss=0.165]
34%|███▍ | 34/100 [00:30<00:57, 1.14steps/s, loss=0.158]
35%|███▌ | 35/100 [00:31<00:57, 1.14steps/s, loss=0.158]
35%|███▌ | 35/100 [00:31<00:57, 1.14steps/s, loss=0.152]
36%|███▌ | 36/100 [00:31<00:56, 1.14steps/s, loss=0.152]
36%|███▌ | 36/100 [00:31<00:56, 1.14steps/s, loss=0.147]
37%|███▋ | 37/100 [00:33<01:00, 1.04steps/s, loss=0.147]
37%|███▋ | 37/100 [00:33<01:00, 1.04steps/s, loss=0.141]
38%|███▊ | 38/100 [00:33<00:57, 1.08steps/s, loss=0.141]
38%|███▊ | 38/100 [00:34<00:57, 1.08steps/s, loss=0.136]
39%|███▉ | 39/100 [00:34<00:55, 1.10steps/s, loss=0.136]
39%|███▉ | 39/100 [00:34<00:55, 1.10steps/s, loss=0.131]
40%|████ | 40/100 [00:35<00:53, 1.11steps/s, loss=0.131]
40%|████ | 40/100 [00:35<00:53, 1.11steps/s, loss=0.127]
41%|████ | 41/100 [00:36<00:52, 1.13steps/s, loss=0.127]
41%|████ | 41/100 [00:36<00:52, 1.13steps/s, loss=0.122]
42%|████▏ | 42/100 [00:37<00:51, 1.13steps/s, loss=0.122]
42%|████▏ | 42/100 [00:37<00:51, 1.13steps/s, loss=0.118]
43%|████▎ | 43/100 [00:38<00:49, 1.14steps/s, loss=0.118]
43%|████▎ | 43/100 [00:38<00:49, 1.14steps/s, loss=0.114]
44%|████▍ | 44/100 [00:39<00:48, 1.15steps/s, loss=0.114]
44%|████▍ | 44/100 [00:39<00:48, 1.15steps/s, loss=0.111]
45%|████▌ | 45/100 [00:39<00:47, 1.15steps/s, loss=0.111]
45%|████▌ | 45/100 [00:40<00:47, 1.15steps/s, loss=0.109]
46%|████▌ | 46/100 [00:40<00:47, 1.15steps/s, loss=0.109]
46%|████▌ | 46/100 [00:40<00:47, 1.15steps/s, loss=0.108]
47%|████▋ | 47/100 [00:41<00:46, 1.15steps/s, loss=0.108]
47%|████▋ | 47/100 [00:41<00:46, 1.15steps/s, loss=0.105]
48%|████▊ | 48/100 [00:42<00:49, 1.05steps/s, loss=0.105]
48%|████▊ | 48/100 [00:42<00:49, 1.05steps/s, loss=0.0989]
49%|████▉ | 49/100 [00:43<00:47, 1.08steps/s, loss=0.0989]
49%|████▉ | 49/100 [00:43<00:47, 1.08steps/s, loss=0.0956]
50%|█████ | 50/100 [00:44<00:45, 1.10steps/s, loss=0.0956]
50%|█████ | 50/100 [00:44<00:45, 1.10steps/s, loss=0.0947]
51%|█████ | 51/100 [00:45<00:44, 1.11steps/s, loss=0.0947]
51%|█████ | 51/100 [00:45<00:44, 1.11steps/s, loss=0.0912]
52%|█████▏ | 52/100 [00:46<00:42, 1.12steps/s, loss=0.0912]
52%|█████▏ | 52/100 [00:46<00:42, 1.12steps/s, loss=0.0891]
53%|█████▎ | 53/100 [00:47<00:41, 1.13steps/s, loss=0.0891]
53%|█████▎ | 53/100 [00:47<00:41, 1.13steps/s, loss=0.0869]
54%|█████▍ | 54/100 [00:48<00:40, 1.14steps/s, loss=0.0869]
54%|█████▍ | 54/100 [00:48<00:40, 1.14steps/s, loss=0.0869]
55%|█████▌ | 55/100 [00:48<00:39, 1.14steps/s, loss=0.0869]
55%|█████▌ | 55/100 [00:49<00:39, 1.14steps/s, loss=0.0886]
56%|█████▌ | 56/100 [00:49<00:38, 1.15steps/s, loss=0.0886]
56%|█████▌ | 56/100 [00:49<00:38, 1.15steps/s, loss=0.0848]
57%|█████▋ | 57/100 [00:50<00:37, 1.15steps/s, loss=0.0848]
57%|█████▋ | 57/100 [00:50<00:37, 1.15steps/s, loss=0.0787]
58%|█████▊ | 58/100 [00:51<00:39, 1.05steps/s, loss=0.0787]
58%|█████▊ | 58/100 [00:51<00:39, 1.05steps/s, loss=0.0756]
59%|█████▉ | 59/100 [00:52<00:38, 1.07steps/s, loss=0.0756]
59%|█████▉ | 59/100 [00:52<00:38, 1.07steps/s, loss=0.0753]
60%|██████ | 60/100 [00:53<00:36, 1.09steps/s, loss=0.0753]
60%|██████ | 60/100 [00:53<00:36, 1.09steps/s, loss=0.0765]
61%|██████ | 61/100 [00:54<00:35, 1.11steps/s, loss=0.0765]
61%|██████ | 61/100 [00:54<00:35, 1.11steps/s, loss=0.0726]
62%|██████▏ | 62/100 [00:55<00:33, 1.12steps/s, loss=0.0726]
62%|██████▏ | 62/100 [00:55<00:33, 1.12steps/s, loss=0.0698]
63%|██████▎ | 63/100 [00:56<00:33, 1.11steps/s, loss=0.0698]
63%|██████▎ | 63/100 [00:56<00:33, 1.11steps/s, loss=0.0678]
64%|██████▍ | 64/100 [00:57<00:32, 1.12steps/s, loss=0.0678]
64%|██████▍ | 64/100 [00:57<00:32, 1.12steps/s, loss=0.0681]
65%|██████▌ | 65/100 [00:57<00:31, 1.13steps/s, loss=0.0681]
65%|██████▌ | 65/100 [00:58<00:31, 1.13steps/s, loss=0.067]
66%|██████▌ | 66/100 [00:58<00:30, 1.13steps/s, loss=0.067]
66%|██████▌ | 66/100 [00:58<00:30, 1.13steps/s, loss=0.0667]
67%|██████▋ | 67/100 [00:59<00:29, 1.14steps/s, loss=0.0667]
67%|██████▋ | 67/100 [00:59<00:29, 1.14steps/s, loss=0.0671]
68%|██████▊ | 68/100 [01:00<00:30, 1.04steps/s, loss=0.0671]
68%|██████▊ | 68/100 [01:00<00:30, 1.04steps/s, loss=0.0655]
69%|██████▉ | 69/100 [01:01<00:28, 1.07steps/s, loss=0.0655]
69%|██████▉ | 69/100 [01:01<00:28, 1.07steps/s, loss=0.0628]
70%|███████ | 70/100 [01:02<00:27, 1.09steps/s, loss=0.0628]
70%|███████ | 70/100 [01:02<00:27, 1.09steps/s, loss=0.0617]
71%|███████ | 71/100 [01:03<00:26, 1.11steps/s, loss=0.0617]
71%|███████ | 71/100 [01:03<00:26, 1.11steps/s, loss=0.058]
72%|███████▏ | 72/100 [01:04<00:25, 1.12steps/s, loss=0.058]
72%|███████▏ | 72/100 [01:04<00:25, 1.12steps/s, loss=0.0565]
73%|███████▎ | 73/100 [01:05<00:23, 1.13steps/s, loss=0.0565]
73%|███████▎ | 73/100 [01:05<00:23, 1.13steps/s, loss=0.0559]
74%|███████▍ | 74/100 [01:06<00:22, 1.14steps/s, loss=0.0559]
74%|███████▍ | 74/100 [01:06<00:22, 1.14steps/s, loss=0.0559]
75%|███████▌ | 75/100 [01:06<00:21, 1.15steps/s, loss=0.0559]
75%|███████▌ | 75/100 [01:07<00:21, 1.15steps/s, loss=0.0578]
76%|███████▌ | 76/100 [01:07<00:20, 1.15steps/s, loss=0.0578]
76%|███████▌ | 76/100 [01:07<00:20, 1.15steps/s, loss=0.0554]
77%|███████▋ | 77/100 [01:08<00:19, 1.16steps/s, loss=0.0554]
77%|███████▋ | 77/100 [01:08<00:19, 1.16steps/s, loss=0.0526]
78%|███████▊ | 78/100 [01:09<00:20, 1.06steps/s, loss=0.0526]
78%|███████▊ | 78/100 [01:09<00:20, 1.06steps/s, loss=0.0544]
79%|███████▉ | 79/100 [01:10<00:19, 1.09steps/s, loss=0.0544]
79%|███████▉ | 79/100 [01:10<00:19, 1.09steps/s, loss=0.0601]
80%|████████ | 80/100 [01:11<00:18, 1.11steps/s, loss=0.0601]
80%|████████ | 80/100 [01:11<00:18, 1.11steps/s, loss=0.0568]
81%|████████ | 81/100 [01:12<00:16, 1.12steps/s, loss=0.0568]
81%|████████ | 81/100 [01:12<00:16, 1.12steps/s, loss=0.0551]
82%|████████▏ | 82/100 [01:13<00:15, 1.13steps/s, loss=0.0551]
82%|████████▏ | 82/100 [01:13<00:15, 1.13steps/s, loss=0.0522]
83%|████████▎ | 83/100 [01:14<00:14, 1.14steps/s, loss=0.0522]
83%|████████▎ | 83/100 [01:14<00:14, 1.14steps/s, loss=0.0533]
84%|████████▍ | 84/100 [01:14<00:13, 1.15steps/s, loss=0.0533]
84%|████████▍ | 84/100 [01:15<00:13, 1.15steps/s, loss=0.0534]
85%|████████▌ | 85/100 [01:15<00:13, 1.15steps/s, loss=0.0534]
85%|████████▌ | 85/100 [01:15<00:13, 1.15steps/s, loss=0.0492]
86%|████████▌ | 86/100 [01:16<00:12, 1.15steps/s, loss=0.0492]
86%|████████▌ | 86/100 [01:16<00:12, 1.15steps/s, loss=0.048]
87%|████████▋ | 87/100 [01:17<00:11, 1.15steps/s, loss=0.048]
87%|████████▋ | 87/100 [01:17<00:11, 1.15steps/s, loss=0.0494]
88%|████████▊ | 88/100 [01:18<00:11, 1.05steps/s, loss=0.0494]
88%|████████▊ | 88/100 [01:18<00:11, 1.05steps/s, loss=0.0482]
89%|████████▉ | 89/100 [01:19<00:10, 1.09steps/s, loss=0.0482]
89%|████████▉ | 89/100 [01:19<00:10, 1.09steps/s, loss=0.047]
90%|█████████ | 90/100 [01:20<00:09, 1.11steps/s, loss=0.047]
90%|█████████ | 90/100 [01:20<00:09, 1.11steps/s, loss=0.0453]
91%|█████████ | 91/100 [01:21<00:08, 1.12steps/s, loss=0.0453]
91%|█████████ | 91/100 [01:21<00:08, 1.12steps/s, loss=0.0458]
92%|█████████▏| 92/100 [01:22<00:07, 1.13steps/s, loss=0.0458]
92%|█████████▏| 92/100 [01:22<00:07, 1.13steps/s, loss=0.0453]
93%|█████████▎| 93/100 [01:23<00:06, 1.14steps/s, loss=0.0453]
93%|█████████▎| 93/100 [01:23<00:06, 1.14steps/s, loss=0.0486]
94%|█████████▍| 94/100 [01:23<00:05, 1.14steps/s, loss=0.0486]
94%|█████████▍| 94/100 [01:24<00:05, 1.14steps/s, loss=0.0552]
95%|█████████▌| 95/100 [01:24<00:04, 1.14steps/s, loss=0.0552]
95%|█████████▌| 95/100 [01:24<00:04, 1.14steps/s, loss=0.0495]
96%|█████████▌| 96/100 [01:25<00:03, 1.14steps/s, loss=0.0495]
96%|█████████▌| 96/100 [01:25<00:03, 1.14steps/s, loss=0.0442]
97%|█████████▋| 97/100 [01:26<00:02, 1.15steps/s, loss=0.0442]
97%|█████████▋| 97/100 [01:26<00:02, 1.15steps/s, loss=0.0417]
98%|█████████▊| 98/100 [01:27<00:01, 1.05steps/s, loss=0.0417]
98%|█████████▊| 98/100 [01:27<00:01, 1.05steps/s, loss=0.0437]
99%|█████████▉| 99/100 [01:28<00:00, 1.08steps/s, loss=0.0437]
99%|█████████▉| 99/100 [01:28<00:00, 1.08steps/s, loss=0.051]
100%|██████████| 100/100 [01:29<00:00, 1.09steps/s, loss=0.051]
100%|██████████| 100/100 [01:29<00:00, 1.12steps/s, loss=0.051]
+
1%| | 1/100 [00:01<02:47, 1.69s/steps, loss=0.92]
1%| | 1/100 [00:02<02:47, 1.69s/steps, loss=0.874]
2%|▏ | 2/100 [00:03<02:46, 1.70s/steps, loss=0.874]
2%|▏ | 2/100 [00:03<02:46, 1.70s/steps, loss=0.838]
3%|▎ | 3/100 [00:05<03:11, 1.97s/steps, loss=0.838]
3%|▎ | 3/100 [00:06<03:11, 1.97s/steps, loss=0.809]
4%|▍ | 4/100 [00:07<03:07, 1.96s/steps, loss=0.809]
4%|▍ | 4/100 [00:08<03:07, 1.96s/steps, loss=0.786]
5%|▌ | 5/100 [00:09<02:59, 1.89s/steps, loss=0.786]
5%|▌ | 5/100 [00:09<02:59, 1.89s/steps, loss=0.766]
6%|▌ | 6/100 [00:11<03:07, 2.00s/steps, loss=0.766]
6%|▌ | 6/100 [00:12<03:07, 2.00s/steps, loss=0.726]
7%|▋ | 7/100 [00:13<03:13, 2.08s/steps, loss=0.726]
7%|▋ | 7/100 [00:14<03:13, 2.08s/steps, loss=0.694]
8%|▊ | 8/100 [00:15<03:11, 2.08s/steps, loss=0.694]
8%|▊ | 8/100 [00:16<03:11, 2.08s/steps, loss=0.667]
9%|▉ | 9/100 [00:18<03:17, 2.17s/steps, loss=0.667]
9%|▉ | 9/100 [00:18<03:17, 2.17s/steps, loss=0.641]
10%|█ | 10/100 [00:19<02:59, 2.00s/steps, loss=0.641]
10%|█ | 10/100 [00:20<02:59, 2.00s/steps, loss=0.616]
11%|█ | 11/100 [00:21<02:58, 2.01s/steps, loss=0.616]
11%|█ | 11/100 [00:22<02:58, 2.01s/steps, loss=0.592]
12%|█▏ | 12/100 [00:23<02:41, 1.83s/steps, loss=0.592]
12%|█▏ | 12/100 [00:23<02:41, 1.83s/steps, loss=0.568]
13%|█▎ | 13/100 [00:24<02:26, 1.69s/steps, loss=0.568]
13%|█▎ | 13/100 [00:24<02:26, 1.69s/steps, loss=0.545]
14%|█▍ | 14/100 [00:26<02:14, 1.56s/steps, loss=0.545]
14%|█▍ | 14/100 [00:26<02:14, 1.56s/steps, loss=0.523]
15%|█▌ | 15/100 [00:27<02:05, 1.48s/steps, loss=0.523]
15%|█▌ | 15/100 [00:27<02:05, 1.48s/steps, loss=0.502]
16%|█▌ | 16/100 [00:28<02:01, 1.44s/steps, loss=0.502]
16%|█▌ | 16/100 [00:28<02:01, 1.44s/steps, loss=0.481]
17%|█▋ | 17/100 [00:30<02:10, 1.57s/steps, loss=0.481]
17%|█▋ | 17/100 [00:30<02:10, 1.57s/steps, loss=0.462]
18%|█▊ | 18/100 [00:31<02:05, 1.53s/steps, loss=0.462]
18%|█▊ | 18/100 [00:32<02:05, 1.53s/steps, loss=0.443]
19%|█▉ | 19/100 [00:33<02:04, 1.54s/steps, loss=0.443]
19%|█▉ | 19/100 [00:33<02:04, 1.54s/steps, loss=0.424]
20%|██ | 20/100 [00:34<02:01, 1.52s/steps, loss=0.424]
20%|██ | 20/100 [00:35<02:01, 1.52s/steps, loss=0.405]
21%|██ | 21/100 [00:36<01:59, 1.51s/steps, loss=0.405]
21%|██ | 21/100 [00:36<01:59, 1.51s/steps, loss=0.388]
22%|██▏ | 22/100 [00:37<01:54, 1.46s/steps, loss=0.388]
22%|██▏ | 22/100 [00:38<01:54, 1.46s/steps, loss=0.371]
23%|██▎ | 23/100 [00:39<01:56, 1.51s/steps, loss=0.371]
23%|██▎ | 23/100 [00:39<01:56, 1.51s/steps, loss=0.356]
24%|██▍ | 24/100 [00:40<01:51, 1.47s/steps, loss=0.356]
24%|██▍ | 24/100 [00:41<01:51, 1.47s/steps, loss=0.341]
25%|██▌ | 25/100 [00:42<01:52, 1.49s/steps, loss=0.341]
25%|██▌ | 25/100 [00:42<01:52, 1.49s/steps, loss=0.327]
26%|██▌ | 26/100 [00:44<01:59, 1.62s/steps, loss=0.327]
26%|██▌ | 26/100 [00:44<01:59, 1.62s/steps, loss=0.313]
27%|██▋ | 27/100 [00:46<02:02, 1.68s/steps, loss=0.313]
27%|██▋ | 27/100 [00:46<02:02, 1.68s/steps, loss=0.3]
28%|██▊ | 28/100 [00:47<02:05, 1.74s/steps, loss=0.3]
28%|██▊ | 28/100 [00:48<02:05, 1.74s/steps, loss=0.288]
29%|██▉ | 29/100 [00:49<02:07, 1.79s/steps, loss=0.288]
29%|██▉ | 29/100 [00:50<02:07, 1.79s/steps, loss=0.276]
30%|███ | 30/100 [00:51<02:04, 1.77s/steps, loss=0.276]
30%|███ | 30/100 [00:51<02:04, 1.77s/steps, loss=0.264]
31%|███ | 31/100 [00:53<01:55, 1.67s/steps, loss=0.264]
31%|███ | 31/100 [00:53<01:55, 1.67s/steps, loss=0.253]
32%|███▏ | 32/100 [00:54<01:57, 1.72s/steps, loss=0.253]
32%|███▏ | 32/100 [00:55<01:57, 1.72s/steps, loss=0.243]
33%|███▎ | 33/100 [00:56<01:57, 1.75s/steps, loss=0.243]
33%|███▎ | 33/100 [00:56<01:57, 1.75s/steps, loss=0.234]
34%|███▍ | 34/100 [00:57<01:44, 1.58s/steps, loss=0.234]
34%|███▍ | 34/100 [00:58<01:44, 1.58s/steps, loss=0.225]
35%|███▌ | 35/100 [00:59<01:40, 1.55s/steps, loss=0.225]
35%|███▌ | 35/100 [00:59<01:40, 1.55s/steps, loss=0.216]
36%|███▌ | 36/100 [01:01<01:49, 1.71s/steps, loss=0.216]
36%|███▌ | 36/100 [01:01<01:49, 1.71s/steps, loss=0.208]
37%|███▋ | 37/100 [01:03<01:53, 1.79s/steps, loss=0.208]
37%|███▋ | 37/100 [01:04<01:53, 1.79s/steps, loss=0.2]
38%|███▊ | 38/100 [01:05<01:58, 1.91s/steps, loss=0.2]
38%|███▊ | 38/100 [01:06<01:58, 1.91s/steps, loss=0.193]
39%|███▉ | 39/100 [01:07<01:58, 1.95s/steps, loss=0.193]
39%|███▉ | 39/100 [01:08<01:58, 1.95s/steps, loss=0.186]
40%|████ | 40/100 [01:09<01:51, 1.85s/steps, loss=0.186]
40%|████ | 40/100 [01:09<01:51, 1.85s/steps, loss=0.179]
41%|████ | 41/100 [01:11<01:49, 1.86s/steps, loss=0.179]
41%|████ | 41/100 [01:11<01:49, 1.86s/steps, loss=0.173]
42%|████▏ | 42/100 [01:12<01:42, 1.78s/steps, loss=0.173]
42%|████▏ | 42/100 [01:13<01:42, 1.78s/steps, loss=0.167]
43%|████▎ | 43/100 [01:14<01:40, 1.76s/steps, loss=0.167]
43%|████▎ | 43/100 [01:14<01:40, 1.76s/steps, loss=0.162]
44%|████▍ | 44/100 [01:15<01:32, 1.65s/steps, loss=0.162]
44%|████▍ | 44/100 [01:16<01:32, 1.65s/steps, loss=0.157]
45%|████▌ | 45/100 [01:17<01:30, 1.65s/steps, loss=0.157]
45%|████▌ | 45/100 [01:17<01:30, 1.65s/steps, loss=0.152]
46%|████▌ | 46/100 [01:19<01:26, 1.60s/steps, loss=0.152]
46%|████▌ | 46/100 [01:19<01:26, 1.60s/steps, loss=0.145]
47%|████▋ | 47/100 [01:21<01:31, 1.72s/steps, loss=0.145]
47%|████▋ | 47/100 [01:21<01:31, 1.72s/steps, loss=0.14]
48%|████▊ | 48/100 [01:22<01:25, 1.65s/steps, loss=0.14]
48%|████▊ | 48/100 [01:22<01:25, 1.65s/steps, loss=0.135]
49%|████▉ | 49/100 [01:23<01:21, 1.59s/steps, loss=0.135]
49%|████▉ | 49/100 [01:24<01:21, 1.59s/steps, loss=0.131]
50%|█████ | 50/100 [01:25<01:17, 1.54s/steps, loss=0.131]
50%|█████ | 50/100 [01:25<01:17, 1.54s/steps, loss=0.131]
51%|█████ | 51/100 [01:26<01:16, 1.55s/steps, loss=0.131]
51%|█████ | 51/100 [01:27<01:16, 1.55s/steps, loss=0.132]
52%|█████▏ | 52/100 [01:28<01:12, 1.50s/steps, loss=0.132]
52%|█████▏ | 52/100 [01:28<01:12, 1.50s/steps, loss=0.126]
53%|█████▎ | 53/100 [01:29<01:09, 1.48s/steps, loss=0.126]
53%|█████▎ | 53/100 [01:30<01:09, 1.48s/steps, loss=0.119]
54%|█████▍ | 54/100 [01:31<01:08, 1.48s/steps, loss=0.119]
54%|█████▍ | 54/100 [01:31<01:08, 1.48s/steps, loss=0.117]
55%|█████▌ | 55/100 [01:32<01:05, 1.46s/steps, loss=0.117]
55%|█████▌ | 55/100 [01:32<01:05, 1.46s/steps, loss=0.113]
56%|█████▌ | 56/100 [01:34<01:03, 1.45s/steps, loss=0.113]
56%|█████▌ | 56/100 [01:34<01:03, 1.45s/steps, loss=0.109]
57%|█████▋ | 57/100 [01:36<01:08, 1.60s/steps, loss=0.109]
57%|█████▋ | 57/100 [01:36<01:08, 1.60s/steps, loss=0.108]
58%|█████▊ | 58/100 [01:37<01:07, 1.61s/steps, loss=0.108]
58%|█████▊ | 58/100 [01:38<01:07, 1.61s/steps, loss=0.104]
59%|█████▉ | 59/100 [01:39<01:04, 1.57s/steps, loss=0.104]
59%|█████▉ | 59/100 [01:39<01:04, 1.57s/steps, loss=0.1]
60%|██████ | 60/100 [01:40<01:01, 1.53s/steps, loss=0.1]
60%|██████ | 60/100 [01:40<01:01, 1.53s/steps, loss=0.0969]
61%|██████ | 61/100 [01:41<00:57, 1.48s/steps, loss=0.0969]
61%|██████ | 61/100 [01:42<00:57, 1.48s/steps, loss=0.0935]
62%|██████▏ | 62/100 [01:43<00:52, 1.38s/steps, loss=0.0935]
62%|██████▏ | 62/100 [01:43<00:52, 1.38s/steps, loss=0.0936]
63%|██████▎ | 63/100 [01:44<00:50, 1.36s/steps, loss=0.0936]
63%|██████▎ | 63/100 [01:44<00:50, 1.36s/steps, loss=0.0956]
64%|██████▍ | 64/100 [01:45<00:48, 1.36s/steps, loss=0.0956]
64%|██████▍ | 64/100 [01:46<00:48, 1.36s/steps, loss=0.0986]
65%|██████▌ | 65/100 [01:47<00:46, 1.33s/steps, loss=0.0986]
65%|██████▌ | 65/100 [01:47<00:46, 1.33s/steps, loss=0.0952]
66%|██████▌ | 66/100 [01:48<00:44, 1.31s/steps, loss=0.0952]
66%|██████▌ | 66/100 [01:48<00:44, 1.31s/steps, loss=0.0849]
67%|██████▋ | 67/100 [01:49<00:43, 1.31s/steps, loss=0.0849]
67%|██████▋ | 67/100 [01:49<00:43, 1.31s/steps, loss=0.0846]
68%|██████▊ | 68/100 [01:51<00:46, 1.47s/steps, loss=0.0846]
68%|██████▊ | 68/100 [01:51<00:46, 1.47s/steps, loss=0.0893]
69%|██████▉ | 69/100 [01:52<00:44, 1.42s/steps, loss=0.0893]
69%|██████▉ | 69/100 [01:53<00:44, 1.42s/steps, loss=0.0839]
70%|███████ | 70/100 [01:54<00:42, 1.41s/steps, loss=0.0839]
70%|███████ | 70/100 [01:54<00:42, 1.41s/steps, loss=0.0782]
71%|███████ | 71/100 [01:55<00:40, 1.38s/steps, loss=0.0782]
71%|███████ | 71/100 [01:55<00:40, 1.38s/steps, loss=0.0777]
72%|███████▏ | 72/100 [01:57<00:40, 1.44s/steps, loss=0.0777]
72%|███████▏ | 72/100 [01:57<00:40, 1.44s/steps, loss=0.0765]
73%|███████▎ | 73/100 [01:58<00:38, 1.43s/steps, loss=0.0765]
73%|███████▎ | 73/100 [01:58<00:38, 1.43s/steps, loss=0.0777]
74%|███████▍ | 74/100 [01:59<00:34, 1.32s/steps, loss=0.0777]
74%|███████▍ | 74/100 [01:59<00:34, 1.32s/steps, loss=0.0762]
75%|███████▌ | 75/100 [02:00<00:32, 1.31s/steps, loss=0.0762]
75%|███████▌ | 75/100 [02:01<00:32, 1.31s/steps, loss=0.0731]
76%|███████▌ | 76/100 [02:02<00:32, 1.36s/steps, loss=0.0731]
76%|███████▌ | 76/100 [02:02<00:32, 1.36s/steps, loss=0.0721]
77%|███████▋ | 77/100 [02:03<00:31, 1.35s/steps, loss=0.0721]
77%|███████▋ | 77/100 [02:03<00:31, 1.35s/steps, loss=0.0691]
78%|███████▊ | 78/100 [02:05<00:32, 1.49s/steps, loss=0.0691]
78%|███████▊ | 78/100 [02:05<00:32, 1.49s/steps, loss=0.0673]
79%|███████▉ | 79/100 [02:06<00:30, 1.44s/steps, loss=0.0673]
79%|███████▉ | 79/100 [02:06<00:30, 1.44s/steps, loss=0.069]
80%|████████ | 80/100 [02:07<00:27, 1.36s/steps, loss=0.069]
80%|████████ | 80/100 [02:08<00:27, 1.36s/steps, loss=0.0676]
81%|████████ | 81/100 [02:09<00:25, 1.32s/steps, loss=0.0676]
81%|████████ | 81/100 [02:09<00:25, 1.32s/steps, loss=0.0641]
82%|████████▏ | 82/100 [02:10<00:24, 1.37s/steps, loss=0.0641]
82%|████████▏ | 82/100 [02:10<00:24, 1.37s/steps, loss=0.0618]
83%|████████▎ | 83/100 [02:12<00:23, 1.40s/steps, loss=0.0618]
83%|████████▎ | 83/100 [02:12<00:23, 1.40s/steps, loss=0.0617]
84%|████████▍ | 84/100 [02:13<00:23, 1.49s/steps, loss=0.0617]
84%|████████▍ | 84/100 [02:14<00:23, 1.49s/steps, loss=0.0632]
85%|████████▌ | 85/100 [02:15<00:21, 1.45s/steps, loss=0.0632]
85%|████████▌ | 85/100 [02:15<00:21, 1.45s/steps, loss=0.0656]
86%|████████▌ | 86/100 [02:16<00:19, 1.40s/steps, loss=0.0656]
86%|████████▌ | 86/100 [02:16<00:19, 1.40s/steps, loss=0.0721]
87%|████████▋ | 87/100 [02:17<00:18, 1.40s/steps, loss=0.0721]
87%|████████▋ | 87/100 [02:18<00:18, 1.40s/steps, loss=0.0723]
88%|████████▊ | 88/100 [02:19<00:17, 1.43s/steps, loss=0.0723]
88%|████████▊ | 88/100 [02:19<00:17, 1.43s/steps, loss=0.06]
89%|████████▉ | 89/100 [02:21<00:17, 1.59s/steps, loss=0.06]
89%|████████▉ | 89/100 [02:21<00:17, 1.59s/steps, loss=0.0579]
90%|█████████ | 90/100 [02:22<00:15, 1.57s/steps, loss=0.0579]
90%|█████████ | 90/100 [02:23<00:15, 1.57s/steps, loss=0.0624]
91%|█████████ | 91/100 [02:24<00:13, 1.54s/steps, loss=0.0624]
91%|█████████ | 91/100 [02:24<00:13, 1.54s/steps, loss=0.0631]
92%|█████████▏| 92/100 [02:25<00:12, 1.55s/steps, loss=0.0631]
92%|█████████▏| 92/100 [02:26<00:12, 1.55s/steps, loss=0.0647]
93%|█████████▎| 93/100 [02:27<00:10, 1.47s/steps, loss=0.0647]
93%|█████████▎| 93/100 [02:27<00:10, 1.47s/steps, loss=0.0585]
94%|█████████▍| 94/100 [02:28<00:08, 1.43s/steps, loss=0.0585]
94%|█████████▍| 94/100 [02:28<00:08, 1.43s/steps, loss=0.0561]
95%|█████████▌| 95/100 [02:29<00:07, 1.40s/steps, loss=0.0561]
95%|█████████▌| 95/100 [02:30<00:07, 1.40s/steps, loss=0.055]
96%|█████████▌| 96/100 [02:31<00:05, 1.33s/steps, loss=0.055]
96%|█████████▌| 96/100 [02:31<00:05, 1.33s/steps, loss=0.0552]
97%|█████████▋| 97/100 [02:32<00:04, 1.38s/steps, loss=0.0552]
97%|█████████▋| 97/100 [02:32<00:04, 1.38s/steps, loss=0.0557]
98%|█████████▊| 98/100 [02:33<00:02, 1.38s/steps, loss=0.0557]
98%|█████████▊| 98/100 [02:34<00:02, 1.38s/steps, loss=0.0582]
99%|█████████▉| 99/100 [02:35<00:01, 1.43s/steps, loss=0.0582]
99%|█████████▉| 99/100 [02:36<00:01, 1.43s/steps, loss=0.0585]
100%|██████████| 100/100 [02:38<00:00, 1.83s/steps, loss=0.0585]
100%|██████████| 100/100 [02:38<00:00, 1.58s/steps, loss=0.0585]
@@ -510,7 +510,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (1 minutes 35.580 seconds)
+ **Total running time of the script:** (2 minutes 46.440 seconds)
.. _sphx_glr_download_generated_autoexamples_GPU_example_fastMRI_UNet.py:
diff --git a/_sources/generated/autoexamples/GPU/example_learn_samples.rst b/_sources/generated/autoexamples/GPU/example_learn_samples.rst
index 12ce76c1..9a48e82b 100644
--- a/_sources/generated/autoexamples/GPU/example_learn_samples.rst
+++ b/_sources/generated/autoexamples/GPU/example_learn_samples.rst
@@ -282,7 +282,7 @@ Start training loop
.. code-block:: none
-
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.29853112]
1%| | 1/100 [00:00<01:00, 1.64steps/s, loss=0.29853112]
1%| | 1/100 [00:00<01:00, 1.64steps/s, loss=0.37153855]
2%|▏ | 2/100 [00:01<01:01, 1.59steps/s, loss=0.37153855]
2%|▏ | 2/100 [00:01<01:01, 1.59steps/s, loss=0.32791892]
3%|▎ | 3/100 [00:01<01:02, 1.56steps/s, loss=0.32791892]
3%|▎ | 3/100 [00:01<01:02, 1.56steps/s, loss=0.2729209]
4%|▍ | 4/100 [00:02<01:01, 1.55steps/s, loss=0.2729209]
4%|▍ | 4/100 [00:02<01:01, 1.55steps/s, loss=0.285618]
5%|▌ | 5/100 [00:03<01:05, 1.46steps/s, loss=0.285618]
5%|▌ | 5/100 [00:03<01:05, 1.46steps/s, loss=0.25701326]
6%|▌ | 6/100 [00:03<01:01, 1.54steps/s, loss=0.25701326]
6%|▌ | 6/100 [00:03<01:01, 1.54steps/s, loss=0.25487423]
7%|▋ | 7/100 [00:04<00:58, 1.59steps/s, loss=0.25487423]
7%|▋ | 7/100 [00:04<00:58, 1.59steps/s, loss=0.24471316]
8%|▊ | 8/100 [00:05<00:56, 1.62steps/s, loss=0.24471316]
8%|▊ | 8/100 [00:05<00:56, 1.62steps/s, loss=0.23612848]
9%|▉ | 9/100 [00:05<00:55, 1.65steps/s, loss=0.23612848]
9%|▉ | 9/100 [00:05<00:55, 1.65steps/s, loss=0.23718472]
10%|█ | 10/100 [00:06<00:53, 1.67steps/s, loss=0.23718472]
10%|█ | 10/100 [00:06<00:53, 1.67steps/s, loss=0.22051743]
11%|█ | 11/100 [00:06<00:53, 1.68steps/s, loss=0.22051743]
11%|█ | 11/100 [00:06<00:53, 1.68steps/s, loss=0.22469674]
12%|█▏ | 12/100 [00:07<00:53, 1.65steps/s, loss=0.22469674]
12%|█▏ | 12/100 [00:07<00:53, 1.65steps/s, loss=0.21266262]
13%|█▎ | 13/100 [00:08<00:52, 1.65steps/s, loss=0.21266262]
13%|█▎ | 13/100 [00:08<00:52, 1.65steps/s, loss=0.21103373]
14%|█▍ | 14/100 [00:08<00:57, 1.48steps/s, loss=0.21103373]
14%|█▍ | 14/100 [00:08<00:57, 1.48steps/s, loss=0.20615734]
15%|█▌ | 15/100 [00:09<00:55, 1.53steps/s, loss=0.20615734]
15%|█▌ | 15/100 [00:09<00:55, 1.53steps/s, loss=0.20250212]
16%|█▌ | 16/100 [00:10<00:53, 1.56steps/s, loss=0.20250212]
16%|█▌ | 16/100 [00:10<00:53, 1.56steps/s, loss=0.2019312]
17%|█▋ | 17/100 [00:10<00:52, 1.58steps/s, loss=0.2019312]
17%|█▋ | 17/100 [00:10<00:52, 1.58steps/s, loss=0.19770679]
18%|█▊ | 18/100 [00:11<00:51, 1.58steps/s, loss=0.19770679]
18%|█▊ | 18/100 [00:11<00:51, 1.58steps/s, loss=0.19976704]
19%|█▉ | 19/100 [00:11<00:51, 1.59steps/s, loss=0.19976704]
19%|█▉ | 19/100 [00:12<00:51, 1.59steps/s, loss=0.19378284]
20%|██ | 20/100 [00:12<00:49, 1.60steps/s, loss=0.19378284]
20%|██ | 20/100 [00:12<00:49, 1.60steps/s, loss=0.19476698]
21%|██ | 21/100 [00:13<00:49, 1.59steps/s, loss=0.19476698]
21%|██ | 21/100 [00:13<00:49, 1.59steps/s, loss=0.1940689]
22%|██▏ | 22/100 [00:13<00:48, 1.62steps/s, loss=0.1940689]
22%|██▏ | 22/100 [00:13<00:48, 1.62steps/s, loss=0.1903136]
23%|██▎ | 23/100 [00:14<00:52, 1.47steps/s, loss=0.1903136]
23%|██▎ | 23/100 [00:14<00:52, 1.47steps/s, loss=0.19001904]
24%|██▍ | 24/100 [00:15<00:49, 1.52steps/s, loss=0.19001904]
24%|██▍ | 24/100 [00:15<00:49, 1.52steps/s, loss=0.18393023]
25%|██▌ | 25/100 [00:15<00:48, 1.55steps/s, loss=0.18393023]
25%|██▌ | 25/100 [00:15<00:48, 1.55steps/s, loss=0.18127815]
26%|██▌ | 26/100 [00:16<00:46, 1.58steps/s, loss=0.18127815]
26%|██▌ | 26/100 [00:16<00:46, 1.58steps/s, loss=0.19639714]
27%|██▋ | 27/100 [00:17<00:45, 1.60steps/s, loss=0.19639714]
27%|██▋ | 27/100 [00:17<00:45, 1.60steps/s, loss=0.1847319]
28%|██▊ | 28/100 [00:17<00:44, 1.62steps/s, loss=0.1847319]
28%|██▊ | 28/100 [00:17<00:44, 1.62steps/s, loss=0.18125838]
29%|██▉ | 29/100 [00:18<00:43, 1.62steps/s, loss=0.18125838]
29%|██▉ | 29/100 [00:18<00:43, 1.62steps/s, loss=0.17429025]
30%|███ | 30/100 [00:18<00:43, 1.61steps/s, loss=0.17429025]
30%|███ | 30/100 [00:18<00:43, 1.61steps/s, loss=0.17731792]
31%|███ | 31/100 [00:19<00:42, 1.61steps/s, loss=0.17731792]
31%|███ | 31/100 [00:19<00:42, 1.61steps/s, loss=0.17195666]
32%|███▏ | 32/100 [00:20<00:47, 1.44steps/s, loss=0.17195666]
32%|███▏ | 32/100 [00:20<00:47, 1.44steps/s, loss=0.17121576]
33%|███▎ | 33/100 [00:21<00:44, 1.49steps/s, loss=0.17121576]
33%|███▎ | 33/100 [00:21<00:44, 1.49steps/s, loss=0.17944302]
34%|███▍ | 34/100 [00:21<00:43, 1.52steps/s, loss=0.17944302]
34%|███▍ | 34/100 [00:21<00:43, 1.52steps/s, loss=0.17257759]
35%|███▌ | 35/100 [00:22<00:42, 1.53steps/s, loss=0.17257759]
35%|███▌ | 35/100 [00:22<00:42, 1.53steps/s, loss=0.16840206]
36%|███▌ | 36/100 [00:22<00:41, 1.53steps/s, loss=0.16840206]
36%|███▌ | 36/100 [00:23<00:41, 1.53steps/s, loss=0.18006782]
37%|███▋ | 37/100 [00:23<00:41, 1.54steps/s, loss=0.18006782]
37%|███▋ | 37/100 [00:23<00:41, 1.54steps/s, loss=0.17481273]
38%|███▊ | 38/100 [00:24<00:39, 1.56steps/s, loss=0.17481273]
38%|███▊ | 38/100 [00:24<00:39, 1.56steps/s, loss=0.1853158]
39%|███▉ | 39/100 [00:24<00:38, 1.57steps/s, loss=0.1853158]
39%|███▉ | 39/100 [00:24<00:38, 1.57steps/s, loss=0.1727978]
40%|████ | 40/100 [00:25<00:37, 1.61steps/s, loss=0.1727978]
40%|████ | 40/100 [00:25<00:37, 1.61steps/s, loss=0.17947023]
41%|████ | 41/100 [00:26<00:40, 1.44steps/s, loss=0.17947023]
41%|████ | 41/100 [00:26<00:40, 1.44steps/s, loss=0.17378624]
42%|████▏ | 42/100 [00:26<00:39, 1.48steps/s, loss=0.17378624]
42%|████▏ | 42/100 [00:26<00:39, 1.48steps/s, loss=0.17114894]
43%|████▎ | 43/100 [00:27<00:37, 1.52steps/s, loss=0.17114894]
43%|████▎ | 43/100 [00:27<00:37, 1.52steps/s, loss=0.19049168]
44%|████▍ | 44/100 [00:28<00:36, 1.55steps/s, loss=0.19049168]
44%|████▍ | 44/100 [00:28<00:36, 1.55steps/s, loss=0.19654635]
45%|████▌ | 45/100 [00:28<00:35, 1.56steps/s, loss=0.19654635]
45%|████▌ | 45/100 [00:28<00:35, 1.56steps/s, loss=0.17718601]
46%|████▌ | 46/100 [00:29<00:34, 1.57steps/s, loss=0.17718601]
46%|████▌ | 46/100 [00:29<00:34, 1.57steps/s, loss=0.16951269]
47%|████▋ | 47/100 [00:30<00:34, 1.52steps/s, loss=0.16951269]
47%|████▋ | 47/100 [00:30<00:34, 1.52steps/s, loss=0.18368696]
48%|████▊ | 48/100 [00:30<00:33, 1.55steps/s, loss=0.18368696]
48%|████▊ | 48/100 [00:30<00:33, 1.55steps/s, loss=0.1840567]
49%|████▉ | 49/100 [00:31<00:32, 1.56steps/s, loss=0.1840567]
49%|████▉ | 49/100 [00:31<00:32, 1.56steps/s, loss=0.18350102]
50%|█████ | 50/100 [00:32<00:35, 1.41steps/s, loss=0.18350102]
50%|█████ | 50/100 [00:32<00:35, 1.41steps/s, loss=0.18582521]
51%|█████ | 51/100 [00:32<00:33, 1.46steps/s, loss=0.18582521]
51%|█████ | 51/100 [00:32<00:33, 1.46steps/s, loss=0.16811167]
52%|█████▏ | 52/100 [00:33<00:31, 1.51steps/s, loss=0.16811167]
52%|█████▏ | 52/100 [00:33<00:31, 1.51steps/s, loss=0.16342577]
53%|█████▎ | 53/100 [00:34<00:30, 1.56steps/s, loss=0.16342577]
53%|█████▎ | 53/100 [00:34<00:30, 1.56steps/s, loss=0.19539766]
54%|█████▍ | 54/100 [00:34<00:28, 1.60steps/s, loss=0.19539766]
54%|█████▍ | 54/100 [00:34<00:28, 1.60steps/s, loss=0.19809319]
55%|█████▌ | 55/100 [00:35<00:27, 1.62steps/s, loss=0.19809319]
55%|█████▌ | 55/100 [00:35<00:27, 1.62steps/s, loss=0.17237535]
56%|█████▌ | 56/100 [00:35<00:26, 1.64steps/s, loss=0.17237535]
56%|█████▌ | 56/100 [00:35<00:26, 1.64steps/s, loss=0.19342767]
57%|█████▋ | 57/100 [00:36<00:26, 1.65steps/s, loss=0.19342767]
57%|█████▋ | 57/100 [00:36<00:26, 1.65steps/s, loss=0.22671656]
58%|█████▊ | 58/100 [00:37<00:25, 1.66steps/s, loss=0.22671656]
58%|█████▊ | 58/100 [00:37<00:25, 1.66steps/s, loss=0.20013656]
59%|█████▉ | 59/100 [00:37<00:27, 1.47steps/s, loss=0.20013656]
59%|█████▉ | 59/100 [00:37<00:27, 1.47steps/s, loss=0.18472166]
60%|██████ | 60/100 [00:38<00:26, 1.53steps/s, loss=0.18472166]
60%|██████ | 60/100 [00:38<00:26, 1.53steps/s, loss=0.19133647]
61%|██████ | 61/100 [00:39<00:24, 1.57steps/s, loss=0.19133647]
61%|██████ | 61/100 [00:39<00:24, 1.57steps/s, loss=0.18405193]
62%|██████▏ | 62/100 [00:39<00:23, 1.62steps/s, loss=0.18405193]
62%|██████▏ | 62/100 [00:39<00:23, 1.62steps/s, loss=0.19334275]
63%|██████▎ | 63/100 [00:40<00:22, 1.63steps/s, loss=0.19334275]
63%|██████▎ | 63/100 [00:40<00:22, 1.63steps/s, loss=0.20620486]
64%|██████▍ | 64/100 [00:40<00:22, 1.63steps/s, loss=0.20620486]
64%|██████▍ | 64/100 [00:40<00:22, 1.63steps/s, loss=0.19423181]
65%|██████▌ | 65/100 [00:41<00:21, 1.65steps/s, loss=0.19423181]
65%|██████▌ | 65/100 [00:41<00:21, 1.65steps/s, loss=0.16533925]
66%|██████▌ | 66/100 [00:42<00:20, 1.65steps/s, loss=0.16533925]
66%|██████▌ | 66/100 [00:42<00:20, 1.65steps/s, loss=0.15595402]
67%|██████▋ | 67/100 [00:42<00:19, 1.66steps/s, loss=0.15595402]
67%|██████▋ | 67/100 [00:42<00:19, 1.66steps/s, loss=0.1697476]
68%|██████▊ | 68/100 [00:43<00:21, 1.47steps/s, loss=0.1697476]
68%|██████▊ | 68/100 [00:43<00:21, 1.47steps/s, loss=0.17558259]
69%|██████▉ | 69/100 [00:44<00:20, 1.52steps/s, loss=0.17558259]
69%|██████▉ | 69/100 [00:44<00:20, 1.52steps/s, loss=0.17463143]
70%|███████ | 70/100 [00:44<00:19, 1.55steps/s, loss=0.17463143]
70%|███████ | 70/100 [00:44<00:19, 1.55steps/s, loss=0.16605735]
71%|███████ | 71/100 [00:45<00:18, 1.58steps/s, loss=0.16605735]
71%|███████ | 71/100 [00:45<00:18, 1.58steps/s, loss=0.15813538]
72%|███████▏ | 72/100 [00:45<00:17, 1.60steps/s, loss=0.15813538]
72%|███████▏ | 72/100 [00:46<00:17, 1.60steps/s, loss=0.16229036]
73%|███████▎ | 73/100 [00:46<00:16, 1.61steps/s, loss=0.16229036]
73%|███████▎ | 73/100 [00:46<00:16, 1.61steps/s, loss=0.16321911]
74%|███████▍ | 74/100 [00:47<00:15, 1.63steps/s, loss=0.16321911]
74%|███████▍ | 74/100 [00:47<00:15, 1.63steps/s, loss=0.16027236]
75%|███████▌ | 75/100 [00:47<00:15, 1.66steps/s, loss=0.16027236]
75%|███████▌ | 75/100 [00:47<00:15, 1.66steps/s, loss=0.16013667]
76%|███████▌ | 76/100 [00:48<00:14, 1.67steps/s, loss=0.16013667]
76%|███████▌ | 76/100 [00:48<00:14, 1.67steps/s, loss=0.15670092]
77%|███████▋ | 77/100 [00:49<00:15, 1.49steps/s, loss=0.15670092]
77%|███████▋ | 77/100 [00:49<00:15, 1.49steps/s, loss=0.15767914]
78%|███████▊ | 78/100 [00:49<00:14, 1.55steps/s, loss=0.15767914]
78%|███████▊ | 78/100 [00:49<00:14, 1.55steps/s, loss=0.15458287]
79%|███████▉ | 79/100 [00:50<00:13, 1.60steps/s, loss=0.15458287]
79%|███████▉ | 79/100 [00:50<00:13, 1.60steps/s, loss=0.15336718]
80%|████████ | 80/100 [00:50<00:12, 1.62steps/s, loss=0.15336718]
80%|████████ | 80/100 [00:51<00:12, 1.62steps/s, loss=0.16159128]
81%|████████ | 81/100 [00:51<00:11, 1.64steps/s, loss=0.16159128]
81%|████████ | 81/100 [00:51<00:11, 1.64steps/s, loss=0.15453888]
82%|████████▏ | 82/100 [00:52<00:11, 1.61steps/s, loss=0.15453888]
82%|████████▏ | 82/100 [00:52<00:11, 1.61steps/s, loss=0.15074255]
83%|████████▎ | 83/100 [00:52<00:10, 1.61steps/s, loss=0.15074255]
83%|████████▎ | 83/100 [00:52<00:10, 1.61steps/s, loss=0.16050342]
84%|████████▍ | 84/100 [00:53<00:09, 1.65steps/s, loss=0.16050342]
84%|████████▍ | 84/100 [00:53<00:09, 1.65steps/s, loss=0.1638335]
85%|████████▌ | 85/100 [00:53<00:09, 1.66steps/s, loss=0.1638335]
85%|████████▌ | 85/100 [00:54<00:09, 1.66steps/s, loss=0.1607704]
86%|████████▌ | 86/100 [00:54<00:08, 1.67steps/s, loss=0.1607704]
86%|████████▌ | 86/100 [00:54<00:08, 1.67steps/s, loss=0.15546875]
87%|████████▋ | 87/100 [00:55<00:08, 1.49steps/s, loss=0.15546875]
87%|████████▋ | 87/100 [00:55<00:08, 1.49steps/s, loss=0.15626267]
88%|████████▊ | 88/100 [00:55<00:07, 1.56steps/s, loss=0.15626267]
88%|████████▊ | 88/100 [00:56<00:07, 1.56steps/s, loss=0.1542931]
89%|████████▉ | 89/100 [00:56<00:06, 1.59steps/s, loss=0.1542931]
89%|████████▉ | 89/100 [00:56<00:06, 1.59steps/s, loss=0.15126869]
90%|█████████ | 90/100 [00:57<00:06, 1.61steps/s, loss=0.15126869]
90%|█████████ | 90/100 [00:57<00:06, 1.61steps/s, loss=0.14895348]
91%|█████████ | 91/100 [00:57<00:05, 1.65steps/s, loss=0.14895348]
91%|█████████ | 91/100 [00:57<00:05, 1.65steps/s, loss=0.14730357]
92%|█████████▏| 92/100 [00:58<00:04, 1.65steps/s, loss=0.14730357]
92%|█████████▏| 92/100 [00:58<00:04, 1.65steps/s, loss=0.14754704]
93%|█████████▎| 93/100 [00:58<00:04, 1.66steps/s, loss=0.14754704]
93%|█████████▎| 93/100 [00:58<00:04, 1.66steps/s, loss=0.1475174]
94%|█████████▍| 94/100 [00:59<00:03, 1.69steps/s, loss=0.1475174]
94%|█████████▍| 94/100 [00:59<00:03, 1.69steps/s, loss=0.14628705]
95%|█████████▌| 95/100 [01:00<00:02, 1.67steps/s, loss=0.14628705]
95%|█████████▌| 95/100 [01:00<00:02, 1.67steps/s, loss=0.14485833]
96%|█████████▌| 96/100 [01:01<00:02, 1.46steps/s, loss=0.14485833]
96%|█████████▌| 96/100 [01:01<00:02, 1.46steps/s, loss=0.1442787]
97%|█████████▋| 97/100 [01:01<00:01, 1.51steps/s, loss=0.1442787]
97%|█████████▋| 97/100 [01:01<00:01, 1.51steps/s, loss=0.14550205]
98%|█████████▊| 98/100 [01:02<00:01, 1.52steps/s, loss=0.14550205]
98%|█████████▊| 98/100 [01:02<00:01, 1.52steps/s, loss=0.14667389]
99%|█████████▉| 99/100 [01:02<00:00, 1.55steps/s, loss=0.14667389]
99%|█████████▉| 99/100 [01:02<00:00, 1.55steps/s, loss=0.14617221]
100%|██████████| 100/100 [01:03<00:00, 1.58steps/s, loss=0.14617221]
100%|██████████| 100/100 [01:03<00:00, 1.57steps/s, loss=0.14617221]
+
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.29846054]
1%| | 1/100 [00:00<01:19, 1.25steps/s, loss=0.29846054]
1%| | 1/100 [00:00<01:19, 1.25steps/s, loss=0.3689686]
2%|▏ | 2/100 [00:01<01:17, 1.26steps/s, loss=0.3689686]
2%|▏ | 2/100 [00:01<01:17, 1.26steps/s, loss=0.32927838]
3%|▎ | 3/100 [00:02<01:17, 1.25steps/s, loss=0.32927838]
3%|▎ | 3/100 [00:02<01:17, 1.25steps/s, loss=0.2750253]
4%|▍ | 4/100 [00:03<01:21, 1.18steps/s, loss=0.2750253]
4%|▍ | 4/100 [00:03<01:21, 1.18steps/s, loss=0.28079417]
5%|▌ | 5/100 [00:04<01:27, 1.08steps/s, loss=0.28079417]
5%|▌ | 5/100 [00:04<01:27, 1.08steps/s, loss=0.25754797]
6%|▌ | 6/100 [00:05<01:25, 1.10steps/s, loss=0.25754797]
6%|▌ | 6/100 [00:05<01:25, 1.10steps/s, loss=0.2538077]
7%|▋ | 7/100 [00:06<01:24, 1.11steps/s, loss=0.2538077]
7%|▋ | 7/100 [00:06<01:24, 1.11steps/s, loss=0.24579924]
8%|▊ | 8/100 [00:07<01:23, 1.10steps/s, loss=0.24579924]
8%|▊ | 8/100 [00:07<01:23, 1.10steps/s, loss=0.23230928]
9%|▉ | 9/100 [00:07<01:20, 1.13steps/s, loss=0.23230928]
9%|▉ | 9/100 [00:08<01:20, 1.13steps/s, loss=0.23156106]
10%|█ | 10/100 [00:08<01:23, 1.08steps/s, loss=0.23156106]
10%|█ | 10/100 [00:08<01:23, 1.08steps/s, loss=0.22193418]
11%|█ | 11/100 [00:09<01:21, 1.10steps/s, loss=0.22193418]
11%|█ | 11/100 [00:09<01:21, 1.10steps/s, loss=0.21463338]
12%|█▏ | 12/100 [00:10<01:17, 1.14steps/s, loss=0.21463338]
12%|█▏ | 12/100 [00:10<01:17, 1.14steps/s, loss=0.21372586]
13%|█▎ | 13/100 [00:11<01:17, 1.12steps/s, loss=0.21372586]
13%|█▎ | 13/100 [00:11<01:17, 1.12steps/s, loss=0.20630522]
14%|█▍ | 14/100 [00:12<01:25, 1.01steps/s, loss=0.20630522]
14%|█▍ | 14/100 [00:12<01:25, 1.01steps/s, loss=0.20360082]
15%|█▌ | 15/100 [00:13<01:19, 1.06steps/s, loss=0.20360082]
15%|█▌ | 15/100 [00:13<01:19, 1.06steps/s, loss=0.20246309]
16%|█▌ | 16/100 [00:14<01:18, 1.07steps/s, loss=0.20246309]
16%|█▌ | 16/100 [00:14<01:18, 1.07steps/s, loss=0.19442748]
17%|█▋ | 17/100 [00:15<01:19, 1.04steps/s, loss=0.19442748]
17%|█▋ | 17/100 [00:15<01:19, 1.04steps/s, loss=0.19917764]
18%|█▊ | 18/100 [00:16<01:21, 1.01steps/s, loss=0.19917764]
18%|█▊ | 18/100 [00:16<01:21, 1.01steps/s, loss=0.19298527]
19%|█▉ | 19/100 [00:17<01:18, 1.03steps/s, loss=0.19298527]
19%|█▉ | 19/100 [00:17<01:18, 1.03steps/s, loss=0.18807751]
20%|██ | 20/100 [00:18<01:14, 1.08steps/s, loss=0.18807751]
20%|██ | 20/100 [00:18<01:14, 1.08steps/s, loss=0.18820126]
21%|██ | 21/100 [00:19<01:13, 1.07steps/s, loss=0.18820126]
21%|██ | 21/100 [00:19<01:13, 1.07steps/s, loss=0.18982118]
22%|██▏ | 22/100 [00:20<01:12, 1.07steps/s, loss=0.18982118]
22%|██▏ | 22/100 [00:20<01:12, 1.07steps/s, loss=0.18485841]
23%|██▎ | 23/100 [00:21<01:16, 1.01steps/s, loss=0.18485841]
23%|██▎ | 23/100 [00:21<01:16, 1.01steps/s, loss=0.18736681]
24%|██▍ | 24/100 [00:22<01:11, 1.06steps/s, loss=0.18736681]
24%|██▍ | 24/100 [00:22<01:11, 1.06steps/s, loss=0.18375771]
25%|██▌ | 25/100 [00:23<01:08, 1.09steps/s, loss=0.18375771]
25%|██▌ | 25/100 [00:23<01:08, 1.09steps/s, loss=0.17822789]
26%|██▌ | 26/100 [00:23<01:08, 1.09steps/s, loss=0.17822789]
26%|██▌ | 26/100 [00:24<01:08, 1.09steps/s, loss=0.1772186]
27%|██▋ | 27/100 [00:24<01:06, 1.10steps/s, loss=0.1772186]
27%|██▋ | 27/100 [00:24<01:06, 1.10steps/s, loss=0.17803413]
28%|██▊ | 28/100 [00:25<01:04, 1.12steps/s, loss=0.17803413]
28%|██▊ | 28/100 [00:25<01:04, 1.12steps/s, loss=0.17412044]
29%|██▉ | 29/100 [00:26<01:01, 1.15steps/s, loss=0.17412044]
29%|██▉ | 29/100 [00:26<01:01, 1.15steps/s, loss=0.1726761]
30%|███ | 30/100 [00:27<01:03, 1.10steps/s, loss=0.1726761]
30%|███ | 30/100 [00:27<01:03, 1.10steps/s, loss=0.17611918]
31%|███ | 31/100 [00:28<01:01, 1.11steps/s, loss=0.17611918]
31%|███ | 31/100 [00:28<01:01, 1.11steps/s, loss=0.1732598]
32%|███▏ | 32/100 [00:29<01:07, 1.00steps/s, loss=0.1732598]
32%|███▏ | 32/100 [00:29<01:07, 1.00steps/s, loss=0.17581709]
33%|███▎ | 33/100 [00:30<01:02, 1.07steps/s, loss=0.17581709]
33%|███▎ | 33/100 [00:30<01:02, 1.07steps/s, loss=0.17630792]
34%|███▍ | 34/100 [00:31<01:00, 1.09steps/s, loss=0.17630792]
34%|███▍ | 34/100 [00:31<01:00, 1.09steps/s, loss=0.17170073]
35%|███▌ | 35/100 [00:32<00:57, 1.13steps/s, loss=0.17170073]
35%|███▌ | 35/100 [00:32<00:57, 1.13steps/s, loss=0.18032272]
36%|███▌ | 36/100 [00:32<00:56, 1.13steps/s, loss=0.18032272]
36%|███▌ | 36/100 [00:33<00:56, 1.13steps/s, loss=0.19210754]
37%|███▋ | 37/100 [00:33<00:54, 1.15steps/s, loss=0.19210754]
37%|███▋ | 37/100 [00:33<00:54, 1.15steps/s, loss=0.18416104]
38%|███▊ | 38/100 [00:34<00:54, 1.13steps/s, loss=0.18416104]
38%|███▊ | 38/100 [00:34<00:54, 1.13steps/s, loss=0.18714672]
39%|███▉ | 39/100 [00:35<00:54, 1.13steps/s, loss=0.18714672]
39%|███▉ | 39/100 [00:35<00:54, 1.13steps/s, loss=0.18177575]
40%|████ | 40/100 [00:36<00:56, 1.07steps/s, loss=0.18177575]
40%|████ | 40/100 [00:36<00:56, 1.07steps/s, loss=0.19532079]
41%|████ | 41/100 [00:38<01:03, 1.08s/steps, loss=0.19532079]
41%|████ | 41/100 [00:38<01:03, 1.08s/steps, loss=0.18011482]
42%|████▏ | 42/100 [00:38<00:59, 1.03s/steps, loss=0.18011482]
42%|████▏ | 42/100 [00:39<00:59, 1.03s/steps, loss=0.18400382]
43%|████▎ | 43/100 [00:39<00:55, 1.03steps/s, loss=0.18400382]
43%|████▎ | 43/100 [00:39<00:55, 1.03steps/s, loss=0.18835369]
44%|████▍ | 44/100 [00:40<00:55, 1.01steps/s, loss=0.18835369]
44%|████▍ | 44/100 [00:40<00:55, 1.01steps/s, loss=0.17555676]
45%|████▌ | 45/100 [00:41<00:51, 1.07steps/s, loss=0.17555676]
45%|████▌ | 45/100 [00:41<00:51, 1.07steps/s, loss=0.17767893]
46%|████▌ | 46/100 [00:42<00:49, 1.08steps/s, loss=0.17767893]
46%|████▌ | 46/100 [00:42<00:49, 1.08steps/s, loss=0.19471116]
47%|████▋ | 47/100 [00:43<00:48, 1.09steps/s, loss=0.19471116]
47%|████▋ | 47/100 [00:43<00:48, 1.09steps/s, loss=0.17612791]
48%|████▊ | 48/100 [00:44<00:46, 1.11steps/s, loss=0.17612791]
48%|████▊ | 48/100 [00:44<00:46, 1.11steps/s, loss=0.16821462]
49%|████▉ | 49/100 [00:45<00:46, 1.09steps/s, loss=0.16821462]
49%|████▉ | 49/100 [00:45<00:46, 1.09steps/s, loss=0.17134377]
50%|█████ | 50/100 [00:46<00:50, 1.00s/steps, loss=0.17134377]
50%|█████ | 50/100 [00:46<00:50, 1.00s/steps, loss=0.17345239]
51%|█████ | 51/100 [00:47<00:48, 1.02steps/s, loss=0.17345239]
51%|█████ | 51/100 [00:47<00:48, 1.02steps/s, loss=0.1731297]
52%|█████▏ | 52/100 [00:48<00:44, 1.08steps/s, loss=0.1731297]
52%|█████▏ | 52/100 [00:48<00:44, 1.08steps/s, loss=0.18085182]
53%|█████▎ | 53/100 [00:49<00:44, 1.06steps/s, loss=0.18085182]
53%|█████▎ | 53/100 [00:49<00:44, 1.06steps/s, loss=0.19654997]
54%|█████▍ | 54/100 [00:50<00:42, 1.08steps/s, loss=0.19654997]
54%|█████▍ | 54/100 [00:50<00:42, 1.08steps/s, loss=0.18421724]
55%|█████▌ | 55/100 [00:51<00:42, 1.07steps/s, loss=0.18421724]
55%|█████▌ | 55/100 [00:51<00:42, 1.07steps/s, loss=0.1801417]
56%|█████▌ | 56/100 [00:51<00:39, 1.12steps/s, loss=0.1801417]
56%|█████▌ | 56/100 [00:51<00:39, 1.12steps/s, loss=0.18862619]
57%|█████▋ | 57/100 [00:52<00:39, 1.09steps/s, loss=0.18862619]
57%|█████▋ | 57/100 [00:52<00:39, 1.09steps/s, loss=0.17978385]
58%|█████▊ | 58/100 [00:54<00:42, 1.01s/steps, loss=0.17978385]
58%|█████▊ | 58/100 [00:54<00:42, 1.01s/steps, loss=0.17411658]
59%|█████▉ | 59/100 [00:54<00:39, 1.04steps/s, loss=0.17411658]
59%|█████▉ | 59/100 [00:55<00:39, 1.04steps/s, loss=0.19177033]
60%|██████ | 60/100 [00:55<00:38, 1.04steps/s, loss=0.19177033]
60%|██████ | 60/100 [00:56<00:38, 1.04steps/s, loss=0.17577013]
61%|██████ | 61/100 [00:56<00:37, 1.05steps/s, loss=0.17577013]
61%|██████ | 61/100 [00:56<00:37, 1.05steps/s, loss=0.17406955]
62%|██████▏ | 62/100 [00:57<00:37, 1.01steps/s, loss=0.17406955]
62%|██████▏ | 62/100 [00:57<00:37, 1.01steps/s, loss=0.1718509]
63%|██████▎ | 63/100 [00:58<00:36, 1.00steps/s, loss=0.1718509]
63%|██████▎ | 63/100 [00:59<00:36, 1.00steps/s, loss=0.16863213]
64%|██████▍ | 64/100 [00:59<00:34, 1.04steps/s, loss=0.16863213]
64%|██████▍ | 64/100 [00:59<00:34, 1.04steps/s, loss=0.16179836]
65%|██████▌ | 65/100 [01:00<00:33, 1.03steps/s, loss=0.16179836]
65%|██████▌ | 65/100 [01:00<00:33, 1.03steps/s, loss=0.16429316]
66%|██████▌ | 66/100 [01:01<00:32, 1.05steps/s, loss=0.16429316]
66%|██████▌ | 66/100 [01:01<00:32, 1.05steps/s, loss=0.17381014]
67%|██████▋ | 67/100 [01:02<00:34, 1.05s/steps, loss=0.17381014]
67%|██████▋ | 67/100 [01:03<00:34, 1.05s/steps, loss=0.17864537]
68%|██████▊ | 68/100 [01:03<00:32, 1.01s/steps, loss=0.17864537]
68%|██████▊ | 68/100 [01:03<00:32, 1.01s/steps, loss=0.1662642]
69%|██████▉ | 69/100 [01:04<00:30, 1.03steps/s, loss=0.1662642]
69%|██████▉ | 69/100 [01:04<00:30, 1.03steps/s, loss=0.16236798]
70%|███████ | 70/100 [01:05<00:28, 1.04steps/s, loss=0.16236798]
70%|███████ | 70/100 [01:05<00:28, 1.04steps/s, loss=0.17507581]
71%|███████ | 71/100 [01:06<00:28, 1.01steps/s, loss=0.17507581]
71%|███████ | 71/100 [01:06<00:28, 1.01steps/s, loss=0.17435363]
72%|███████▏ | 72/100 [01:07<00:27, 1.03steps/s, loss=0.17435363]
72%|███████▏ | 72/100 [01:07<00:27, 1.03steps/s, loss=0.16396594]
73%|███████▎ | 73/100 [01:08<00:26, 1.03steps/s, loss=0.16396594]
73%|███████▎ | 73/100 [01:08<00:26, 1.03steps/s, loss=0.15507501]
74%|███████▍ | 74/100 [01:09<00:24, 1.07steps/s, loss=0.15507501]
74%|███████▍ | 74/100 [01:09<00:24, 1.07steps/s, loss=0.15924759]
75%|███████▌ | 75/100 [01:10<00:23, 1.07steps/s, loss=0.15924759]
75%|███████▌ | 75/100 [01:10<00:23, 1.07steps/s, loss=0.15909116]
76%|███████▌ | 76/100 [01:11<00:22, 1.04steps/s, loss=0.15909116]
76%|███████▌ | 76/100 [01:11<00:22, 1.04steps/s, loss=0.15092777]
77%|███████▋ | 77/100 [01:12<00:24, 1.05s/steps, loss=0.15092777]
77%|███████▋ | 77/100 [01:12<00:24, 1.05s/steps, loss=0.14704235]
78%|███████▊ | 78/100 [01:13<00:21, 1.04steps/s, loss=0.14704235]
78%|███████▊ | 78/100 [01:13<00:21, 1.04steps/s, loss=0.147963]
79%|███████▉ | 79/100 [01:14<00:19, 1.07steps/s, loss=0.147963]
79%|███████▉ | 79/100 [01:14<00:19, 1.07steps/s, loss=0.1527217]
80%|████████ | 80/100 [01:15<00:18, 1.10steps/s, loss=0.1527217]
80%|████████ | 80/100 [01:15<00:18, 1.10steps/s, loss=0.1538513]
81%|████████ | 81/100 [01:16<00:17, 1.09steps/s, loss=0.1538513]
81%|████████ | 81/100 [01:16<00:17, 1.09steps/s, loss=0.14883748]
82%|████████▏ | 82/100 [01:17<00:17, 1.04steps/s, loss=0.14883748]
82%|████████▏ | 82/100 [01:17<00:17, 1.04steps/s, loss=0.14335246]
83%|████████▎ | 83/100 [01:17<00:15, 1.10steps/s, loss=0.14335246]
83%|████████▎ | 83/100 [01:18<00:15, 1.10steps/s, loss=0.14325026]
84%|████████▍ | 84/100 [01:18<00:14, 1.08steps/s, loss=0.14325026]
84%|████████▍ | 84/100 [01:19<00:14, 1.08steps/s, loss=0.1463395]
85%|████████▌ | 85/100 [01:19<00:13, 1.10steps/s, loss=0.1463395]
85%|████████▌ | 85/100 [01:19<00:13, 1.10steps/s, loss=0.14458439]
86%|████████▌ | 86/100 [01:20<00:13, 1.04steps/s, loss=0.14458439]
86%|████████▌ | 86/100 [01:20<00:13, 1.04steps/s, loss=0.14228334]
87%|████████▋ | 87/100 [01:21<00:12, 1.05steps/s, loss=0.14228334]
87%|████████▋ | 87/100 [01:21<00:12, 1.05steps/s, loss=0.14015967]
88%|████████▊ | 88/100 [01:22<00:10, 1.10steps/s, loss=0.14015967]
88%|████████▊ | 88/100 [01:22<00:10, 1.10steps/s, loss=0.14077842]
89%|████████▉ | 89/100 [01:23<00:09, 1.12steps/s, loss=0.14077842]
89%|████████▉ | 89/100 [01:23<00:09, 1.12steps/s, loss=0.14319621]
90%|█████████ | 90/100 [01:24<00:08, 1.11steps/s, loss=0.14319621]
90%|█████████ | 90/100 [01:24<00:08, 1.11steps/s, loss=0.14542027]
91%|█████████ | 91/100 [01:25<00:08, 1.06steps/s, loss=0.14542027]
91%|█████████ | 91/100 [01:25<00:08, 1.06steps/s, loss=0.1429341]
92%|█████████▏| 92/100 [01:26<00:07, 1.06steps/s, loss=0.1429341]
92%|█████████▏| 92/100 [01:26<00:07, 1.06steps/s, loss=0.13917276]
93%|█████████▎| 93/100 [01:27<00:06, 1.08steps/s, loss=0.13917276]
93%|█████████▎| 93/100 [01:27<00:06, 1.08steps/s, loss=0.13941216]
94%|█████████▍| 94/100 [01:28<00:05, 1.06steps/s, loss=0.13941216]
94%|█████████▍| 94/100 [01:28<00:05, 1.06steps/s, loss=0.14137284]
95%|█████████▌| 95/100 [01:29<00:04, 1.08steps/s, loss=0.14137284]
95%|█████████▌| 95/100 [01:29<00:04, 1.08steps/s, loss=0.14442754]
96%|█████████▌| 96/100 [01:30<00:04, 1.04s/steps, loss=0.14442754]
96%|█████████▌| 96/100 [01:30<00:04, 1.04s/steps, loss=0.1442872]
97%|█████████▋| 97/100 [01:31<00:02, 1.00steps/s, loss=0.1442872]
97%|█████████▋| 97/100 [01:31<00:02, 1.00steps/s, loss=0.14075558]
98%|█████████▊| 98/100 [01:32<00:01, 1.06steps/s, loss=0.14075558]
98%|█████████▊| 98/100 [01:32<00:01, 1.06steps/s, loss=0.13843985]
99%|█████████▉| 99/100 [01:33<00:00, 1.06steps/s, loss=0.13843985]
99%|█████████▉| 99/100 [01:33<00:00, 1.06steps/s, loss=0.13793497]
100%|██████████| 100/100 [01:34<00:00, 1.01steps/s, loss=0.13793497]
100%|██████████| 100/100 [01:34<00:00, 1.06steps/s, loss=0.13793497]
@@ -342,7 +342,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (1 minutes 9.613 seconds)
+ **Total running time of the script:** (1 minutes 42.418 seconds)
.. _sphx_glr_download_generated_autoexamples_GPU_example_learn_samples.py:
diff --git a/_sources/generated/autoexamples/GPU/example_learn_samples_multicoil.rst b/_sources/generated/autoexamples/GPU/example_learn_samples_multicoil.rst
index 6f3f62a9..478a9a51 100644
--- a/_sources/generated/autoexamples/GPU/example_learn_samples_multicoil.rst
+++ b/_sources/generated/autoexamples/GPU/example_learn_samples_multicoil.rst
@@ -334,9 +334,9 @@ Start training loop
.. code-block:: none
-
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.15466057]/volatile/github-ci-mind-inria/gpu_runner2/_work/_tool/Python/3.10.16/x64/lib/python3.10/site-packages/mrinufft/operators/autodiff.py:98: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at ../aten/src/ATen/native/Copy.cpp:308.)
+
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.15466064]/volatile/github-ci-mind-inria/gpu_runner2/_work/_tool/Python/3.10.16/x64/lib/python3.10/site-packages/mrinufft/operators/autodiff.py:98: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at ../aten/src/ATen/native/Copy.cpp:308.)
grad_traj = torch.transpose(torch.sum(grad_traj, dim=1), 0, 1).to(
-
1%| | 1/100 [00:00<01:19, 1.24steps/s, loss=0.15466057]
1%| | 1/100 [00:01<01:19, 1.24steps/s, loss=0.27207354]
2%|▏ | 2/100 [00:01<01:19, 1.23steps/s, loss=0.27207354]
2%|▏ | 2/100 [00:01<01:19, 1.23steps/s, loss=0.20702732]
3%|▎ | 3/100 [00:02<01:14, 1.29steps/s, loss=0.20702732]
3%|▎ | 3/100 [00:02<01:14, 1.29steps/s, loss=0.10874596]
4%|▍ | 4/100 [00:03<01:13, 1.30steps/s, loss=0.10874596]
4%|▍ | 4/100 [00:03<01:13, 1.30steps/s, loss=0.10940547]
5%|▌ | 5/100 [00:04<01:19, 1.19steps/s, loss=0.10940547]
5%|▌ | 5/100 [00:04<01:19, 1.19steps/s, loss=0.090777665]
6%|▌ | 6/100 [00:04<01:15, 1.24steps/s, loss=0.090777665]
6%|▌ | 6/100 [00:04<01:15, 1.24steps/s, loss=0.078347236]
7%|▋ | 7/100 [00:05<01:13, 1.27steps/s, loss=0.078347236]
7%|▋ | 7/100 [00:05<01:13, 1.27steps/s, loss=0.075285405]
8%|▊ | 8/100 [00:06<01:13, 1.26steps/s, loss=0.075285405]
8%|▊ | 8/100 [00:06<01:13, 1.26steps/s, loss=0.07379456]
9%|▉ | 9/100 [00:07<01:11, 1.28steps/s, loss=0.07379456]
9%|▉ | 9/100 [00:07<01:11, 1.28steps/s, loss=0.06926649]
10%|█ | 10/100 [00:07<01:09, 1.29steps/s, loss=0.06926649]
10%|█ | 10/100 [00:08<01:09, 1.29steps/s, loss=0.06616843]
11%|█ | 11/100 [00:08<01:07, 1.32steps/s, loss=0.06616843]
11%|█ | 11/100 [00:08<01:07, 1.32steps/s, loss=0.060779855]
12%|█▏ | 12/100 [00:09<01:06, 1.32steps/s, loss=0.060779855]
12%|█▏ | 12/100 [00:09<01:06, 1.32steps/s, loss=0.05777202]
13%|█▎ | 13/100 [00:10<01:05, 1.32steps/s, loss=0.05777202]
13%|█▎ | 13/100 [00:10<01:05, 1.32steps/s, loss=0.057181463]
14%|█▍ | 14/100 [00:11<01:12, 1.19steps/s, loss=0.057181463]
14%|█▍ | 14/100 [00:11<01:12, 1.19steps/s, loss=0.05437819]
15%|█▌ | 15/100 [00:11<01:09, 1.22steps/s, loss=0.05437819]
15%|█▌ | 15/100 [00:12<01:09, 1.22steps/s, loss=0.049355417]
16%|█▌ | 16/100 [00:12<01:06, 1.26steps/s, loss=0.049355417]
16%|█▌ | 16/100 [00:12<01:06, 1.26steps/s, loss=0.04799754]
17%|█▋ | 17/100 [00:13<01:05, 1.28steps/s, loss=0.04799754]
17%|█▋ | 17/100 [00:13<01:05, 1.28steps/s, loss=0.048110712]
18%|█▊ | 18/100 [00:14<01:03, 1.29steps/s, loss=0.048110712]
18%|█▊ | 18/100 [00:14<01:03, 1.29steps/s, loss=0.04958313]
19%|█▉ | 19/100 [00:14<01:02, 1.30steps/s, loss=0.04958313]
19%|█▉ | 19/100 [00:15<01:02, 1.30steps/s, loss=0.04525502]
20%|██ | 20/100 [00:15<01:00, 1.32steps/s, loss=0.04525502]
20%|██ | 20/100 [00:15<01:00, 1.32steps/s, loss=0.04285828]
21%|██ | 21/100 [00:16<00:59, 1.33steps/s, loss=0.04285828]
21%|██ | 21/100 [00:16<00:59, 1.33steps/s, loss=0.042458035]
22%|██▏ | 22/100 [00:17<00:58, 1.33steps/s, loss=0.042458035]
22%|██▏ | 22/100 [00:17<00:58, 1.33steps/s, loss=0.042137623]
23%|██▎ | 23/100 [00:17<00:58, 1.32steps/s, loss=0.042137623]
23%|██▎ | 23/100 [00:18<00:58, 1.32steps/s, loss=0.041424893]
24%|██▍ | 24/100 [00:18<01:02, 1.21steps/s, loss=0.041424893]
24%|██▍ | 24/100 [00:19<01:02, 1.21steps/s, loss=0.0410362]
25%|██▌ | 25/100 [00:19<01:00, 1.25steps/s, loss=0.0410362]
25%|██▌ | 25/100 [00:19<01:00, 1.25steps/s, loss=0.041995145]
26%|██▌ | 26/100 [00:20<00:58, 1.27steps/s, loss=0.041995145]
26%|██▌ | 26/100 [00:20<00:58, 1.27steps/s, loss=0.039720118]
27%|██▋ | 27/100 [00:21<00:57, 1.28steps/s, loss=0.039720118]
27%|██▋ | 27/100 [00:21<00:57, 1.28steps/s, loss=0.038430344]
28%|██▊ | 28/100 [00:21<00:56, 1.28steps/s, loss=0.038430344]
28%|██▊ | 28/100 [00:22<00:56, 1.28steps/s, loss=0.038571082]
29%|██▉ | 29/100 [00:22<00:55, 1.29steps/s, loss=0.038571082]
29%|██▉ | 29/100 [00:22<00:55, 1.29steps/s, loss=0.03850868]
30%|███ | 30/100 [00:23<00:54, 1.29steps/s, loss=0.03850868]
30%|███ | 30/100 [00:23<00:54, 1.29steps/s, loss=0.03744612]
31%|███ | 31/100 [00:24<00:52, 1.30steps/s, loss=0.03744612]
31%|███ | 31/100 [00:24<00:52, 1.30steps/s, loss=0.03647756]
32%|███▏ | 32/100 [00:25<00:52, 1.30steps/s, loss=0.03647756]
32%|███▏ | 32/100 [00:25<00:52, 1.30steps/s, loss=0.035803266]
33%|███▎ | 33/100 [00:26<00:56, 1.19steps/s, loss=0.035803266]
33%|███▎ | 33/100 [00:26<00:56, 1.19steps/s, loss=0.03453833]
34%|███▍ | 34/100 [00:26<00:54, 1.22steps/s, loss=0.03453833]
34%|███▍ | 34/100 [00:26<00:54, 1.22steps/s, loss=0.033704553]
35%|███▌ | 35/100 [00:27<00:52, 1.23steps/s, loss=0.033704553]
35%|███▌ | 35/100 [00:27<00:52, 1.23steps/s, loss=0.03316897]
36%|███▌ | 36/100 [00:28<00:51, 1.25steps/s, loss=0.03316897]
36%|███▌ | 36/100 [00:28<00:51, 1.25steps/s, loss=0.03351093]
37%|███▋ | 37/100 [00:29<00:51, 1.23steps/s, loss=0.03351093]
37%|███▋ | 37/100 [00:29<00:51, 1.23steps/s, loss=0.033341967]
38%|███▊ | 38/100 [00:29<00:48, 1.27steps/s, loss=0.033341967]
38%|███▊ | 38/100 [00:30<00:48, 1.27steps/s, loss=0.032699283]
39%|███▉ | 39/100 [00:30<00:47, 1.30steps/s, loss=0.032699283]
39%|███▉ | 39/100 [00:30<00:47, 1.30steps/s, loss=0.03281428]
40%|████ | 40/100 [00:31<00:45, 1.31steps/s, loss=0.03281428]
40%|████ | 40/100 [00:31<00:45, 1.31steps/s, loss=0.0334577]
41%|████ | 41/100 [00:32<00:44, 1.32steps/s, loss=0.0334577]
41%|████ | 41/100 [00:32<00:44, 1.32steps/s, loss=0.033260126]
42%|████▏ | 42/100 [00:32<00:43, 1.32steps/s, loss=0.033260126]
42%|████▏ | 42/100 [00:33<00:43, 1.32steps/s, loss=0.032643512]
43%|████▎ | 43/100 [00:33<00:47, 1.20steps/s, loss=0.032643512]
43%|████▎ | 43/100 [00:34<00:47, 1.20steps/s, loss=0.031519454]
44%|████▍ | 44/100 [00:34<00:45, 1.22steps/s, loss=0.031519454]
44%|████▍ | 44/100 [00:34<00:45, 1.22steps/s, loss=0.031197306]
45%|████▌ | 45/100 [00:35<00:43, 1.25steps/s, loss=0.031197306]
45%|████▌ | 45/100 [00:35<00:43, 1.25steps/s, loss=0.031756017]
46%|████▌ | 46/100 [00:36<00:42, 1.28steps/s, loss=0.031756017]
46%|████▌ | 46/100 [00:36<00:42, 1.28steps/s, loss=0.031282067]
47%|████▋ | 47/100 [00:36<00:40, 1.30steps/s, loss=0.031282067]
47%|████▋ | 47/100 [00:37<00:40, 1.30steps/s, loss=0.030566476]
48%|████▊ | 48/100 [00:37<00:39, 1.31steps/s, loss=0.030566476]
48%|████▊ | 48/100 [00:37<00:39, 1.31steps/s, loss=0.0308539]
49%|████▉ | 49/100 [00:38<00:38, 1.32steps/s, loss=0.0308539]
49%|████▉ | 49/100 [00:38<00:38, 1.32steps/s, loss=0.030780796]
50%|█████ | 50/100 [00:39<00:37, 1.32steps/s, loss=0.030780796]
50%|█████ | 50/100 [00:39<00:37, 1.32steps/s, loss=0.03049307]
51%|█████ | 51/100 [00:39<00:37, 1.32steps/s, loss=0.03049307]
51%|█████ | 51/100 [00:40<00:37, 1.32steps/s, loss=0.030072369]
52%|█████▏ | 52/100 [00:40<00:36, 1.32steps/s, loss=0.030072369]
52%|█████▏ | 52/100 [00:40<00:36, 1.32steps/s, loss=0.029703412]
53%|█████▎ | 53/100 [00:41<00:39, 1.20steps/s, loss=0.029703412]
53%|█████▎ | 53/100 [00:41<00:39, 1.20steps/s, loss=0.029204093]
54%|█████▍ | 54/100 [00:42<00:37, 1.23steps/s, loss=0.029204093]
54%|█████▍ | 54/100 [00:42<00:37, 1.23steps/s, loss=0.029106542]
55%|█████▌ | 55/100 [00:43<00:35, 1.27steps/s, loss=0.029106542]
55%|█████▌ | 55/100 [00:43<00:35, 1.27steps/s, loss=0.028936872]
56%|█████▌ | 56/100 [00:43<00:34, 1.28steps/s, loss=0.028936872]
56%|█████▌ | 56/100 [00:44<00:34, 1.28steps/s, loss=0.029272482]
57%|█████▋ | 57/100 [00:44<00:33, 1.29steps/s, loss=0.029272482]
57%|█████▋ | 57/100 [00:44<00:33, 1.29steps/s, loss=0.028920116]
58%|█████▊ | 58/100 [00:45<00:32, 1.30steps/s, loss=0.028920116]
58%|█████▊ | 58/100 [00:45<00:32, 1.30steps/s, loss=0.028561026]
59%|█████▉ | 59/100 [00:46<00:31, 1.29steps/s, loss=0.028561026]
59%|█████▉ | 59/100 [00:46<00:31, 1.29steps/s, loss=0.028568935]
60%|██████ | 60/100 [00:47<00:30, 1.31steps/s, loss=0.028568935]
60%|██████ | 60/100 [00:47<00:30, 1.31steps/s, loss=0.02799961]
61%|██████ | 61/100 [00:47<00:29, 1.31steps/s, loss=0.02799961]
61%|██████ | 61/100 [00:47<00:29, 1.31steps/s, loss=0.02775712]
62%|██████▏ | 62/100 [00:48<00:28, 1.32steps/s, loss=0.02775712]
62%|██████▏ | 62/100 [00:48<00:28, 1.32steps/s, loss=0.027618539]
63%|██████▎ | 63/100 [00:49<00:31, 1.19steps/s, loss=0.027618539]
63%|██████▎ | 63/100 [00:49<00:31, 1.19steps/s, loss=0.027648518]
64%|██████▍ | 64/100 [00:50<00:29, 1.23steps/s, loss=0.027648518]
64%|██████▍ | 64/100 [00:50<00:29, 1.23steps/s, loss=0.02765216]
65%|██████▌ | 65/100 [00:51<00:28, 1.25steps/s, loss=0.02765216]
65%|██████▌ | 65/100 [00:51<00:28, 1.25steps/s, loss=0.02792925]
66%|██████▌ | 66/100 [00:51<00:27, 1.26steps/s, loss=0.02792925]
66%|██████▌ | 66/100 [00:52<00:27, 1.26steps/s, loss=0.029071555]
67%|██████▋ | 67/100 [00:52<00:25, 1.27steps/s, loss=0.029071555]
67%|██████▋ | 67/100 [00:52<00:25, 1.27steps/s, loss=0.027762106]
68%|██████▊ | 68/100 [00:53<00:25, 1.28steps/s, loss=0.027762106]
68%|██████▊ | 68/100 [00:53<00:25, 1.28steps/s, loss=0.027639814]
69%|██████▉ | 69/100 [00:54<00:24, 1.28steps/s, loss=0.027639814]
69%|██████▉ | 69/100 [00:54<00:24, 1.28steps/s, loss=0.027480485]
70%|███████ | 70/100 [00:54<00:23, 1.29steps/s, loss=0.027480485]
70%|███████ | 70/100 [00:55<00:23, 1.29steps/s, loss=0.027055308]
71%|███████ | 71/100 [00:55<00:22, 1.30steps/s, loss=0.027055308]
71%|███████ | 71/100 [00:55<00:22, 1.30steps/s, loss=0.026840698]
72%|███████▏ | 72/100 [00:56<00:23, 1.18steps/s, loss=0.026840698]
72%|███████▏ | 72/100 [00:56<00:23, 1.18steps/s, loss=0.026557498]
73%|███████▎ | 73/100 [00:57<00:22, 1.21steps/s, loss=0.026557498]
73%|███████▎ | 73/100 [00:57<00:22, 1.21steps/s, loss=0.026630398]
74%|███████▍ | 74/100 [00:58<00:20, 1.24steps/s, loss=0.026630398]
74%|███████▍ | 74/100 [00:58<00:20, 1.24steps/s, loss=0.02682834]
75%|███████▌ | 75/100 [00:59<00:19, 1.26steps/s, loss=0.02682834]
75%|███████▌ | 75/100 [00:59<00:19, 1.26steps/s, loss=0.02699706]
76%|███████▌ | 76/100 [00:59<00:18, 1.27steps/s, loss=0.02699706]
76%|███████▌ | 76/100 [00:59<00:18, 1.27steps/s, loss=0.027570177]
77%|███████▋ | 77/100 [01:00<00:17, 1.28steps/s, loss=0.027570177]
77%|███████▋ | 77/100 [01:00<00:17, 1.28steps/s, loss=0.026590984]
78%|███████▊ | 78/100 [01:01<00:17, 1.29steps/s, loss=0.026590984]
78%|███████▊ | 78/100 [01:01<00:17, 1.29steps/s, loss=0.02605244]
79%|███████▉ | 79/100 [01:02<00:16, 1.28steps/s, loss=0.02605244]
79%|███████▉ | 79/100 [01:02<00:16, 1.28steps/s, loss=0.025994837]
80%|████████ | 80/100 [01:02<00:15, 1.30steps/s, loss=0.025994837]
80%|████████ | 80/100 [01:03<00:15, 1.30steps/s, loss=0.025924943]
81%|████████ | 81/100 [01:03<00:14, 1.31steps/s, loss=0.025924943]
81%|████████ | 81/100 [01:03<00:14, 1.31steps/s, loss=0.025892485]
82%|████████▏ | 82/100 [01:04<00:15, 1.19steps/s, loss=0.025892485]
82%|████████▏ | 82/100 [01:04<00:15, 1.19steps/s, loss=0.025839232]
83%|████████▎ | 83/100 [01:05<00:13, 1.22steps/s, loss=0.025839232]
83%|████████▎ | 83/100 [01:05<00:13, 1.22steps/s, loss=0.025719348]
84%|████████▍ | 84/100 [01:06<00:12, 1.26steps/s, loss=0.025719348]
84%|████████▍ | 84/100 [01:06<00:12, 1.26steps/s, loss=0.025575656]
85%|████████▌ | 85/100 [01:06<00:11, 1.27steps/s, loss=0.025575656]
85%|████████▌ | 85/100 [01:07<00:11, 1.27steps/s, loss=0.025445707]
86%|████████▌ | 86/100 [01:07<00:10, 1.30steps/s, loss=0.025445707]
86%|████████▌ | 86/100 [01:07<00:10, 1.30steps/s, loss=0.026220165]
87%|████████▋ | 87/100 [01:08<00:09, 1.32steps/s, loss=0.026220165]
87%|████████▋ | 87/100 [01:08<00:09, 1.32steps/s, loss=0.025489002]
88%|████████▊ | 88/100 [01:09<00:08, 1.34steps/s, loss=0.025489002]
88%|████████▊ | 88/100 [01:09<00:08, 1.34steps/s, loss=0.025227863]
89%|████████▉ | 89/100 [01:09<00:08, 1.35steps/s, loss=0.025227863]
89%|████████▉ | 89/100 [01:09<00:08, 1.35steps/s, loss=0.025165122]
90%|█████████ | 90/100 [01:10<00:07, 1.35steps/s, loss=0.025165122]
90%|█████████ | 90/100 [01:10<00:07, 1.35steps/s, loss=0.025395554]
91%|█████████ | 91/100 [01:11<00:07, 1.24steps/s, loss=0.025395554]
91%|█████████ | 91/100 [01:11<00:07, 1.24steps/s, loss=0.025258567]
92%|█████████▏| 92/100 [01:12<00:06, 1.28steps/s, loss=0.025258567]
92%|█████████▏| 92/100 [01:12<00:06, 1.28steps/s, loss=0.025174202]
93%|█████████▎| 93/100 [01:13<00:05, 1.29steps/s, loss=0.025174202]
93%|█████████▎| 93/100 [01:13<00:05, 1.29steps/s, loss=0.025414027]
94%|█████████▍| 94/100 [01:13<00:04, 1.32steps/s, loss=0.025414027]
94%|█████████▍| 94/100 [01:13<00:04, 1.32steps/s, loss=0.02541632]
95%|█████████▌| 95/100 [01:14<00:03, 1.33steps/s, loss=0.02541632]
95%|█████████▌| 95/100 [01:14<00:03, 1.33steps/s, loss=0.025290113]
96%|█████████▌| 96/100 [01:15<00:02, 1.34steps/s, loss=0.025290113]
96%|█████████▌| 96/100 [01:15<00:02, 1.34steps/s, loss=0.025119018]
97%|█████████▋| 97/100 [01:15<00:02, 1.34steps/s, loss=0.025119018]
97%|█████████▋| 97/100 [01:16<00:02, 1.34steps/s, loss=0.024942975]
98%|█████████▊| 98/100 [01:16<00:01, 1.34steps/s, loss=0.024942975]
98%|█████████▊| 98/100 [01:16<00:01, 1.34steps/s, loss=0.02484461]
99%|█████████▉| 99/100 [01:17<00:00, 1.35steps/s, loss=0.02484461]
99%|█████████▉| 99/100 [01:17<00:00, 1.35steps/s, loss=0.024976425]
100%|██████████| 100/100 [01:18<00:00, 1.35steps/s, loss=0.024976425]
100%|██████████| 100/100 [01:18<00:00, 1.28steps/s, loss=0.024976425]
+
1%| | 1/100 [00:01<01:52, 1.14s/steps, loss=0.15466064]
1%| | 1/100 [00:01<01:52, 1.14s/steps, loss=0.27207482]
2%|▏ | 2/100 [00:02<02:03, 1.26s/steps, loss=0.27207482]
2%|▏ | 2/100 [00:02<02:03, 1.26s/steps, loss=0.20695417]
3%|▎ | 3/100 [00:03<02:00, 1.24s/steps, loss=0.20695417]
3%|▎ | 3/100 [00:03<02:00, 1.24s/steps, loss=0.10849723]
4%|▍ | 4/100 [00:04<01:59, 1.25s/steps, loss=0.10849723]
4%|▍ | 4/100 [00:05<01:59, 1.25s/steps, loss=0.10862867]
5%|▌ | 5/100 [00:06<02:11, 1.39s/steps, loss=0.10862867]
5%|▌ | 5/100 [00:06<02:11, 1.39s/steps, loss=0.09122055]
6%|▌ | 6/100 [00:07<02:05, 1.33s/steps, loss=0.09122055]
6%|▌ | 6/100 [00:08<02:05, 1.33s/steps, loss=0.078682885]
7%|▋ | 7/100 [00:09<02:00, 1.30s/steps, loss=0.078682885]
7%|▋ | 7/100 [00:09<02:00, 1.30s/steps, loss=0.07434255]
8%|▊ | 8/100 [00:10<01:54, 1.24s/steps, loss=0.07434255]
8%|▊ | 8/100 [00:10<01:54, 1.24s/steps, loss=0.07454668]
9%|▉ | 9/100 [00:11<01:49, 1.20s/steps, loss=0.07454668]
9%|▉ | 9/100 [00:11<01:49, 1.20s/steps, loss=0.0696176]
10%|█ | 10/100 [00:12<01:45, 1.17s/steps, loss=0.0696176]
10%|█ | 10/100 [00:12<01:45, 1.17s/steps, loss=0.06671026]
11%|█ | 11/100 [00:13<01:48, 1.22s/steps, loss=0.06671026]
11%|█ | 11/100 [00:14<01:48, 1.22s/steps, loss=0.061355047]
12%|█▏ | 12/100 [00:15<01:51, 1.26s/steps, loss=0.061355047]
12%|█▏ | 12/100 [00:15<01:51, 1.26s/steps, loss=0.057406068]
13%|█▎ | 13/100 [00:16<01:52, 1.29s/steps, loss=0.057406068]
13%|█▎ | 13/100 [00:16<01:52, 1.29s/steps, loss=0.056945834]
14%|█▍ | 14/100 [00:17<01:57, 1.37s/steps, loss=0.056945834]
14%|█▍ | 14/100 [00:18<01:57, 1.37s/steps, loss=0.055517614]
15%|█▌ | 15/100 [00:19<01:52, 1.32s/steps, loss=0.055517614]
15%|█▌ | 15/100 [00:19<01:52, 1.32s/steps, loss=0.050732]
16%|█▌ | 16/100 [00:20<01:43, 1.24s/steps, loss=0.050732]
16%|█▌ | 16/100 [00:20<01:43, 1.24s/steps, loss=0.049602434]
17%|█▋ | 17/100 [00:21<01:40, 1.21s/steps, loss=0.049602434]
17%|█▋ | 17/100 [00:21<01:40, 1.21s/steps, loss=0.049495574]
18%|█▊ | 18/100 [00:22<01:36, 1.17s/steps, loss=0.049495574]
18%|█▊ | 18/100 [00:22<01:36, 1.17s/steps, loss=0.046994463]
19%|█▉ | 19/100 [00:23<01:35, 1.18s/steps, loss=0.046994463]
19%|█▉ | 19/100 [00:23<01:35, 1.18s/steps, loss=0.046187066]
20%|██ | 20/100 [00:24<01:29, 1.12s/steps, loss=0.046187066]
20%|██ | 20/100 [00:24<01:29, 1.12s/steps, loss=0.044471152]
21%|██ | 21/100 [00:25<01:28, 1.12s/steps, loss=0.044471152]
21%|██ | 21/100 [00:26<01:28, 1.12s/steps, loss=0.04408331]
22%|██▏ | 22/100 [00:26<01:25, 1.10s/steps, loss=0.04408331]
22%|██▏ | 22/100 [00:27<01:25, 1.10s/steps, loss=0.043356545]
23%|██▎ | 23/100 [00:27<01:22, 1.07s/steps, loss=0.043356545]
23%|██▎ | 23/100 [00:28<01:22, 1.07s/steps, loss=0.04078833]
24%|██▍ | 24/100 [00:29<01:31, 1.20s/steps, loss=0.04078833]
24%|██▍ | 24/100 [00:29<01:31, 1.20s/steps, loss=0.040141024]
25%|██▌ | 25/100 [00:30<01:30, 1.20s/steps, loss=0.040141024]
25%|██▌ | 25/100 [00:30<01:30, 1.20s/steps, loss=0.040762387]
26%|██▌ | 26/100 [00:31<01:26, 1.17s/steps, loss=0.040762387]
26%|██▌ | 26/100 [00:31<01:26, 1.17s/steps, loss=0.039697558]
27%|██▋ | 27/100 [00:32<01:23, 1.15s/steps, loss=0.039697558]
27%|██▋ | 27/100 [00:33<01:23, 1.15s/steps, loss=0.037976563]
28%|██▊ | 28/100 [00:33<01:23, 1.16s/steps, loss=0.037976563]
28%|██▊ | 28/100 [00:34<01:23, 1.16s/steps, loss=0.03773392]
29%|██▉ | 29/100 [00:35<01:23, 1.17s/steps, loss=0.03773392]
29%|██▉ | 29/100 [00:35<01:23, 1.17s/steps, loss=0.03667139]
30%|███ | 30/100 [00:36<01:22, 1.18s/steps, loss=0.03667139]
30%|███ | 30/100 [00:36<01:22, 1.18s/steps, loss=0.039198477]
31%|███ | 31/100 [00:37<01:19, 1.15s/steps, loss=0.039198477]
31%|███ | 31/100 [00:37<01:19, 1.15s/steps, loss=0.03677841]
32%|███▏ | 32/100 [00:38<01:15, 1.11s/steps, loss=0.03677841]
32%|███▏ | 32/100 [00:38<01:15, 1.11s/steps, loss=0.03584671]
33%|███▎ | 33/100 [00:39<01:23, 1.25s/steps, loss=0.03584671]
33%|███▎ | 33/100 [00:40<01:23, 1.25s/steps, loss=0.03528595]
34%|███▍ | 34/100 [00:41<01:18, 1.18s/steps, loss=0.03528595]
34%|███▍ | 34/100 [00:41<01:18, 1.18s/steps, loss=0.0331883]
35%|███▌ | 35/100 [00:42<01:17, 1.19s/steps, loss=0.0331883]
35%|███▌ | 35/100 [00:42<01:17, 1.19s/steps, loss=0.032996647]
36%|███▌ | 36/100 [00:43<01:15, 1.19s/steps, loss=0.032996647]
36%|███▌ | 36/100 [00:43<01:15, 1.19s/steps, loss=0.034711994]
37%|███▋ | 37/100 [00:44<01:14, 1.19s/steps, loss=0.034711994]
37%|███▋ | 37/100 [00:44<01:14, 1.19s/steps, loss=0.033771027]
38%|███▊ | 38/100 [00:45<01:12, 1.17s/steps, loss=0.033771027]
38%|███▊ | 38/100 [00:45<01:12, 1.17s/steps, loss=0.0322985]
39%|███▉ | 39/100 [00:46<01:08, 1.13s/steps, loss=0.0322985]
39%|███▉ | 39/100 [00:47<01:08, 1.13s/steps, loss=0.032803237]
40%|████ | 40/100 [00:48<01:11, 1.20s/steps, loss=0.032803237]
40%|████ | 40/100 [00:48<01:11, 1.20s/steps, loss=0.032828875]
41%|████ | 41/100 [00:49<01:07, 1.15s/steps, loss=0.032828875]
41%|████ | 41/100 [00:49<01:07, 1.15s/steps, loss=0.03157583]
42%|████▏ | 42/100 [00:50<01:08, 1.17s/steps, loss=0.03157583]
42%|████▏ | 42/100 [00:50<01:08, 1.17s/steps, loss=0.032987043]
43%|████▎ | 43/100 [00:51<01:14, 1.30s/steps, loss=0.032987043]
43%|████▎ | 43/100 [00:52<01:14, 1.30s/steps, loss=0.03190183]
44%|████▍ | 44/100 [00:53<01:12, 1.30s/steps, loss=0.03190183]
44%|████▍ | 44/100 [00:53<01:12, 1.30s/steps, loss=0.03032658]
45%|████▌ | 45/100 [00:54<01:07, 1.23s/steps, loss=0.03032658]
45%|████▌ | 45/100 [00:54<01:07, 1.23s/steps, loss=0.030834045]
46%|████▌ | 46/100 [00:55<01:05, 1.22s/steps, loss=0.030834045]
46%|████▌ | 46/100 [00:55<01:05, 1.22s/steps, loss=0.030838868]
47%|████▋ | 47/100 [00:56<01:03, 1.20s/steps, loss=0.030838868]
47%|████▋ | 47/100 [00:56<01:03, 1.20s/steps, loss=0.030177707]
48%|████▊ | 48/100 [00:57<01:02, 1.20s/steps, loss=0.030177707]
48%|████▊ | 48/100 [00:58<01:02, 1.20s/steps, loss=0.029937295]
49%|████▉ | 49/100 [00:58<00:59, 1.16s/steps, loss=0.029937295]
49%|████▉ | 49/100 [00:59<00:59, 1.16s/steps, loss=0.030054197]
50%|█████ | 50/100 [01:00<00:58, 1.17s/steps, loss=0.030054197]
50%|█████ | 50/100 [01:00<00:58, 1.17s/steps, loss=0.030195028]
51%|█████ | 51/100 [01:01<00:57, 1.18s/steps, loss=0.030195028]
51%|█████ | 51/100 [01:01<00:57, 1.18s/steps, loss=0.030764878]
52%|█████▏ | 52/100 [01:02<00:57, 1.19s/steps, loss=0.030764878]
52%|█████▏ | 52/100 [01:02<00:57, 1.19s/steps, loss=0.029144589]
53%|█████▎ | 53/100 [01:04<01:00, 1.29s/steps, loss=0.029144589]
53%|█████▎ | 53/100 [01:04<01:00, 1.29s/steps, loss=0.030004859]
54%|█████▍ | 54/100 [01:05<01:01, 1.33s/steps, loss=0.030004859]
54%|█████▍ | 54/100 [01:05<01:01, 1.33s/steps, loss=0.02964301]
55%|█████▌ | 55/100 [01:06<00:58, 1.30s/steps, loss=0.02964301]
55%|█████▌ | 55/100 [01:07<00:58, 1.30s/steps, loss=0.029210646]
56%|█████▌ | 56/100 [01:08<00:56, 1.29s/steps, loss=0.029210646]
56%|█████▌ | 56/100 [01:08<00:56, 1.29s/steps, loss=0.029644089]
57%|█████▋ | 57/100 [01:09<00:53, 1.25s/steps, loss=0.029644089]
57%|█████▋ | 57/100 [01:09<00:53, 1.25s/steps, loss=0.029599007]
58%|█████▊ | 58/100 [01:10<00:50, 1.21s/steps, loss=0.029599007]
58%|█████▊ | 58/100 [01:10<00:50, 1.21s/steps, loss=0.029249592]
59%|█████▉ | 59/100 [01:11<00:50, 1.23s/steps, loss=0.029249592]
59%|█████▉ | 59/100 [01:11<00:50, 1.23s/steps, loss=0.029377509]
60%|██████ | 60/100 [01:12<00:47, 1.18s/steps, loss=0.029377509]
60%|██████ | 60/100 [01:12<00:47, 1.18s/steps, loss=0.028769106]
61%|██████ | 61/100 [01:13<00:45, 1.16s/steps, loss=0.028769106]
61%|██████ | 61/100 [01:14<00:45, 1.16s/steps, loss=0.027655894]
62%|██████▏ | 62/100 [01:14<00:42, 1.13s/steps, loss=0.027655894]
62%|██████▏ | 62/100 [01:15<00:42, 1.13s/steps, loss=0.027546328]
63%|██████▎ | 63/100 [01:16<00:47, 1.27s/steps, loss=0.027546328]
63%|██████▎ | 63/100 [01:16<00:47, 1.27s/steps, loss=0.027617954]
64%|██████▍ | 64/100 [01:17<00:45, 1.27s/steps, loss=0.027617954]
64%|██████▍ | 64/100 [01:17<00:45, 1.27s/steps, loss=0.02768904]
65%|██████▌ | 65/100 [01:19<00:45, 1.29s/steps, loss=0.02768904]
65%|██████▌ | 65/100 [01:19<00:45, 1.29s/steps, loss=0.027713846]
66%|██████▌ | 66/100 [01:20<00:41, 1.23s/steps, loss=0.027713846]
66%|██████▌ | 66/100 [01:20<00:41, 1.23s/steps, loss=0.027399959]
67%|██████▋ | 67/100 [01:21<00:39, 1.20s/steps, loss=0.027399959]
67%|██████▋ | 67/100 [01:21<00:39, 1.20s/steps, loss=0.02739427]
68%|██████▊ | 68/100 [01:22<00:37, 1.18s/steps, loss=0.02739427]
68%|██████▊ | 68/100 [01:22<00:37, 1.18s/steps, loss=0.027254008]
69%|██████▉ | 69/100 [01:23<00:36, 1.17s/steps, loss=0.027254008]
69%|██████▉ | 69/100 [01:23<00:36, 1.17s/steps, loss=0.02701371]
70%|███████ | 70/100 [01:24<00:33, 1.11s/steps, loss=0.02701371]
70%|███████ | 70/100 [01:24<00:33, 1.11s/steps, loss=0.027151305]
71%|███████ | 71/100 [01:25<00:32, 1.12s/steps, loss=0.027151305]
71%|███████ | 71/100 [01:25<00:32, 1.12s/steps, loss=0.027626414]
72%|███████▏ | 72/100 [01:27<00:35, 1.27s/steps, loss=0.027626414]
72%|███████▏ | 72/100 [01:27<00:35, 1.27s/steps, loss=0.027161539]
73%|███████▎ | 73/100 [01:28<00:33, 1.24s/steps, loss=0.027161539]
73%|███████▎ | 73/100 [01:28<00:33, 1.24s/steps, loss=0.026606642]
74%|███████▍ | 74/100 [01:29<00:30, 1.18s/steps, loss=0.026606642]
74%|███████▍ | 74/100 [01:29<00:30, 1.18s/steps, loss=0.0261914]
75%|███████▌ | 75/100 [01:30<00:28, 1.16s/steps, loss=0.0261914]
75%|███████▌ | 75/100 [01:30<00:28, 1.16s/steps, loss=0.026790384]
76%|███████▌ | 76/100 [01:31<00:28, 1.19s/steps, loss=0.026790384]
76%|███████▌ | 76/100 [01:32<00:28, 1.19s/steps, loss=0.02651963]
77%|███████▋ | 77/100 [01:33<00:27, 1.19s/steps, loss=0.02651963]
77%|███████▋ | 77/100 [01:33<00:27, 1.19s/steps, loss=0.026292656]
78%|███████▊ | 78/100 [01:34<00:25, 1.17s/steps, loss=0.026292656]
78%|███████▊ | 78/100 [01:34<00:25, 1.17s/steps, loss=0.026079345]
79%|███████▉ | 79/100 [01:35<00:25, 1.20s/steps, loss=0.026079345]
79%|███████▉ | 79/100 [01:35<00:25, 1.20s/steps, loss=0.025932956]
80%|████████ | 80/100 [01:36<00:23, 1.16s/steps, loss=0.025932956]
80%|████████ | 80/100 [01:36<00:23, 1.16s/steps, loss=0.026672285]
81%|████████ | 81/100 [01:37<00:23, 1.21s/steps, loss=0.026672285]
81%|████████ | 81/100 [01:38<00:23, 1.21s/steps, loss=0.025626868]
82%|████████▏ | 82/100 [01:39<00:23, 1.30s/steps, loss=0.025626868]
82%|████████▏ | 82/100 [01:39<00:23, 1.30s/steps, loss=0.025403714]
83%|████████▎ | 83/100 [01:40<00:21, 1.24s/steps, loss=0.025403714]
83%|████████▎ | 83/100 [01:40<00:21, 1.24s/steps, loss=0.025393255]
84%|████████▍ | 84/100 [01:41<00:19, 1.21s/steps, loss=0.025393255]
84%|████████▍ | 84/100 [01:41<00:19, 1.21s/steps, loss=0.025234303]
85%|████████▌ | 85/100 [01:42<00:17, 1.15s/steps, loss=0.025234303]
85%|████████▌ | 85/100 [01:42<00:17, 1.15s/steps, loss=0.024991322]
86%|████████▌ | 86/100 [01:43<00:16, 1.14s/steps, loss=0.024991322]
86%|████████▌ | 86/100 [01:43<00:16, 1.14s/steps, loss=0.024844328]
87%|████████▋ | 87/100 [01:44<00:15, 1.16s/steps, loss=0.024844328]
87%|████████▋ | 87/100 [01:45<00:15, 1.16s/steps, loss=0.024994506]
88%|████████▊ | 88/100 [01:46<00:14, 1.20s/steps, loss=0.024994506]
88%|████████▊ | 88/100 [01:46<00:14, 1.20s/steps, loss=0.024978612]
89%|████████▉ | 89/100 [01:47<00:12, 1.17s/steps, loss=0.024978612]
89%|████████▉ | 89/100 [01:47<00:12, 1.17s/steps, loss=0.024857603]
90%|█████████ | 90/100 [01:48<00:11, 1.11s/steps, loss=0.024857603]
90%|█████████ | 90/100 [01:48<00:11, 1.11s/steps, loss=0.024831643]
91%|█████████ | 91/100 [01:49<00:10, 1.22s/steps, loss=0.024831643]
91%|█████████ | 91/100 [01:50<00:10, 1.22s/steps, loss=0.024885733]
92%|█████████▏| 92/100 [01:50<00:09, 1.15s/steps, loss=0.024885733]
92%|█████████▏| 92/100 [01:51<00:09, 1.15s/steps, loss=0.024812933]
93%|█████████▎| 93/100 [01:51<00:07, 1.14s/steps, loss=0.024812933]
93%|█████████▎| 93/100 [01:52<00:07, 1.14s/steps, loss=0.024825927]
94%|█████████▍| 94/100 [01:53<00:06, 1.14s/steps, loss=0.024825927]
94%|█████████▍| 94/100 [01:53<00:06, 1.14s/steps, loss=0.024770673]
95%|█████████▌| 95/100 [01:54<00:05, 1.09s/steps, loss=0.024770673]
95%|█████████▌| 95/100 [01:54<00:05, 1.09s/steps, loss=0.024796586]
96%|█████████▌| 96/100 [01:55<00:04, 1.11s/steps, loss=0.024796586]
96%|█████████▌| 96/100 [01:55<00:04, 1.11s/steps, loss=0.024946127]
97%|█████████▋| 97/100 [01:56<00:03, 1.12s/steps, loss=0.024946127]
97%|█████████▋| 97/100 [01:56<00:03, 1.12s/steps, loss=0.024958596]
98%|█████████▊| 98/100 [01:57<00:02, 1.12s/steps, loss=0.024958596]
98%|█████████▊| 98/100 [01:57<00:02, 1.12s/steps, loss=0.02503642]
99%|█████████▉| 99/100 [01:58<00:01, 1.09s/steps, loss=0.02503642]
99%|█████████▉| 99/100 [01:58<00:01, 1.09s/steps, loss=0.024950333]
100%|██████████| 100/100 [01:59<00:00, 1.08s/steps, loss=0.024950333]
100%|██████████| 100/100 [01:59<00:00, 1.20s/steps, loss=0.024950333]
@@ -397,7 +397,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (1 minutes 25.665 seconds)
+ **Total running time of the script:** (2 minutes 9.696 seconds)
.. _sphx_glr_download_generated_autoexamples_GPU_example_learn_samples_multicoil.py:
diff --git a/_sources/generated/autoexamples/GPU/example_learn_straight_line_readouts.rst b/_sources/generated/autoexamples/GPU/example_learn_straight_line_readouts.rst
index 580c40ef..7457b3a6 100644
--- a/_sources/generated/autoexamples/GPU/example_learn_straight_line_readouts.rst
+++ b/_sources/generated/autoexamples/GPU/example_learn_straight_line_readouts.rst
@@ -330,7 +330,7 @@ Start training loop
.. code-block:: none
-
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.2967735]
1%| | 1/100 [00:05<09:08, 5.54s/steps, loss=0.2967735]
1%| | 1/100 [00:05<09:08, 5.54s/steps, loss=0.30002242]
2%|▏ | 2/100 [00:11<09:23, 5.75s/steps, loss=0.30002242]
2%|▏ | 2/100 [00:11<09:23, 5.75s/steps, loss=0.26415455]
3%|▎ | 3/100 [00:16<09:09, 5.66s/steps, loss=0.26415455]
3%|▎ | 3/100 [00:17<09:09, 5.66s/steps, loss=0.26092696]
4%|▍ | 4/100 [00:22<09:09, 5.73s/steps, loss=0.26092696]
4%|▍ | 4/100 [00:22<09:09, 5.73s/steps, loss=0.25952172]
5%|▌ | 5/100 [00:28<08:53, 5.62s/steps, loss=0.25952172]
5%|▌ | 5/100 [00:28<08:53, 5.62s/steps, loss=0.2537647]
6%|▌ | 6/100 [00:33<08:50, 5.64s/steps, loss=0.2537647]
6%|▌ | 6/100 [00:34<08:50, 5.64s/steps, loss=0.2537766]
7%|▋ | 7/100 [00:39<08:38, 5.57s/steps, loss=0.2537766]
7%|▋ | 7/100 [00:39<08:38, 5.57s/steps, loss=0.25129417]
8%|▊ | 8/100 [00:45<08:35, 5.61s/steps, loss=0.25129417]
8%|▊ | 8/100 [00:45<08:35, 5.61s/steps, loss=0.24411555]
9%|▉ | 9/100 [00:50<08:21, 5.51s/steps, loss=0.24411555]
9%|▉ | 9/100 [00:50<08:21, 5.51s/steps, loss=0.24092022]
10%|█ | 10/100 [00:55<08:11, 5.47s/steps, loss=0.24092022]
10%|█ | 10/100 [00:55<08:11, 5.47s/steps, loss=0.24004824]
11%|█ | 11/100 [01:01<08:10, 5.51s/steps, loss=0.24004824]
11%|█ | 11/100 [01:01<08:10, 5.51s/steps, loss=0.23684363]
12%|█▏ | 12/100 [01:06<08:00, 5.46s/steps, loss=0.23684363]
12%|█▏ | 12/100 [01:06<08:00, 5.46s/steps, loss=0.23119421]
13%|█▎ | 13/100 [01:12<07:57, 5.49s/steps, loss=0.23119421]
13%|█▎ | 13/100 [01:12<07:57, 5.49s/steps, loss=0.22662608]
14%|█▍ | 14/100 [01:17<07:48, 5.45s/steps, loss=0.22662608]
14%|█▍ | 14/100 [01:17<07:48, 5.45s/steps, loss=0.22662693]
15%|█▌ | 15/100 [01:23<07:47, 5.50s/steps, loss=0.22662693]
15%|█▌ | 15/100 [01:23<07:47, 5.50s/steps, loss=0.22756095]
16%|█▌ | 16/100 [01:28<07:37, 5.45s/steps, loss=0.22756095]
16%|█▌ | 16/100 [01:28<07:37, 5.45s/steps, loss=0.22559203]
17%|█▋ | 17/100 [01:34<07:34, 5.48s/steps, loss=0.22559203]
17%|█▋ | 17/100 [01:34<07:34, 5.48s/steps, loss=0.22218944]
18%|█▊ | 18/100 [01:39<07:16, 5.33s/steps, loss=0.22218944]
18%|█▊ | 18/100 [01:39<07:16, 5.33s/steps, loss=0.22106087]
19%|█▉ | 19/100 [01:44<07:03, 5.22s/steps, loss=0.22106087]
19%|█▉ | 19/100 [01:44<07:03, 5.22s/steps, loss=0.22097139]
20%|██ | 20/100 [01:49<06:58, 5.23s/steps, loss=0.22097139]
20%|██ | 20/100 [01:49<06:58, 5.23s/steps, loss=0.2198853]
21%|██ | 21/100 [01:54<06:46, 5.15s/steps, loss=0.2198853]
21%|██ | 21/100 [01:54<06:46, 5.15s/steps, loss=0.21703705]
22%|██▏ | 22/100 [01:59<06:42, 5.16s/steps, loss=0.21703705]
22%|██▏ | 22/100 [01:59<06:42, 5.16s/steps, loss=0.21536143]
23%|██▎ | 23/100 [02:04<06:31, 5.09s/steps, loss=0.21536143]
23%|██▎ | 23/100 [02:04<06:31, 5.09s/steps, loss=0.21525341]
24%|██▍ | 24/100 [02:09<06:23, 5.05s/steps, loss=0.21525341]
24%|██▍ | 24/100 [02:09<06:23, 5.05s/steps, loss=0.2146597]
25%|██▌ | 25/100 [02:14<06:22, 5.10s/steps, loss=0.2146597]
25%|██▌ | 25/100 [02:14<06:22, 5.10s/steps, loss=0.21309201]
26%|██▌ | 26/100 [02:19<06:13, 5.05s/steps, loss=0.21309201]
26%|██▌ | 26/100 [02:19<06:13, 5.05s/steps, loss=0.21207418]
27%|██▋ | 27/100 [02:24<06:11, 5.08s/steps, loss=0.21207418]
27%|██▋ | 27/100 [02:24<06:11, 5.08s/steps, loss=0.21089633]
28%|██▊ | 28/100 [02:29<06:03, 5.04s/steps, loss=0.21089633]
28%|██▊ | 28/100 [02:29<06:03, 5.04s/steps, loss=0.20958817]
29%|██▉ | 29/100 [02:34<06:01, 5.09s/steps, loss=0.20958817]
29%|██▉ | 29/100 [02:34<06:01, 5.09s/steps, loss=0.2085348]
30%|███ | 30/100 [02:39<05:53, 5.04s/steps, loss=0.2085348]
30%|███ | 30/100 [02:39<05:53, 5.04s/steps, loss=0.20705669]
31%|███ | 31/100 [02:44<05:51, 5.09s/steps, loss=0.20705669]
31%|███ | 31/100 [02:44<05:51, 5.09s/steps, loss=0.20622386]
32%|███▏ | 32/100 [02:49<05:43, 5.05s/steps, loss=0.20622386]
32%|███▏ | 32/100 [02:49<05:43, 5.05s/steps, loss=0.20574571]
33%|███▎ | 33/100 [02:55<05:41, 5.09s/steps, loss=0.20574571]
33%|███▎ | 33/100 [02:55<05:41, 5.09s/steps, loss=0.20513757]
34%|███▍ | 34/100 [02:59<05:31, 5.03s/steps, loss=0.20513757]
34%|███▍ | 34/100 [03:00<05:31, 5.03s/steps, loss=0.20465809]
35%|███▌ | 35/100 [03:04<05:24, 4.99s/steps, loss=0.20465809]
35%|███▌ | 35/100 [03:04<05:24, 4.99s/steps, loss=0.20391251]
36%|███▌ | 36/100 [03:10<05:23, 5.05s/steps, loss=0.20391251]
36%|███▌ | 36/100 [03:10<05:23, 5.05s/steps, loss=0.2035227]
37%|███▋ | 37/100 [03:14<05:15, 5.01s/steps, loss=0.2035227]
37%|███▋ | 37/100 [03:15<05:15, 5.01s/steps, loss=0.20336947]
38%|███▊ | 38/100 [03:20<05:13, 5.05s/steps, loss=0.20336947]
38%|███▊ | 38/100 [03:20<05:13, 5.05s/steps, loss=0.2033929]
39%|███▉ | 39/100 [03:24<05:05, 5.01s/steps, loss=0.2033929]
39%|███▉ | 39/100 [03:25<05:05, 5.01s/steps, loss=0.20301929]
40%|████ | 40/100 [03:30<05:03, 5.06s/steps, loss=0.20301929]
40%|████ | 40/100 [03:30<05:03, 5.06s/steps, loss=0.2023302]
41%|████ | 41/100 [03:35<04:56, 5.02s/steps, loss=0.2023302]
41%|████ | 41/100 [03:35<04:56, 5.02s/steps, loss=0.20163903]
42%|████▏ | 42/100 [03:40<04:54, 5.07s/steps, loss=0.20163903]
42%|████▏ | 42/100 [03:40<04:54, 5.07s/steps, loss=0.20115557]
43%|████▎ | 43/100 [03:45<04:46, 5.03s/steps, loss=0.20115557]
43%|████▎ | 43/100 [03:45<04:46, 5.03s/steps, loss=0.20060135]
44%|████▍ | 44/100 [03:50<04:39, 4.99s/steps, loss=0.20060135]
44%|████▍ | 44/100 [03:50<04:39, 4.99s/steps, loss=0.19980817]
45%|████▌ | 45/100 [03:55<04:37, 5.05s/steps, loss=0.19980817]
45%|████▌ | 45/100 [03:55<04:37, 5.05s/steps, loss=0.19955178]
46%|████▌ | 46/100 [04:00<04:30, 5.01s/steps, loss=0.19955178]
46%|████▌ | 46/100 [04:00<04:30, 5.01s/steps, loss=0.19885167]
47%|████▋ | 47/100 [04:05<04:27, 5.05s/steps, loss=0.19885167]
47%|████▋ | 47/100 [04:05<04:27, 5.05s/steps, loss=0.19847585]
48%|████▊ | 48/100 [04:10<04:20, 5.01s/steps, loss=0.19847585]
48%|████▊ | 48/100 [04:10<04:20, 5.01s/steps, loss=0.1983054]
49%|████▉ | 49/100 [04:15<04:17, 5.04s/steps, loss=0.1983054]
49%|████▉ | 49/100 [04:15<04:17, 5.04s/steps, loss=0.19821602]
50%|█████ | 50/100 [04:20<04:10, 5.01s/steps, loss=0.19821602]
50%|█████ | 50/100 [04:20<04:10, 5.01s/steps, loss=0.19801751]
51%|█████ | 51/100 [04:25<04:07, 5.05s/steps, loss=0.19801751]
51%|█████ | 51/100 [04:25<04:07, 5.05s/steps, loss=0.19787647]
52%|█████▏ | 52/100 [04:25<02:57, 3.69s/steps, loss=0.19787647]
52%|█████▏ | 52/100 [04:26<02:57, 3.69s/steps, loss=0.19776192]
53%|█████▎ | 53/100 [04:26<02:08, 2.73s/steps, loss=0.19776192]
53%|█████▎ | 53/100 [04:26<02:08, 2.73s/steps, loss=0.19780499]
54%|█████▍ | 54/100 [04:26<01:34, 2.06s/steps, loss=0.19780499]
54%|█████▍ | 54/100 [04:27<01:34, 2.06s/steps, loss=0.19771071]
55%|█████▌ | 55/100 [04:27<01:11, 1.60s/steps, loss=0.19771071]
55%|█████▌ | 55/100 [04:27<01:11, 1.60s/steps, loss=0.19740514]
56%|█████▌ | 56/100 [04:28<00:55, 1.27s/steps, loss=0.19740514]
56%|█████▌ | 56/100 [04:28<00:55, 1.27s/steps, loss=0.19717088]
57%|█████▋ | 57/100 [04:28<00:44, 1.04s/steps, loss=0.19717088]
57%|█████▋ | 57/100 [04:28<00:44, 1.04s/steps, loss=0.19703966]
58%|█████▊ | 58/100 [04:29<00:39, 1.05steps/s, loss=0.19703966]
58%|█████▊ | 58/100 [04:29<00:39, 1.05steps/s, loss=0.19691028]
59%|█████▉ | 59/100 [04:29<00:33, 1.22steps/s, loss=0.19691028]
59%|█████▉ | 59/100 [04:29<00:33, 1.22steps/s, loss=0.19680583]
60%|██████ | 60/100 [04:30<00:28, 1.38steps/s, loss=0.19680583]
60%|██████ | 60/100 [04:30<00:28, 1.38steps/s, loss=0.19679596]
61%|██████ | 61/100 [04:30<00:25, 1.51steps/s, loss=0.19679596]
61%|██████ | 61/100 [04:30<00:25, 1.51steps/s, loss=0.1967572]
62%|██████▏ | 62/100 [04:31<00:23, 1.62steps/s, loss=0.1967572]
62%|██████▏ | 62/100 [04:31<00:23, 1.62steps/s, loss=0.19666138]
63%|██████▎ | 63/100 [04:31<00:21, 1.71steps/s, loss=0.19666138]
63%|██████▎ | 63/100 [04:31<00:21, 1.71steps/s, loss=0.19664888]
64%|██████▍ | 64/100 [04:32<00:20, 1.78steps/s, loss=0.19664888]
64%|██████▍ | 64/100 [04:32<00:20, 1.78steps/s, loss=0.1966875]
65%|██████▌ | 65/100 [04:32<00:19, 1.82steps/s, loss=0.1966875]
65%|██████▌ | 65/100 [04:32<00:19, 1.82steps/s, loss=0.19665448]
66%|██████▌ | 66/100 [04:33<00:18, 1.85steps/s, loss=0.19665448]
66%|██████▌ | 66/100 [04:33<00:18, 1.85steps/s, loss=0.19638231]
67%|██████▋ | 67/100 [04:34<00:19, 1.67steps/s, loss=0.19638231]
67%|██████▋ | 67/100 [04:34<00:19, 1.67steps/s, loss=0.19625743]
68%|██████▊ | 68/100 [04:34<00:18, 1.73steps/s, loss=0.19625743]
68%|██████▊ | 68/100 [04:34<00:18, 1.73steps/s, loss=0.19627301]
69%|██████▉ | 69/100 [04:35<00:17, 1.79steps/s, loss=0.19627301]
69%|██████▉ | 69/100 [04:35<00:17, 1.79steps/s, loss=0.19626775]
70%|███████ | 70/100 [04:35<00:16, 1.83steps/s, loss=0.19626775]
70%|███████ | 70/100 [04:35<00:16, 1.83steps/s, loss=0.19607471]
71%|███████ | 71/100 [04:36<00:15, 1.86steps/s, loss=0.19607471]
71%|███████ | 71/100 [04:36<00:15, 1.86steps/s, loss=0.19593637]
72%|███████▏ | 72/100 [04:36<00:14, 1.88steps/s, loss=0.19593637]
72%|███████▏ | 72/100 [04:36<00:14, 1.88steps/s, loss=0.19599028]
73%|███████▎ | 73/100 [04:37<00:14, 1.90steps/s, loss=0.19599028]
73%|███████▎ | 73/100 [04:37<00:14, 1.90steps/s, loss=0.1958488]
74%|███████▍ | 74/100 [04:37<00:13, 1.93steps/s, loss=0.1958488]
74%|███████▍ | 74/100 [04:37<00:13, 1.93steps/s, loss=0.19578318]
75%|███████▌ | 75/100 [04:38<00:12, 1.96steps/s, loss=0.19578318]
75%|███████▌ | 75/100 [04:38<00:12, 1.96steps/s, loss=0.19573036]
76%|███████▌ | 76/100 [04:38<00:13, 1.73steps/s, loss=0.19573036]
76%|███████▌ | 76/100 [04:39<00:13, 1.73steps/s, loss=0.19567703]
77%|███████▋ | 77/100 [04:39<00:12, 1.79steps/s, loss=0.19567703]
77%|███████▋ | 77/100 [04:39<00:12, 1.79steps/s, loss=0.19570075]
78%|███████▊ | 78/100 [04:39<00:11, 1.85steps/s, loss=0.19570075]
78%|███████▊ | 78/100 [04:40<00:11, 1.85steps/s, loss=0.19570982]
79%|███████▉ | 79/100 [04:40<00:11, 1.89steps/s, loss=0.19570982]
79%|███████▉ | 79/100 [04:40<00:11, 1.89steps/s, loss=0.19567062]
80%|████████ | 80/100 [04:40<00:10, 1.92steps/s, loss=0.19567062]
80%|████████ | 80/100 [04:41<00:10, 1.92steps/s, loss=0.19567315]
81%|████████ | 81/100 [04:41<00:09, 1.94steps/s, loss=0.19567315]
81%|████████ | 81/100 [04:41<00:09, 1.94steps/s, loss=0.19559406]
82%|████████▏ | 82/100 [04:41<00:09, 1.95steps/s, loss=0.19559406]
82%|████████▏ | 82/100 [04:42<00:09, 1.95steps/s, loss=0.19544372]
83%|████████▎ | 83/100 [04:42<00:08, 1.96steps/s, loss=0.19544372]
83%|████████▎ | 83/100 [04:42<00:08, 1.96steps/s, loss=0.19515324]
84%|████████▍ | 84/100 [04:42<00:08, 1.97steps/s, loss=0.19515324]
84%|████████▍ | 84/100 [04:43<00:08, 1.97steps/s, loss=0.19498537]
85%|████████▌ | 85/100 [04:43<00:08, 1.75steps/s, loss=0.19498537]
85%|████████▌ | 85/100 [04:43<00:08, 1.75steps/s, loss=0.19515307]
86%|████████▌ | 86/100 [04:44<00:07, 1.81steps/s, loss=0.19515307]
86%|████████▌ | 86/100 [04:44<00:07, 1.81steps/s, loss=0.19532184]
87%|████████▋ | 87/100 [04:44<00:06, 1.87steps/s, loss=0.19532184]
87%|████████▋ | 87/100 [04:44<00:06, 1.87steps/s, loss=0.19531314]
88%|████████▊ | 88/100 [04:45<00:06, 1.90steps/s, loss=0.19531314]
88%|████████▊ | 88/100 [04:45<00:06, 1.90steps/s, loss=0.19540147]
89%|████████▉ | 89/100 [04:45<00:05, 1.93steps/s, loss=0.19540147]
89%|████████▉ | 89/100 [04:45<00:05, 1.93steps/s, loss=0.19523656]
90%|█████████ | 90/100 [04:46<00:05, 1.95steps/s, loss=0.19523656]
90%|█████████ | 90/100 [04:46<00:05, 1.95steps/s, loss=0.19529307]
91%|█████████ | 91/100 [04:46<00:04, 1.97steps/s, loss=0.19529307]
91%|█████████ | 91/100 [04:46<00:04, 1.97steps/s, loss=0.19528608]
92%|█████████▏| 92/100 [04:47<00:04, 1.98steps/s, loss=0.19528608]
92%|█████████▏| 92/100 [04:47<00:04, 1.98steps/s, loss=0.19527498]
93%|█████████▎| 93/100 [04:47<00:03, 1.99steps/s, loss=0.19527498]
93%|█████████▎| 93/100 [04:47<00:03, 1.99steps/s, loss=0.19521713]
94%|█████████▍| 94/100 [04:48<00:03, 1.75steps/s, loss=0.19521713]
94%|█████████▍| 94/100 [04:48<00:03, 1.75steps/s, loss=0.19516362]
95%|█████████▌| 95/100 [04:48<00:02, 1.82steps/s, loss=0.19516362]
95%|█████████▌| 95/100 [04:48<00:02, 1.82steps/s, loss=0.19494641]
96%|█████████▌| 96/100 [04:49<00:02, 1.86steps/s, loss=0.19494641]
96%|█████████▌| 96/100 [04:49<00:02, 1.86steps/s, loss=0.19505693]
97%|█████████▋| 97/100 [04:49<00:01, 1.89steps/s, loss=0.19505693]
97%|█████████▋| 97/100 [04:50<00:01, 1.89steps/s, loss=0.19501936]
98%|█████████▊| 98/100 [04:50<00:01, 1.91steps/s, loss=0.19501936]
98%|█████████▊| 98/100 [04:50<00:01, 1.91steps/s, loss=0.19511078]
99%|█████████▉| 99/100 [04:50<00:00, 1.93steps/s, loss=0.19511078]
99%|█████████▉| 99/100 [04:51<00:00, 1.93steps/s, loss=0.19511981]
100%|██████████| 100/100 [04:51<00:00, 1.95steps/s, loss=0.19511981]
100%|██████████| 100/100 [04:51<00:00, 2.91s/steps, loss=0.19511981]
+
0%| | 0/100 [00:00, ?steps/s]
0%| | 0/100 [00:00, ?steps/s, loss=0.3257061]
1%| | 1/100 [00:07<11:58, 7.25s/steps, loss=0.3257061]
1%| | 1/100 [00:07<11:58, 7.25s/steps, loss=0.31388757]
2%|▏ | 2/100 [00:14<11:59, 7.34s/steps, loss=0.31388757]
2%|▏ | 2/100 [00:14<11:59, 7.34s/steps, loss=0.27689898]
3%|▎ | 3/100 [00:21<11:46, 7.28s/steps, loss=0.27689898]
3%|▎ | 3/100 [00:22<11:46, 7.28s/steps, loss=0.29036394]
4%|▍ | 4/100 [00:29<11:56, 7.46s/steps, loss=0.29036394]
4%|▍ | 4/100 [00:29<11:56, 7.46s/steps, loss=0.2767464]
5%|▌ | 5/100 [00:36<11:46, 7.43s/steps, loss=0.2767464]
5%|▌ | 5/100 [00:37<11:46, 7.43s/steps, loss=0.27143058]
6%|▌ | 6/100 [00:44<11:41, 7.46s/steps, loss=0.27143058]
6%|▌ | 6/100 [00:44<11:41, 7.46s/steps, loss=0.262814]
7%|▋ | 7/100 [00:52<11:36, 7.49s/steps, loss=0.262814]
7%|▋ | 7/100 [00:52<11:36, 7.49s/steps, loss=0.2610669]
8%|▊ | 8/100 [00:59<11:38, 7.59s/steps, loss=0.2610669]
8%|▊ | 8/100 [00:59<11:38, 7.59s/steps, loss=0.2584749]
9%|▉ | 9/100 [01:07<11:22, 7.50s/steps, loss=0.2584749]
9%|▉ | 9/100 [01:07<11:22, 7.50s/steps, loss=0.26281843]
10%|█ | 10/100 [01:14<11:13, 7.48s/steps, loss=0.26281843]
10%|█ | 10/100 [01:14<11:13, 7.48s/steps, loss=0.26132178]
11%|█ | 11/100 [01:22<11:09, 7.53s/steps, loss=0.26132178]
11%|█ | 11/100 [01:22<11:09, 7.53s/steps, loss=0.2518818]
12%|█▏ | 12/100 [01:29<11:01, 7.52s/steps, loss=0.2518818]
12%|█▏ | 12/100 [01:29<11:01, 7.52s/steps, loss=0.2572185]
13%|█▎ | 13/100 [01:37<10:55, 7.53s/steps, loss=0.2572185]
13%|█▎ | 13/100 [01:37<10:55, 7.53s/steps, loss=0.26082274]
14%|█▍ | 14/100 [01:44<10:40, 7.44s/steps, loss=0.26082274]
14%|█▍ | 14/100 [01:44<10:40, 7.44s/steps, loss=0.25111863]
15%|█▌ | 15/100 [01:52<10:37, 7.51s/steps, loss=0.25111863]
15%|█▌ | 15/100 [01:52<10:37, 7.51s/steps, loss=0.24626935]
16%|█▌ | 16/100 [01:59<10:24, 7.43s/steps, loss=0.24626935]
16%|█▌ | 16/100 [01:59<10:24, 7.43s/steps, loss=0.24762128]
17%|█▋ | 17/100 [02:06<10:16, 7.43s/steps, loss=0.24762128]
17%|█▋ | 17/100 [02:06<10:16, 7.43s/steps, loss=0.24841127]
18%|█▊ | 18/100 [02:14<10:16, 7.52s/steps, loss=0.24841127]
18%|█▊ | 18/100 [02:14<10:16, 7.52s/steps, loss=0.25031704]
19%|█▉ | 19/100 [02:21<10:01, 7.43s/steps, loss=0.25031704]
19%|█▉ | 19/100 [02:21<10:01, 7.43s/steps, loss=0.24721526]
20%|██ | 20/100 [02:29<09:57, 7.47s/steps, loss=0.24721526]
20%|██ | 20/100 [02:29<09:57, 7.47s/steps, loss=0.2413755]
21%|██ | 21/100 [02:36<09:48, 7.44s/steps, loss=0.2413755]
21%|██ | 21/100 [02:36<09:48, 7.44s/steps, loss=0.24149337]
22%|██▏ | 22/100 [02:44<09:42, 7.46s/steps, loss=0.24149337]
22%|██▏ | 22/100 [02:44<09:42, 7.46s/steps, loss=0.24345313]
23%|██▎ | 23/100 [02:51<09:24, 7.33s/steps, loss=0.24345313]
23%|██▎ | 23/100 [02:51<09:24, 7.33s/steps, loss=0.24131946]
24%|██▍ | 24/100 [02:58<09:19, 7.37s/steps, loss=0.24131946]
24%|██▍ | 24/100 [02:58<09:19, 7.37s/steps, loss=0.24159087]
25%|██▌ | 25/100 [03:05<09:06, 7.29s/steps, loss=0.24159087]
25%|██▌ | 25/100 [03:05<09:06, 7.29s/steps, loss=0.24377127]
26%|██▌ | 26/100 [03:12<08:54, 7.22s/steps, loss=0.24377127]
26%|██▌ | 26/100 [03:13<08:54, 7.22s/steps, loss=0.24197176]
27%|██▋ | 27/100 [03:20<08:49, 7.26s/steps, loss=0.24197176]
27%|██▋ | 27/100 [03:20<08:49, 7.26s/steps, loss=0.2392469]
28%|██▊ | 28/100 [03:27<08:38, 7.19s/steps, loss=0.2392469]
28%|██▊ | 28/100 [03:27<08:38, 7.19s/steps, loss=0.2372931]
29%|██▉ | 29/100 [03:34<08:36, 7.27s/steps, loss=0.2372931]
29%|██▉ | 29/100 [03:34<08:36, 7.27s/steps, loss=0.24050044]
30%|███ | 30/100 [03:41<08:25, 7.22s/steps, loss=0.24050044]
30%|███ | 30/100 [03:41<08:25, 7.22s/steps, loss=0.23898888]
31%|███ | 31/100 [03:49<08:23, 7.29s/steps, loss=0.23898888]
31%|███ | 31/100 [03:49<08:23, 7.29s/steps, loss=0.23767658]
32%|███▏ | 32/100 [03:56<08:10, 7.22s/steps, loss=0.23767658]
32%|███▏ | 32/100 [03:56<08:10, 7.22s/steps, loss=0.23936483]
33%|███▎ | 33/100 [04:03<08:06, 7.27s/steps, loss=0.23936483]
33%|███▎ | 33/100 [04:03<08:06, 7.27s/steps, loss=0.23984958]
34%|███▍ | 34/100 [04:10<07:46, 7.06s/steps, loss=0.23984958]
34%|███▍ | 34/100 [04:10<07:46, 7.06s/steps, loss=0.23709776]
35%|███▌ | 35/100 [04:15<07:05, 6.54s/steps, loss=0.23709776]
35%|███▌ | 35/100 [04:15<07:05, 6.54s/steps, loss=0.23415019]
36%|███▌ | 36/100 [04:21<06:37, 6.21s/steps, loss=0.23415019]
36%|███▌ | 36/100 [04:21<06:37, 6.21s/steps, loss=0.23460384]
37%|███▋ | 37/100 [04:26<06:12, 5.91s/steps, loss=0.23460384]
37%|███▋ | 37/100 [04:26<06:12, 5.91s/steps, loss=0.23255174]
38%|███▊ | 38/100 [04:31<06:00, 5.82s/steps, loss=0.23255174]
38%|███▊ | 38/100 [04:32<06:00, 5.82s/steps, loss=0.2336004]
39%|███▉ | 39/100 [04:37<05:45, 5.66s/steps, loss=0.2336004]
39%|███▉ | 39/100 [04:37<05:45, 5.66s/steps, loss=0.23316997]
40%|████ | 40/100 [04:42<05:35, 5.60s/steps, loss=0.23316997]
40%|████ | 40/100 [04:42<05:35, 5.60s/steps, loss=0.23329453]
41%|████ | 41/100 [04:47<05:23, 5.48s/steps, loss=0.23329453]
41%|████ | 41/100 [04:47<05:23, 5.48s/steps, loss=0.23216045]
42%|████▏ | 42/100 [04:53<05:12, 5.39s/steps, loss=0.23216045]
42%|████▏ | 42/100 [04:53<05:12, 5.39s/steps, loss=0.23176444]
43%|████▎ | 43/100 [04:58<05:08, 5.41s/steps, loss=0.23176444]
43%|████▎ | 43/100 [04:58<05:08, 5.41s/steps, loss=0.23240168]
44%|████▍ | 44/100 [05:03<05:03, 5.42s/steps, loss=0.23240168]
44%|████▍ | 44/100 [05:04<05:03, 5.42s/steps, loss=0.23224004]
45%|████▌ | 45/100 [05:09<04:57, 5.41s/steps, loss=0.23224004]
45%|████▌ | 45/100 [05:09<04:57, 5.41s/steps, loss=0.23172435]
46%|████▌ | 46/100 [05:14<04:49, 5.35s/steps, loss=0.23172435]
46%|████▌ | 46/100 [05:14<04:49, 5.35s/steps, loss=0.2326456]
47%|████▋ | 47/100 [05:19<04:41, 5.30s/steps, loss=0.2326456]
47%|████▋ | 47/100 [05:19<04:41, 5.30s/steps, loss=0.2308987]
48%|████▊ | 48/100 [05:25<04:41, 5.40s/steps, loss=0.2308987]
48%|████▊ | 48/100 [05:25<04:41, 5.40s/steps, loss=0.23002417]
49%|████▉ | 49/100 [05:30<04:36, 5.42s/steps, loss=0.23002417]
49%|████▉ | 49/100 [05:30<04:36, 5.42s/steps, loss=0.23057269]
50%|█████ | 50/100 [05:36<04:31, 5.44s/steps, loss=0.23057269]
50%|█████ | 50/100 [05:36<04:31, 5.44s/steps, loss=0.22989812]
51%|█████ | 51/100 [05:41<04:23, 5.37s/steps, loss=0.22989812]
51%|█████ | 51/100 [05:41<04:23, 5.37s/steps, loss=0.23018885]
52%|█████▏ | 52/100 [05:42<03:10, 3.98s/steps, loss=0.23018885]
52%|█████▏ | 52/100 [05:42<03:10, 3.98s/steps, loss=0.22963397]
53%|█████▎ | 53/100 [05:42<02:19, 2.97s/steps, loss=0.22963397]
53%|█████▎ | 53/100 [05:42<02:19, 2.97s/steps, loss=0.22977856]
54%|█████▍ | 54/100 [05:43<01:42, 2.23s/steps, loss=0.22977856]
54%|█████▍ | 54/100 [05:43<01:42, 2.23s/steps, loss=0.22896029]
55%|█████▌ | 55/100 [05:43<01:16, 1.71s/steps, loss=0.22896029]
55%|█████▌ | 55/100 [05:43<01:16, 1.71s/steps, loss=0.22824605]
56%|█████▌ | 56/100 [05:44<00:59, 1.35s/steps, loss=0.22824605]
56%|█████▌ | 56/100 [05:44<00:59, 1.35s/steps, loss=0.22957547]
57%|█████▋ | 57/100 [05:44<00:47, 1.11s/steps, loss=0.22957547]
57%|█████▋ | 57/100 [05:45<00:47, 1.11s/steps, loss=0.22882555]
58%|█████▊ | 58/100 [05:45<00:40, 1.04steps/s, loss=0.22882555]
58%|█████▊ | 58/100 [05:45<00:40, 1.04steps/s, loss=0.22791527]
59%|█████▉ | 59/100 [05:46<00:33, 1.21steps/s, loss=0.22791527]
59%|█████▉ | 59/100 [05:46<00:33, 1.21steps/s, loss=0.22771682]
60%|██████ | 60/100 [05:46<00:29, 1.37steps/s, loss=0.22771682]
60%|██████ | 60/100 [05:46<00:29, 1.37steps/s, loss=0.22764051]
61%|██████ | 61/100 [05:47<00:25, 1.51steps/s, loss=0.22764051]
61%|██████ | 61/100 [05:47<00:25, 1.51steps/s, loss=0.22887765]
62%|██████▏ | 62/100 [05:47<00:27, 1.39steps/s, loss=0.22887765]
62%|██████▏ | 62/100 [05:47<00:27, 1.39steps/s, loss=0.22777286]
63%|██████▎ | 63/100 [05:48<00:24, 1.53steps/s, loss=0.22777286]
63%|██████▎ | 63/100 [05:48<00:24, 1.53steps/s, loss=0.22729954]
64%|██████▍ | 64/100 [05:48<00:21, 1.64steps/s, loss=0.22729954]
64%|██████▍ | 64/100 [05:49<00:21, 1.64steps/s, loss=0.22799116]
65%|██████▌ | 65/100 [05:49<00:20, 1.73steps/s, loss=0.22799116]
65%|██████▌ | 65/100 [05:49<00:20, 1.73steps/s, loss=0.22778697]
66%|██████▌ | 66/100 [05:50<00:20, 1.67steps/s, loss=0.22778697]
66%|██████▌ | 66/100 [05:50<00:20, 1.67steps/s, loss=0.22831555]
67%|██████▋ | 67/100 [05:50<00:18, 1.74steps/s, loss=0.22831555]
67%|██████▋ | 67/100 [05:50<00:18, 1.74steps/s, loss=0.22755584]
68%|██████▊ | 68/100 [05:51<00:17, 1.80steps/s, loss=0.22755584]
68%|██████▊ | 68/100 [05:51<00:17, 1.80steps/s, loss=0.22764507]
69%|██████▉ | 69/100 [05:51<00:16, 1.85steps/s, loss=0.22764507]
69%|██████▉ | 69/100 [05:51<00:16, 1.85steps/s, loss=0.22720301]
70%|███████ | 70/100 [05:52<00:18, 1.59steps/s, loss=0.22720301]
70%|███████ | 70/100 [05:52<00:18, 1.59steps/s, loss=0.22635376]
71%|███████ | 71/100 [05:52<00:17, 1.65steps/s, loss=0.22635376]
71%|███████ | 71/100 [05:53<00:17, 1.65steps/s, loss=0.22689477]
72%|███████▏ | 72/100 [05:53<00:16, 1.71steps/s, loss=0.22689477]
72%|███████▏ | 72/100 [05:53<00:16, 1.71steps/s, loss=0.22623387]
73%|███████▎ | 73/100 [05:54<00:15, 1.78steps/s, loss=0.22623387]
73%|███████▎ | 73/100 [05:54<00:15, 1.78steps/s, loss=0.22596635]
74%|███████▍ | 74/100 [05:54<00:14, 1.80steps/s, loss=0.22596635]
74%|███████▍ | 74/100 [05:54<00:14, 1.80steps/s, loss=0.22603878]
75%|███████▌ | 75/100 [05:55<00:14, 1.74steps/s, loss=0.22603878]
75%|███████▌ | 75/100 [05:55<00:14, 1.74steps/s, loss=0.226376]
76%|███████▌ | 76/100 [05:55<00:13, 1.82steps/s, loss=0.226376]
76%|███████▌ | 76/100 [05:55<00:13, 1.82steps/s, loss=0.22650564]
77%|███████▋ | 77/100 [05:56<00:12, 1.88steps/s, loss=0.22650564]
77%|███████▋ | 77/100 [05:56<00:12, 1.88steps/s, loss=0.22703122]
78%|███████▊ | 78/100 [05:56<00:11, 1.91steps/s, loss=0.22703122]
78%|███████▊ | 78/100 [05:56<00:11, 1.91steps/s, loss=0.22741385]
79%|███████▉ | 79/100 [05:57<00:11, 1.80steps/s, loss=0.22741385]
79%|███████▉ | 79/100 [05:57<00:11, 1.80steps/s, loss=0.22745699]
80%|████████ | 80/100 [05:58<00:12, 1.64steps/s, loss=0.22745699]
80%|████████ | 80/100 [05:58<00:12, 1.64steps/s, loss=0.22721247]
81%|████████ | 81/100 [05:58<00:10, 1.73steps/s, loss=0.22721247]
81%|████████ | 81/100 [05:58<00:10, 1.73steps/s, loss=0.22726092]
82%|████████▏ | 82/100 [05:59<00:09, 1.81steps/s, loss=0.22726092]
82%|████████▏ | 82/100 [05:59<00:09, 1.81steps/s, loss=0.227139]
83%|████████▎ | 83/100 [05:59<00:09, 1.74steps/s, loss=0.227139]
83%|████████▎ | 83/100 [05:59<00:09, 1.74steps/s, loss=0.22681198]
84%|████████▍ | 84/100 [06:00<00:08, 1.80steps/s, loss=0.22681198]
84%|████████▍ | 84/100 [06:00<00:08, 1.80steps/s, loss=0.22638342]
85%|████████▌ | 85/100 [06:00<00:08, 1.86steps/s, loss=0.22638342]
85%|████████▌ | 85/100 [06:00<00:08, 1.86steps/s, loss=0.22669676]
86%|████████▌ | 86/100 [06:01<00:07, 1.91steps/s, loss=0.22669676]
86%|████████▌ | 86/100 [06:01<00:07, 1.91steps/s, loss=0.22720484]
87%|████████▋ | 87/100 [06:01<00:06, 1.94steps/s, loss=0.22720484]
87%|████████▋ | 87/100 [06:01<00:06, 1.94steps/s, loss=0.2269536]
88%|████████▊ | 88/100 [06:02<00:06, 1.81steps/s, loss=0.2269536]
88%|████████▊ | 88/100 [06:02<00:06, 1.81steps/s, loss=0.2271087]
89%|████████▉ | 89/100 [06:03<00:06, 1.65steps/s, loss=0.2271087]
89%|████████▉ | 89/100 [06:03<00:06, 1.65steps/s, loss=0.2271522]
90%|█████████ | 90/100 [06:03<00:05, 1.74steps/s, loss=0.2271522]
90%|█████████ | 90/100 [06:03<00:05, 1.74steps/s, loss=0.22774252]
91%|█████████ | 91/100 [06:04<00:04, 1.81steps/s, loss=0.22774252]
91%|█████████ | 91/100 [06:04<00:04, 1.81steps/s, loss=0.22668771]
92%|█████████▏| 92/100 [06:04<00:04, 1.72steps/s, loss=0.22668771]
92%|█████████▏| 92/100 [06:04<00:04, 1.72steps/s, loss=0.22700876]
93%|█████████▎| 93/100 [06:05<00:03, 1.79steps/s, loss=0.22700876]
93%|█████████▎| 93/100 [06:05<00:03, 1.79steps/s, loss=0.2262866]
94%|█████████▍| 94/100 [06:05<00:03, 1.84steps/s, loss=0.2262866]
94%|█████████▍| 94/100 [06:05<00:03, 1.84steps/s, loss=0.22657876]
95%|█████████▌| 95/100 [06:06<00:02, 1.89steps/s, loss=0.22657876]
95%|█████████▌| 95/100 [06:06<00:02, 1.89steps/s, loss=0.22608079]
96%|█████████▌| 96/100 [06:06<00:02, 1.83steps/s, loss=0.22608079]
96%|█████████▌| 96/100 [06:06<00:02, 1.83steps/s, loss=0.22628196]
97%|█████████▋| 97/100 [06:07<00:01, 1.81steps/s, loss=0.22628196]
97%|█████████▋| 97/100 [06:07<00:01, 1.81steps/s, loss=0.22581589]
98%|█████████▊| 98/100 [06:08<00:01, 1.66steps/s, loss=0.22581589]
98%|█████████▊| 98/100 [06:08<00:01, 1.66steps/s, loss=0.22715266]
99%|█████████▉| 99/100 [06:08<00:00, 1.74steps/s, loss=0.22715266]
99%|█████████▉| 99/100 [06:08<00:00, 1.74steps/s, loss=0.2259321]
100%|██████████| 100/100 [06:09<00:00, 1.74steps/s, loss=0.2259321]
100%|██████████| 100/100 [06:09<00:00, 3.69s/steps, loss=0.2259321]
@@ -389,7 +389,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (4 minutes 59.897 seconds)
+ **Total running time of the script:** (6 minutes 18.661 seconds)
.. _sphx_glr_download_generated_autoexamples_GPU_example_learn_straight_line_readouts.py:
diff --git a/_sources/generated/autoexamples/GPU/sg_execution_times.rst b/_sources/generated/autoexamples/GPU/sg_execution_times.rst
index 70b5078e..19b1e335 100644
--- a/_sources/generated/autoexamples/GPU/sg_execution_times.rst
+++ b/_sources/generated/autoexamples/GPU/sg_execution_times.rst
@@ -6,7 +6,7 @@
Computation times
=================
-**09:16.403** total execution time for 6 files **from generated/autoexamples/GPU**:
+**13:04.346** total execution time for 6 files **from generated/autoexamples/GPU**:
.. container::
@@ -33,20 +33,20 @@ Computation times
- Time
- Mem (MB)
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_learn_straight_line_readouts.py` (``example_learn_straight_line_readouts.py``)
- - 04:59.897
+ - 06:18.661
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_fastMRI_UNet.py` (``example_fastMRI_UNet.py``)
- - 01:35.580
+ - 02:46.440
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_learn_samples_multicoil.py` (``example_learn_samples_multicoil.py``)
- - 01:25.665
+ - 02:09.696
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_learn_samples.py` (``example_learn_samples.py``)
- - 01:09.613
+ - 01:42.418
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_density.py` (``example_density.py``)
- - 00:04.500
+ - 00:05.638
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_cg.py` (``example_cg.py``)
- - 00:01.149
+ - 00:01.494
- 0.0
diff --git a/_sources/generated/autoexamples/example_2D_trajectories.rst b/_sources/generated/autoexamples/example_2D_trajectories.rst
index 5c91c2b1..9513120c 100644
--- a/_sources/generated/autoexamples/example_2D_trajectories.rst
+++ b/_sources/generated/autoexamples/example_2D_trajectories.rst
@@ -1338,7 +1338,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 22.263 seconds)
+ **Total running time of the script:** (0 minutes 23.951 seconds)
.. _sphx_glr_download_generated_autoexamples_example_2D_trajectories.py:
diff --git a/_sources/generated/autoexamples/example_3D_trajectories.rst b/_sources/generated/autoexamples/example_3D_trajectories.rst
index e033cd78..e5b6fb1a 100644
--- a/_sources/generated/autoexamples/example_3D_trajectories.rst
+++ b/_sources/generated/autoexamples/example_3D_trajectories.rst
@@ -2030,7 +2030,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (1 minutes 4.605 seconds)
+ **Total running time of the script:** (1 minutes 9.161 seconds)
.. _sphx_glr_download_generated_autoexamples_example_3D_trajectories.py:
diff --git a/_sources/generated/autoexamples/example_display_config.rst b/_sources/generated/autoexamples/example_display_config.rst
index 62472ea6..34a9506c 100644
--- a/_sources/generated/autoexamples/example_display_config.rst
+++ b/_sources/generated/autoexamples/example_display_config.rst
@@ -313,7 +313,7 @@ are observed.
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 6.315 seconds)
+ **Total running time of the script:** (0 minutes 5.910 seconds)
.. _sphx_glr_download_generated_autoexamples_example_display_config.py:
diff --git a/_sources/generated/autoexamples/example_gif_2D.rst b/_sources/generated/autoexamples/example_gif_2D.rst
index b0aed3ec..f661047b 100644
--- a/_sources/generated/autoexamples/example_gif_2D.rst
+++ b/_sources/generated/autoexamples/example_gif_2D.rst
@@ -274,7 +274,7 @@ Animation rendering
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (1 minutes 18.086 seconds)
+ **Total running time of the script:** (1 minutes 23.869 seconds)
.. _sphx_glr_download_generated_autoexamples_example_gif_2D.py:
diff --git a/_sources/generated/autoexamples/example_gif_3D.rst b/_sources/generated/autoexamples/example_gif_3D.rst
index e05556b9..d0241ea1 100644
--- a/_sources/generated/autoexamples/example_gif_3D.rst
+++ b/_sources/generated/autoexamples/example_gif_3D.rst
@@ -278,7 +278,7 @@ Animation rendering
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (2 minutes 7.151 seconds)
+ **Total running time of the script:** (2 minutes 7.027 seconds)
.. _sphx_glr_download_generated_autoexamples_example_gif_3D.py:
diff --git a/_sources/generated/autoexamples/example_learn_samples_multires.rst b/_sources/generated/autoexamples/example_learn_samples_multires.rst
index a160a364..be8d17c0 100644
--- a/_sources/generated/autoexamples/example_learn_samples_multires.rst
+++ b/_sources/generated/autoexamples/example_learn_samples_multires.rst
@@ -462,10 +462,10 @@ Training loop
fig, axs = plt.subplots(2, 2, figsize=(10, 10), num=1)
/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/example_learn_samples_multires.py:136: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
axs[0].imshow(np.abs(image[0]), cmap="gray")
-
3%|▎ | 1/30 [00:00<00:14, 2.01steps/s, loss=(array(0.86704654, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:14, 2.01steps/s, loss=(array(0.5286128, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:13, 2.10steps/s, loss=(array(0.5286128, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:13, 2.10steps/s, loss=(array(0.36503774, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.14steps/s, loss=(array(0.36503774, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.14steps/s, loss=(array(0.4146319, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.18steps/s, loss=(array(0.4146319, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.18steps/s, loss=(array(0.30785707, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.19steps/s, loss=(array(0.30785707, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.19steps/s, loss=(array(0.32219106, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.21steps/s, loss=(array(0.32219106, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.21steps/s, loss=(array(0.34580207, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.22steps/s, loss=(array(0.34580207, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.22steps/s, loss=(array(0.3096822, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:11, 1.91steps/s, loss=(array(0.3096822, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:11, 1.91steps/s, loss=(array(0.29107636, dtype=float32),)]
30%|███ | 9/30 [00:04<00:10, 1.98steps/s, loss=(array(0.29107636, dtype=float32),)]
30%|███ | 9/30 [00:04<00:10, 1.98steps/s, loss=(array(0.28929195, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:09, 2.04steps/s, loss=(array(0.28929195, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:09, 2.04steps/s, loss=(array(0.27598783, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.09steps/s, loss=(array(0.27598783, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.09steps/s, loss=(array(0.27360773, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.12steps/s, loss=(array(0.27360773, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.12steps/s, loss=(array(0.2685275, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:07, 2.16steps/s, loss=(array(0.2685275, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:07, 2.16steps/s, loss=(array(0.25053963, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.19steps/s, loss=(array(0.25053963, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.19steps/s, loss=(array(0.23135254, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:06, 2.21steps/s, loss=(array(0.23135254, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:06, 2.21steps/s, loss=(array(0.24112129, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.22steps/s, loss=(array(0.24112129, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.22steps/s, loss=(array(0.23986332, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.23steps/s, loss=(array(0.23986332, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.23steps/s, loss=(array(0.22417977, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:06, 1.91steps/s, loss=(array(0.22417977, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:06, 1.91steps/s, loss=(array(0.21919632, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.98steps/s, loss=(array(0.21919632, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.98steps/s, loss=(array(0.20742278, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:04, 2.05steps/s, loss=(array(0.20742278, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:04, 2.05steps/s, loss=(array(0.20717141, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.09steps/s, loss=(array(0.20717141, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.09steps/s, loss=(array(0.19848356, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.12steps/s, loss=(array(0.19848356, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.12steps/s, loss=(array(0.18597358, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.15steps/s, loss=(array(0.18597358, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.15steps/s, loss=(array(0.18525052, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.19steps/s, loss=(array(0.18525052, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.19steps/s, loss=(array(0.17937596, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.20steps/s, loss=(array(0.17937596, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.20steps/s, loss=(array(0.17472246, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.22steps/s, loss=(array(0.17472246, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.22steps/s, loss=(array(0.16732308, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.23steps/s, loss=(array(0.16732308, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.23steps/s, loss=(array(0.1665864, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:01, 1.90steps/s, loss=(array(0.1665864, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:01, 1.90steps/s, loss=(array(0.15969816, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 2.00steps/s, loss=(array(0.15969816, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 2.00steps/s, loss=(array(0.15472594, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.05steps/s, loss=(array(0.15472594, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.10steps/s, loss=(array(0.15472594, dtype=float32),)]
-
0%| | 0/30 [00:00, ?steps/s]
0%| | 0/30 [00:00, ?steps/s, loss=(array(0.15260476, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.21steps/s, loss=(array(0.15260476, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.21steps/s, loss=(array(0.15010233, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.22steps/s, loss=(array(0.15010233, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.22steps/s, loss=(array(0.14741988, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.22steps/s, loss=(array(0.14741988, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.22steps/s, loss=(array(0.1448765, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.21steps/s, loss=(array(0.1448765, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.21steps/s, loss=(array(0.14455202, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.21steps/s, loss=(array(0.14455202, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.21steps/s, loss=(array(0.13923562, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.21steps/s, loss=(array(0.13923562, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.21steps/s, loss=(array(0.13722605, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.21steps/s, loss=(array(0.13722605, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.21steps/s, loss=(array(0.1342723, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:11, 1.87steps/s, loss=(array(0.1342723, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:11, 1.87steps/s, loss=(array(0.13274895, dtype=float32),)]
30%|███ | 9/30 [00:04<00:10, 1.97steps/s, loss=(array(0.13274895, dtype=float32),)]
30%|███ | 9/30 [00:04<00:10, 1.97steps/s, loss=(array(0.1312033, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:09, 2.03steps/s, loss=(array(0.1312033, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:09, 2.03steps/s, loss=(array(0.13059834, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.06steps/s, loss=(array(0.13059834, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.06steps/s, loss=(array(0.12819725, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.09steps/s, loss=(array(0.12819725, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.09steps/s, loss=(array(0.12721008, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.11steps/s, loss=(array(0.12721008, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.11steps/s, loss=(array(0.12574998, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.13steps/s, loss=(array(0.12574998, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.13steps/s, loss=(array(0.1241952, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:06, 2.15steps/s, loss=(array(0.1241952, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:06, 2.15steps/s, loss=(array(0.12223588, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.15steps/s, loss=(array(0.12223588, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.15steps/s, loss=(array(0.12121239, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:05, 2.17steps/s, loss=(array(0.12121239, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:05, 2.17steps/s, loss=(array(0.11902349, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:06, 1.89steps/s, loss=(array(0.11902349, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:06, 1.89steps/s, loss=(array(0.11780152, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.97steps/s, loss=(array(0.11780152, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.97steps/s, loss=(array(0.11655162, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:04, 2.03steps/s, loss=(array(0.11655162, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:04, 2.03steps/s, loss=(array(0.11569391, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.09steps/s, loss=(array(0.11569391, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.09steps/s, loss=(array(0.11424895, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.11steps/s, loss=(array(0.11424895, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.11steps/s, loss=(array(0.1132096, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.13steps/s, loss=(array(0.1132096, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.13steps/s, loss=(array(0.11162986, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.16steps/s, loss=(array(0.11162986, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.16steps/s, loss=(array(0.11079919, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.18steps/s, loss=(array(0.11079919, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.18steps/s, loss=(array(0.10959952, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.19steps/s, loss=(array(0.10959952, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.19steps/s, loss=(array(0.10853799, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.20steps/s, loss=(array(0.10853799, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.20steps/s, loss=(array(0.10743055, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:01, 1.86steps/s, loss=(array(0.10743055, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:01, 1.86steps/s, loss=(array(0.10652827, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 1.95steps/s, loss=(array(0.10652827, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 1.95steps/s, loss=(array(0.10561012, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.02steps/s, loss=(array(0.10561012, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.08steps/s, loss=(array(0.10561012, dtype=float32),)]
-
0%| | 0/30 [00:00, ?steps/s]
0%| | 0/30 [00:00, ?steps/s, loss=(array(0.10487418, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.20steps/s, loss=(array(0.10487418, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.20steps/s, loss=(array(0.10341767, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.20steps/s, loss=(array(0.10341767, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.20steps/s, loss=(array(0.10168627, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.20steps/s, loss=(array(0.10168627, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.20steps/s, loss=(array(0.0999157, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.20steps/s, loss=(array(0.0999157, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.20steps/s, loss=(array(0.0984189, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.20steps/s, loss=(array(0.0984189, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.20steps/s, loss=(array(0.0972532, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.20steps/s, loss=(array(0.0972532, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.20steps/s, loss=(array(0.09613352, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.20steps/s, loss=(array(0.09613352, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.20steps/s, loss=(array(0.09505253, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:09, 2.21steps/s, loss=(array(0.09505253, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:09, 2.21steps/s, loss=(array(0.09403138, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.89steps/s, loss=(array(0.09403138, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.89steps/s, loss=(array(0.09303587, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 1.98steps/s, loss=(array(0.09303587, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 1.98steps/s, loss=(array(0.09200649, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.04steps/s, loss=(array(0.09200649, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.04steps/s, loss=(array(0.09091684, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.09steps/s, loss=(array(0.09091684, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.09steps/s, loss=(array(0.08976055, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.12steps/s, loss=(array(0.08976055, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.12steps/s, loss=(array(0.08874091, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.15steps/s, loss=(array(0.08874091, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.15steps/s, loss=(array(0.08782169, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:06, 2.16steps/s, loss=(array(0.08782169, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:06, 2.16steps/s, loss=(array(0.08700931, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.18steps/s, loss=(array(0.08700931, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.18steps/s, loss=(array(0.08608636, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.18steps/s, loss=(array(0.08608636, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.18steps/s, loss=(array(0.08510467, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.18steps/s, loss=(array(0.08510467, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.18steps/s, loss=(array(0.08416025, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.88steps/s, loss=(array(0.08416025, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.88steps/s, loss=(array(0.08324701, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.96steps/s, loss=(array(0.08324701, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.96steps/s, loss=(array(0.08234854, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.02steps/s, loss=(array(0.08234854, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.02steps/s, loss=(array(0.08139667, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.06steps/s, loss=(array(0.08139667, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.06steps/s, loss=(array(0.0804868, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.09steps/s, loss=(array(0.0804868, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.09steps/s, loss=(array(0.07960066, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.12steps/s, loss=(array(0.07960066, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.12steps/s, loss=(array(0.07872592, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.14steps/s, loss=(array(0.07872592, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.14steps/s, loss=(array(0.07789394, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.15steps/s, loss=(array(0.07789394, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.15steps/s, loss=(array(0.07707645, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.16steps/s, loss=(array(0.07707645, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.16steps/s, loss=(array(0.07629781, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.17steps/s, loss=(array(0.07629781, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.17steps/s, loss=(array(0.07554185, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 1.84steps/s, loss=(array(0.07554185, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 1.84steps/s, loss=(array(0.07479402, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 1.94steps/s, loss=(array(0.07479402, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.08steps/s, loss=(array(0.07479402, dtype=float32),)]
-
0%| | 0/30 [00:00, ?steps/s]
0%| | 0/30 [00:00, ?steps/s, loss=(array(0.07407662, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.17steps/s, loss=(array(0.07407662, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.17steps/s, loss=(array(0.0726244, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.17steps/s, loss=(array(0.0726244, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.17steps/s, loss=(array(0.07098428, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.18steps/s, loss=(array(0.07098428, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.18steps/s, loss=(array(0.06965234, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.17steps/s, loss=(array(0.06965234, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.17steps/s, loss=(array(0.0685983, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.15steps/s, loss=(array(0.0685983, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.15steps/s, loss=(array(0.0676876, dtype=float32),)]
20%|██ | 6/30 [00:02<00:11, 2.15steps/s, loss=(array(0.0676876, dtype=float32),)]
20%|██ | 6/30 [00:02<00:11, 2.15steps/s, loss=(array(0.06679374, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.14steps/s, loss=(array(0.06679374, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.14steps/s, loss=(array(0.06589988, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:10, 2.16steps/s, loss=(array(0.06589988, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:10, 2.16steps/s, loss=(array(0.06502866, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.85steps/s, loss=(array(0.06502866, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.85steps/s, loss=(array(0.06413081, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 1.94steps/s, loss=(array(0.06413081, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 1.94steps/s, loss=(array(0.06324845, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.00steps/s, loss=(array(0.06324845, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.00steps/s, loss=(array(0.06246167, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.05steps/s, loss=(array(0.06246167, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.05steps/s, loss=(array(0.06174359, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.09steps/s, loss=(array(0.06174359, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.09steps/s, loss=(array(0.06104461, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.11steps/s, loss=(array(0.06104461, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.11steps/s, loss=(array(0.06036811, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:07, 2.13steps/s, loss=(array(0.06036811, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:07, 2.13steps/s, loss=(array(0.05971479, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.14steps/s, loss=(array(0.05971479, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.14steps/s, loss=(array(0.05908708, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:06, 2.15steps/s, loss=(array(0.05908708, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:06, 2.15steps/s, loss=(array(0.05846841, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.15steps/s, loss=(array(0.05846841, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.15steps/s, loss=(array(0.0578428, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.86steps/s, loss=(array(0.0578428, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.86steps/s, loss=(array(0.0572281, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.95steps/s, loss=(array(0.0572281, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.95steps/s, loss=(array(0.05666602, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.02steps/s, loss=(array(0.05666602, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.02steps/s, loss=(array(0.05613874, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.07steps/s, loss=(array(0.05613874, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.07steps/s, loss=(array(0.05561662, dtype=float32),)]
77%|███████▋ | 23/30 [00:11<00:03, 2.10steps/s, loss=(array(0.05561662, dtype=float32),)]
77%|███████▋ | 23/30 [00:11<00:03, 2.10steps/s, loss=(array(0.05512222, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.12steps/s, loss=(array(0.05512222, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.12steps/s, loss=(array(0.05470764, dtype=float32),)]
83%|████████▎ | 25/30 [00:12<00:02, 2.15steps/s, loss=(array(0.05470764, dtype=float32),)]
83%|████████▎ | 25/30 [00:12<00:02, 2.15steps/s, loss=(array(0.05457507, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.18steps/s, loss=(array(0.05457507, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.18steps/s, loss=(array(0.0563061, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.19steps/s, loss=(array(0.0563061, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.19steps/s, loss=(array(0.09944884, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.21steps/s, loss=(array(0.09944884, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.21steps/s, loss=(array(0.43647137, dtype=float32),)]
97%|█████████▋| 29/30 [00:14<00:00, 1.91steps/s, loss=(array(0.43647137, dtype=float32),)]
97%|█████████▋| 29/30 [00:14<00:00, 1.91steps/s, loss=(array(0.07823093, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.00steps/s, loss=(array(0.07823093, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.07steps/s, loss=(array(0.07823093, dtype=float32),)]
+
3%|▎ | 1/30 [00:00<00:14, 2.03steps/s, loss=(array(0.86704654, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:14, 2.03steps/s, loss=(array(0.5286128, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:13, 2.10steps/s, loss=(array(0.5286128, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:13, 2.10steps/s, loss=(array(0.36503774, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.14steps/s, loss=(array(0.36503774, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.14steps/s, loss=(array(0.4146319, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.17steps/s, loss=(array(0.4146319, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.17steps/s, loss=(array(0.30785707, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.17steps/s, loss=(array(0.30785707, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.17steps/s, loss=(array(0.32219106, dtype=float32),)]
20%|██ | 6/30 [00:02<00:11, 2.04steps/s, loss=(array(0.32219106, dtype=float32),)]
20%|██ | 6/30 [00:02<00:11, 2.04steps/s, loss=(array(0.34580207, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:11, 2.02steps/s, loss=(array(0.34580207, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:11, 2.02steps/s, loss=(array(0.3096822, dtype=float32),)]
27%|██▋ | 8/30 [00:04<00:12, 1.78steps/s, loss=(array(0.3096822, dtype=float32),)]
27%|██▋ | 8/30 [00:04<00:12, 1.78steps/s, loss=(array(0.29107636, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.89steps/s, loss=(array(0.29107636, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.89steps/s, loss=(array(0.28929195, dtype=float32),)]
33%|███▎ | 10/30 [00:05<00:10, 1.94steps/s, loss=(array(0.28929195, dtype=float32),)]
33%|███▎ | 10/30 [00:05<00:10, 1.94steps/s, loss=(array(0.27598783, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:10, 1.74steps/s, loss=(array(0.27598783, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:10, 1.74steps/s, loss=(array(0.27360773, dtype=float32),)]
40%|████ | 12/30 [00:06<00:09, 1.86steps/s, loss=(array(0.27360773, dtype=float32),)]
40%|████ | 12/30 [00:06<00:09, 1.86steps/s, loss=(array(0.2685275, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 1.97steps/s, loss=(array(0.2685275, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 1.97steps/s, loss=(array(0.25053963, dtype=float32),)]
47%|████▋ | 14/30 [00:07<00:07, 2.05steps/s, loss=(array(0.25053963, dtype=float32),)]
47%|████▋ | 14/30 [00:07<00:07, 2.05steps/s, loss=(array(0.23135254, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:07, 2.10steps/s, loss=(array(0.23135254, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:07, 2.10steps/s, loss=(array(0.24112129, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.12steps/s, loss=(array(0.24112129, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.12steps/s, loss=(array(0.23986332, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:06, 2.13steps/s, loss=(array(0.23986332, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:06, 2.13steps/s, loss=(array(0.22417977, dtype=float32),)]
60%|██████ | 18/30 [00:09<00:06, 1.86steps/s, loss=(array(0.22417977, dtype=float32),)]
60%|██████ | 18/30 [00:09<00:06, 1.86steps/s, loss=(array(0.21919632, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.95steps/s, loss=(array(0.21919632, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.95steps/s, loss=(array(0.20742278, dtype=float32),)]
67%|██████▋ | 20/30 [00:10<00:04, 2.02steps/s, loss=(array(0.20742278, dtype=float32),)]
67%|██████▋ | 20/30 [00:10<00:04, 2.02steps/s, loss=(array(0.20717141, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.07steps/s, loss=(array(0.20717141, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 2.07steps/s, loss=(array(0.19848356, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.10steps/s, loss=(array(0.19848356, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.10steps/s, loss=(array(0.18597358, dtype=float32),)]
77%|███████▋ | 23/30 [00:11<00:03, 2.12steps/s, loss=(array(0.18597358, dtype=float32),)]
77%|███████▋ | 23/30 [00:11<00:03, 2.12steps/s, loss=(array(0.18525052, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.17steps/s, loss=(array(0.18525052, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.17steps/s, loss=(array(0.17937596, dtype=float32),)]
83%|████████▎ | 25/30 [00:12<00:02, 2.19steps/s, loss=(array(0.17937596, dtype=float32),)]
83%|████████▎ | 25/30 [00:12<00:02, 2.19steps/s, loss=(array(0.17472246, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.18steps/s, loss=(array(0.17472246, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.18steps/s, loss=(array(0.16732308, dtype=float32),)]
90%|█████████ | 27/30 [00:13<00:01, 2.14steps/s, loss=(array(0.16732308, dtype=float32),)]
90%|█████████ | 27/30 [00:13<00:01, 2.14steps/s, loss=(array(0.1665864, dtype=float32),)]
93%|█████████▎| 28/30 [00:14<00:01, 1.80steps/s, loss=(array(0.1665864, dtype=float32),)]
93%|█████████▎| 28/30 [00:14<00:01, 1.80steps/s, loss=(array(0.15969816, dtype=float32),)]
97%|█████████▋| 29/30 [00:14<00:00, 1.87steps/s, loss=(array(0.15969816, dtype=float32),)]
97%|█████████▋| 29/30 [00:14<00:00, 1.87steps/s, loss=(array(0.15472594, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 1.95steps/s, loss=(array(0.15472594, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.01steps/s, loss=(array(0.15472594, dtype=float32),)]
+
0%| | 0/30 [00:00, ?steps/s]
0%| | 0/30 [00:00, ?steps/s, loss=(array(0.15260476, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.16steps/s, loss=(array(0.15260476, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.16steps/s, loss=(array(0.15010233, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:13, 2.08steps/s, loss=(array(0.15010233, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:13, 2.08steps/s, loss=(array(0.14741988, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.09steps/s, loss=(array(0.14741988, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.09steps/s, loss=(array(0.1448765, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:12, 2.16steps/s, loss=(array(0.1448765, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:12, 2.16steps/s, loss=(array(0.14455202, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.20steps/s, loss=(array(0.14455202, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.20steps/s, loss=(array(0.13923562, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.23steps/s, loss=(array(0.13923562, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.23steps/s, loss=(array(0.13722605, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.24steps/s, loss=(array(0.13722605, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.24steps/s, loss=(array(0.1342723, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:11, 1.93steps/s, loss=(array(0.1342723, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:11, 1.93steps/s, loss=(array(0.13274895, dtype=float32),)]
30%|███ | 9/30 [00:04<00:10, 2.02steps/s, loss=(array(0.13274895, dtype=float32),)]
30%|███ | 9/30 [00:04<00:10, 2.02steps/s, loss=(array(0.1312033, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:09, 2.09steps/s, loss=(array(0.1312033, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:09, 2.09steps/s, loss=(array(0.13059834, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:08, 2.13steps/s, loss=(array(0.13059834, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:08, 2.13steps/s, loss=(array(0.12819725, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.16steps/s, loss=(array(0.12819725, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.16steps/s, loss=(array(0.12721008, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:07, 2.18steps/s, loss=(array(0.12721008, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:07, 2.18steps/s, loss=(array(0.12574998, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.20steps/s, loss=(array(0.12574998, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.20steps/s, loss=(array(0.1241952, dtype=float32),)]
50%|█████ | 15/30 [00:06<00:06, 2.21steps/s, loss=(array(0.1241952, dtype=float32),)]
50%|█████ | 15/30 [00:06<00:06, 2.21steps/s, loss=(array(0.12223588, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.22steps/s, loss=(array(0.12223588, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.22steps/s, loss=(array(0.12121239, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.24steps/s, loss=(array(0.12121239, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.24steps/s, loss=(array(0.11902349, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:06, 1.94steps/s, loss=(array(0.11902349, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:06, 1.94steps/s, loss=(array(0.11780152, dtype=float32),)]
63%|██████▎ | 19/30 [00:08<00:05, 2.02steps/s, loss=(array(0.11780152, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 2.02steps/s, loss=(array(0.11655162, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:04, 2.09steps/s, loss=(array(0.11655162, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:04, 2.09steps/s, loss=(array(0.11569391, dtype=float32),)]
70%|███████ | 21/30 [00:09<00:04, 2.15steps/s, loss=(array(0.11569391, dtype=float32),)]
70%|███████ | 21/30 [00:09<00:04, 2.15steps/s, loss=(array(0.11424895, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.19steps/s, loss=(array(0.11424895, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.19steps/s, loss=(array(0.1132096, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.22steps/s, loss=(array(0.1132096, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.22steps/s, loss=(array(0.11162986, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.24steps/s, loss=(array(0.11162986, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.24steps/s, loss=(array(0.11079919, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.25steps/s, loss=(array(0.11079919, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.25steps/s, loss=(array(0.10959952, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.27steps/s, loss=(array(0.10959952, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.27steps/s, loss=(array(0.10853799, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.27steps/s, loss=(array(0.10853799, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.27steps/s, loss=(array(0.10743055, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:01, 1.96steps/s, loss=(array(0.10743055, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:01, 1.96steps/s, loss=(array(0.10652827, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 2.05steps/s, loss=(array(0.10652827, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 2.05steps/s, loss=(array(0.10561012, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.11steps/s, loss=(array(0.10561012, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.14steps/s, loss=(array(0.10561012, dtype=float32),)]
+
0%| | 0/30 [00:00, ?steps/s]
0%| | 0/30 [00:00, ?steps/s, loss=(array(0.10487418, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:12, 2.25steps/s, loss=(array(0.10487418, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:12, 2.25steps/s, loss=(array(0.10341767, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.24steps/s, loss=(array(0.10341767, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.24steps/s, loss=(array(0.10168627, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.25steps/s, loss=(array(0.10168627, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.25steps/s, loss=(array(0.0999157, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.25steps/s, loss=(array(0.0999157, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:11, 2.25steps/s, loss=(array(0.0984189, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.25steps/s, loss=(array(0.0984189, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.25steps/s, loss=(array(0.0972532, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.25steps/s, loss=(array(0.0972532, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.25steps/s, loss=(array(0.09613352, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.22steps/s, loss=(array(0.09613352, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.22steps/s, loss=(array(0.09505253, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:10, 2.18steps/s, loss=(array(0.09505253, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:10, 2.18steps/s, loss=(array(0.09403138, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.90steps/s, loss=(array(0.09403138, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.90steps/s, loss=(array(0.09303587, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 2.00steps/s, loss=(array(0.09303587, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 2.00steps/s, loss=(array(0.09200649, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.07steps/s, loss=(array(0.09200649, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.07steps/s, loss=(array(0.09091684, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.12steps/s, loss=(array(0.09091684, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.12steps/s, loss=(array(0.08976055, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.10steps/s, loss=(array(0.08976055, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.10steps/s, loss=(array(0.08874091, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.15steps/s, loss=(array(0.08874091, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.15steps/s, loss=(array(0.08782169, dtype=float32),)]
50%|█████ | 15/30 [00:06<00:06, 2.18steps/s, loss=(array(0.08782169, dtype=float32),)]
50%|█████ | 15/30 [00:06<00:06, 2.18steps/s, loss=(array(0.08700931, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.20steps/s, loss=(array(0.08700931, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.20steps/s, loss=(array(0.08608636, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.21steps/s, loss=(array(0.08608636, dtype=float32),)]
57%|█████▋ | 17/30 [00:07<00:05, 2.21steps/s, loss=(array(0.08510467, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.21steps/s, loss=(array(0.08510467, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.21steps/s, loss=(array(0.08416025, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.89steps/s, loss=(array(0.08416025, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.89steps/s, loss=(array(0.08324701, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.99steps/s, loss=(array(0.08324701, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.99steps/s, loss=(array(0.08234854, dtype=float32),)]
70%|███████ | 21/30 [00:09<00:04, 2.04steps/s, loss=(array(0.08234854, dtype=float32),)]
70%|███████ | 21/30 [00:09<00:04, 2.04steps/s, loss=(array(0.08139667, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.09steps/s, loss=(array(0.08139667, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:03, 2.09steps/s, loss=(array(0.0804868, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.08steps/s, loss=(array(0.0804868, dtype=float32),)]
77%|███████▋ | 23/30 [00:10<00:03, 2.08steps/s, loss=(array(0.07960066, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.11steps/s, loss=(array(0.07960066, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:02, 2.11steps/s, loss=(array(0.07872592, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.14steps/s, loss=(array(0.07872592, dtype=float32),)]
83%|████████▎ | 25/30 [00:11<00:02, 2.14steps/s, loss=(array(0.07789394, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.15steps/s, loss=(array(0.07789394, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.15steps/s, loss=(array(0.07707645, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.16steps/s, loss=(array(0.07707645, dtype=float32),)]
90%|█████████ | 27/30 [00:12<00:01, 2.16steps/s, loss=(array(0.07629781, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.16steps/s, loss=(array(0.07629781, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.16steps/s, loss=(array(0.07554185, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 1.89steps/s, loss=(array(0.07554185, dtype=float32),)]
97%|█████████▋| 29/30 [00:13<00:00, 1.89steps/s, loss=(array(0.07479402, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 1.98steps/s, loss=(array(0.07479402, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.10steps/s, loss=(array(0.07479402, dtype=float32),)]
+
0%| | 0/30 [00:00, ?steps/s]
0%| | 0/30 [00:00, ?steps/s, loss=(array(0.07407662, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.18steps/s, loss=(array(0.07407662, dtype=float32),)]
3%|▎ | 1/30 [00:00<00:13, 2.18steps/s, loss=(array(0.0726244, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.15steps/s, loss=(array(0.0726244, dtype=float32),)]
7%|▋ | 2/30 [00:00<00:12, 2.15steps/s, loss=(array(0.07098428, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.08steps/s, loss=(array(0.07098428, dtype=float32),)]
10%|█ | 3/30 [00:01<00:12, 2.08steps/s, loss=(array(0.06965234, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:12, 2.14steps/s, loss=(array(0.06965234, dtype=float32),)]
13%|█▎ | 4/30 [00:01<00:12, 2.14steps/s, loss=(array(0.0685983, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.17steps/s, loss=(array(0.0685983, dtype=float32),)]
17%|█▋ | 5/30 [00:02<00:11, 2.17steps/s, loss=(array(0.0676876, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.18steps/s, loss=(array(0.0676876, dtype=float32),)]
20%|██ | 6/30 [00:02<00:10, 2.18steps/s, loss=(array(0.06679374, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.19steps/s, loss=(array(0.06679374, dtype=float32),)]
23%|██▎ | 7/30 [00:03<00:10, 2.19steps/s, loss=(array(0.06589988, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:10, 2.20steps/s, loss=(array(0.06589988, dtype=float32),)]
27%|██▋ | 8/30 [00:03<00:10, 2.20steps/s, loss=(array(0.06502866, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.89steps/s, loss=(array(0.06502866, dtype=float32),)]
30%|███ | 9/30 [00:04<00:11, 1.89steps/s, loss=(array(0.06413081, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 1.97steps/s, loss=(array(0.06413081, dtype=float32),)]
33%|███▎ | 10/30 [00:04<00:10, 1.97steps/s, loss=(array(0.06324845, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.03steps/s, loss=(array(0.06324845, dtype=float32),)]
37%|███▋ | 11/30 [00:05<00:09, 2.03steps/s, loss=(array(0.06246167, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.07steps/s, loss=(array(0.06246167, dtype=float32),)]
40%|████ | 12/30 [00:05<00:08, 2.07steps/s, loss=(array(0.06174359, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.05steps/s, loss=(array(0.06174359, dtype=float32),)]
43%|████▎ | 13/30 [00:06<00:08, 2.05steps/s, loss=(array(0.06104461, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.08steps/s, loss=(array(0.06104461, dtype=float32),)]
47%|████▋ | 14/30 [00:06<00:07, 2.08steps/s, loss=(array(0.06036811, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:07, 2.11steps/s, loss=(array(0.06036811, dtype=float32),)]
50%|█████ | 15/30 [00:07<00:07, 2.11steps/s, loss=(array(0.05971479, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.12steps/s, loss=(array(0.05971479, dtype=float32),)]
53%|█████▎ | 16/30 [00:07<00:06, 2.12steps/s, loss=(array(0.05908708, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:06, 2.13steps/s, loss=(array(0.05908708, dtype=float32),)]
57%|█████▋ | 17/30 [00:08<00:06, 2.13steps/s, loss=(array(0.05846841, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.16steps/s, loss=(array(0.05846841, dtype=float32),)]
60%|██████ | 18/30 [00:08<00:05, 2.16steps/s, loss=(array(0.0578428, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.86steps/s, loss=(array(0.0578428, dtype=float32),)]
63%|██████▎ | 19/30 [00:09<00:05, 1.86steps/s, loss=(array(0.0572281, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.81steps/s, loss=(array(0.0572281, dtype=float32),)]
67%|██████▋ | 20/30 [00:09<00:05, 1.81steps/s, loss=(array(0.05666602, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 1.86steps/s, loss=(array(0.05666602, dtype=float32),)]
70%|███████ | 21/30 [00:10<00:04, 1.86steps/s, loss=(array(0.05613874, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:04, 1.92steps/s, loss=(array(0.05613874, dtype=float32),)]
73%|███████▎ | 22/30 [00:10<00:04, 1.92steps/s, loss=(array(0.05561662, dtype=float32),)]
77%|███████▋ | 23/30 [00:11<00:03, 1.96steps/s, loss=(array(0.05561662, dtype=float32),)]
77%|███████▋ | 23/30 [00:11<00:03, 1.96steps/s, loss=(array(0.05512222, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:03, 2.00steps/s, loss=(array(0.05512222, dtype=float32),)]
80%|████████ | 24/30 [00:11<00:03, 2.00steps/s, loss=(array(0.05470764, dtype=float32),)]
83%|████████▎ | 25/30 [00:12<00:02, 2.04steps/s, loss=(array(0.05470764, dtype=float32),)]
83%|████████▎ | 25/30 [00:12<00:02, 2.04steps/s, loss=(array(0.05457507, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.10steps/s, loss=(array(0.05457507, dtype=float32),)]
87%|████████▋ | 26/30 [00:12<00:01, 2.10steps/s, loss=(array(0.0563061, dtype=float32),)]
90%|█████████ | 27/30 [00:13<00:01, 2.12steps/s, loss=(array(0.0563061, dtype=float32),)]
90%|█████████ | 27/30 [00:13<00:01, 2.12steps/s, loss=(array(0.09944884, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.14steps/s, loss=(array(0.09944884, dtype=float32),)]
93%|█████████▎| 28/30 [00:13<00:00, 2.14steps/s, loss=(array(0.43647137, dtype=float32),)]
97%|█████████▋| 29/30 [00:14<00:00, 1.83steps/s, loss=(array(0.43647137, dtype=float32),)]
97%|█████████▋| 29/30 [00:14<00:00, 1.83steps/s, loss=(array(0.07823093, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 1.92steps/s, loss=(array(0.07823093, dtype=float32),)]
100%|██████████| 30/30 [00:14<00:00, 2.02steps/s, loss=(array(0.07823093, dtype=float32),)]
@@ -574,7 +574,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (1 minutes 4.470 seconds)
+ **Total running time of the script:** (1 minutes 5.968 seconds)
.. _sphx_glr_download_generated_autoexamples_example_learn_samples_multires.py:
diff --git a/_sources/generated/autoexamples/example_offresonance.rst b/_sources/generated/autoexamples/example_offresonance.rst
index 6c5bfda1..da48b54a 100644
--- a/_sources/generated/autoexamples/example_offresonance.rst
+++ b/_sources/generated/autoexamples/example_offresonance.rst
@@ -332,7 +332,7 @@ is significantly reduced using the off-resonance corrected NUFFT operator (right
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 1.949 seconds)
+ **Total running time of the script:** (0 minutes 2.105 seconds)
.. _sphx_glr_download_generated_autoexamples_example_offresonance.py:
diff --git a/_sources/generated/autoexamples/example_readme.rst b/_sources/generated/autoexamples/example_readme.rst
index 97b18204..68284379 100644
--- a/_sources/generated/autoexamples/example_readme.rst
+++ b/_sources/generated/autoexamples/example_readme.rst
@@ -123,7 +123,7 @@ An example to show how to perform a simple NUFFT.
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 2.180 seconds)
+ **Total running time of the script:** (0 minutes 2.423 seconds)
.. _sphx_glr_download_generated_autoexamples_example_readme.py:
diff --git a/_sources/generated/autoexamples/example_sampling_densities.rst b/_sources/generated/autoexamples/example_sampling_densities.rst
index 15a41d9d..ad9fcb9a 100644
--- a/_sources/generated/autoexamples/example_sampling_densities.rst
+++ b/_sources/generated/autoexamples/example_sampling_densities.rst
@@ -830,13 +830,6 @@ shot direction as shown below.
:class: sphx-glr-single-img
-.. rst-class:: sphx-glr-script-out
-
- .. code-block:: none
-
- /volatile/github-ci-mind-inria/gpu_runner2/_work/_tool/Python/3.10.16/x64/lib/python3.10/site-packages/mrinufft/trajectories/inits/travelling_salesman.py:44: RuntimeWarning: invalid value encountered in divide
- array[..., 0] / nl.norm(array[..., :2], axis=-1)
-
@@ -863,7 +856,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (2 minutes 17.319 seconds)
+ **Total running time of the script:** (2 minutes 23.843 seconds)
.. _sphx_glr_download_generated_autoexamples_example_sampling_densities.py:
diff --git a/_sources/generated/autoexamples/example_stacked.rst b/_sources/generated/autoexamples/example_stacked.rst
index 83a43a81..b5cee7a9 100644
--- a/_sources/generated/autoexamples/example_stacked.rst
+++ b/_sources/generated/autoexamples/example_stacked.rst
@@ -218,7 +218,7 @@ Operator setup
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 3.053 seconds)
+ **Total running time of the script:** (0 minutes 6.199 seconds)
.. _sphx_glr_download_generated_autoexamples_example_stacked.py:
diff --git a/_sources/generated/autoexamples/example_subspace.rst b/_sources/generated/autoexamples/example_subspace.rst
index 017dc4ee..a1239197 100644
--- a/_sources/generated/autoexamples/example_subspace.rst
+++ b/_sources/generated/autoexamples/example_subspace.rst
@@ -515,7 +515,7 @@ The projected k-space is equivalent to the regular reconstruction followed by pr
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 37.356 seconds)
+ **Total running time of the script:** (0 minutes 37.590 seconds)
.. _sphx_glr_download_generated_autoexamples_example_subspace.py:
diff --git a/_sources/generated/autoexamples/example_trajectory_tools.rst b/_sources/generated/autoexamples/example_trajectory_tools.rst
index c49cea20..46233f88 100644
--- a/_sources/generated/autoexamples/example_trajectory_tools.rst
+++ b/_sources/generated/autoexamples/example_trajectory_tools.rst
@@ -2135,7 +2135,7 @@ References
.. rst-class:: sphx-glr-timing
- **Total running time of the script:** (0 minutes 54.854 seconds)
+ **Total running time of the script:** (0 minutes 53.659 seconds)
.. _sphx_glr_download_generated_autoexamples_example_trajectory_tools.py:
diff --git a/_sources/generated/autoexamples/sg_execution_times.rst b/_sources/generated/autoexamples/sg_execution_times.rst
index bba6f6fd..b02c31e2 100644
--- a/_sources/generated/autoexamples/sg_execution_times.rst
+++ b/_sources/generated/autoexamples/sg_execution_times.rst
@@ -6,7 +6,7 @@
Computation times
=================
-**09:59.601** total execution time for 12 files **from generated/autoexamples**:
+**10:21.706** total execution time for 12 files **from generated/autoexamples**:
.. container::
@@ -33,38 +33,38 @@ Computation times
- Time
- Mem (MB)
* - :ref:`sphx_glr_generated_autoexamples_example_sampling_densities.py` (``example_sampling_densities.py``)
- - 02:17.319
+ - 02:23.843
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_gif_3D.py` (``example_gif_3D.py``)
- - 02:07.151
+ - 02:07.027
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_gif_2D.py` (``example_gif_2D.py``)
- - 01:18.086
+ - 01:23.869
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_3D_trajectories.py` (``example_3D_trajectories.py``)
- - 01:04.605
+ - 01:09.161
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_learn_samples_multires.py` (``example_learn_samples_multires.py``)
- - 01:04.470
+ - 01:05.968
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_trajectory_tools.py` (``example_trajectory_tools.py``)
- - 00:54.854
+ - 00:53.659
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_subspace.py` (``example_subspace.py``)
- - 00:37.356
+ - 00:37.590
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_2D_trajectories.py` (``example_2D_trajectories.py``)
- - 00:22.263
- - 0.0
- * - :ref:`sphx_glr_generated_autoexamples_example_display_config.py` (``example_display_config.py``)
- - 00:06.315
+ - 00:23.951
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_stacked.py` (``example_stacked.py``)
- - 00:03.053
+ - 00:06.199
+ - 0.0
+ * - :ref:`sphx_glr_generated_autoexamples_example_display_config.py` (``example_display_config.py``)
+ - 00:05.910
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_readme.py` (``example_readme.py``)
- - 00:02.180
+ - 00:02.423
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_offresonance.py` (``example_offresonance.py``)
- - 00:01.949
+ - 00:02.105
- 0.0
diff --git a/_sources/sg_execution_times.rst b/_sources/sg_execution_times.rst
index d76e3fbc..6e678ca5 100644
--- a/_sources/sg_execution_times.rst
+++ b/_sources/sg_execution_times.rst
@@ -6,7 +6,7 @@
Computation times
=================
-**19:16.005** total execution time for 18 files **from all galleries**:
+**23:26.052** total execution time for 18 files **from all galleries**:
.. container::
@@ -33,56 +33,56 @@ Computation times
- Time
- Mem (MB)
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_learn_straight_line_readouts.py` (``../examples/GPU/example_learn_straight_line_readouts.py``)
- - 04:59.897
- - 0.0
- * - :ref:`sphx_glr_generated_autoexamples_example_sampling_densities.py` (``../examples/example_sampling_densities.py``)
- - 02:17.319
- - 0.0
- * - :ref:`sphx_glr_generated_autoexamples_example_gif_3D.py` (``../examples/example_gif_3D.py``)
- - 02:07.151
+ - 06:18.661
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_fastMRI_UNet.py` (``../examples/GPU/example_fastMRI_UNet.py``)
- - 01:35.580
+ - 02:46.440
+ - 0.0
+ * - :ref:`sphx_glr_generated_autoexamples_example_sampling_densities.py` (``../examples/example_sampling_densities.py``)
+ - 02:23.843
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_learn_samples_multicoil.py` (``../examples/GPU/example_learn_samples_multicoil.py``)
- - 01:25.665
+ - 02:09.696
- 0.0
- * - :ref:`sphx_glr_generated_autoexamples_example_gif_2D.py` (``../examples/example_gif_2D.py``)
- - 01:18.086
+ * - :ref:`sphx_glr_generated_autoexamples_example_gif_3D.py` (``../examples/example_gif_3D.py``)
+ - 02:07.027
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_learn_samples.py` (``../examples/GPU/example_learn_samples.py``)
- - 01:09.613
+ - 01:42.418
+ - 0.0
+ * - :ref:`sphx_glr_generated_autoexamples_example_gif_2D.py` (``../examples/example_gif_2D.py``)
+ - 01:23.869
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_3D_trajectories.py` (``../examples/example_3D_trajectories.py``)
- - 01:04.605
+ - 01:09.161
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_learn_samples_multires.py` (``../examples/example_learn_samples_multires.py``)
- - 01:04.470
+ - 01:05.968
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_trajectory_tools.py` (``../examples/example_trajectory_tools.py``)
- - 00:54.854
+ - 00:53.659
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_subspace.py` (``../examples/example_subspace.py``)
- - 00:37.356
+ - 00:37.590
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_2D_trajectories.py` (``../examples/example_2D_trajectories.py``)
- - 00:22.263
+ - 00:23.951
+ - 0.0
+ * - :ref:`sphx_glr_generated_autoexamples_example_stacked.py` (``../examples/example_stacked.py``)
+ - 00:06.199
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_display_config.py` (``../examples/example_display_config.py``)
- - 00:06.315
+ - 00:05.910
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_density.py` (``../examples/GPU/example_density.py``)
- - 00:04.500
- - 0.0
- * - :ref:`sphx_glr_generated_autoexamples_example_stacked.py` (``../examples/example_stacked.py``)
- - 00:03.053
+ - 00:05.638
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_readme.py` (``../examples/example_readme.py``)
- - 00:02.180
+ - 00:02.423
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_example_offresonance.py` (``../examples/example_offresonance.py``)
- - 00:01.949
+ - 00:02.105
- 0.0
* - :ref:`sphx_glr_generated_autoexamples_GPU_example_cg.py` (``../examples/GPU/example_cg.py``)
- - 00:01.149
+ - 00:01.494
- 0.0
diff --git a/_static/coverage_badge.svg b/_static/coverage_badge.svg
index 52039fc4..670b4d74 100644
--- a/_static/coverage_badge.svg
+++ b/_static/coverage_badge.svg
@@ -1 +1 @@
-
\ No newline at end of file
+
\ No newline at end of file
diff --git a/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html b/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html
index 11786e39..987502fe 100644
--- a/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html
+++ b/generated/_autosummary/mrinufft.operators.base.FourierOperatorBase.html
@@ -860,6 +860,12 @@ FourierOperatorBase
Return True if the operator uses sensitivity maps.
+backend
+
+
+available
+
+
@@ -918,7 +924,7 @@ FourierOperatorBase
-data_consistency(image, obs_data)[source]#
+data_consistency(image_data, obs_data)[source]#
Compute the gradient data consistency.
This is the naive implementation using adj_op(op(x)-y).
Specific backend can (and should!) implement a more efficient version.
diff --git a/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html b/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html
index 85b369ab..56b7044c 100644
--- a/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html
+++ b/generated/_autosummary/mrinufft.operators.base.FourierOperatorCPU.html
@@ -854,6 +854,12 @@ FourierOperatorCPUuses_sense
Return True if the operator uses sensitivity maps.
+backend
+
+
+available
+
+
diff --git a/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html b/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html
index 8fd60334..d4d32fa4 100644
--- a/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html
+++ b/generated/_autosummary/mrinufft.operators.interfaces.tfnufft.MRITensorflowNUFFT.html
@@ -908,7 +908,7 @@ MRITensorflowNUFFT
-data_consistency(data, obs_data)[source]#
+data_consistency(image_data, obs_data)[source]#
Compute the data consistency.
- Parameters:
diff --git a/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html b/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html
index ac7878a3..b257cf6f 100644
--- a/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html
+++ b/generated/_autosummary/mrinufft.operators.interfaces.torchkbnufft.MRITorchKbNufft.html
@@ -876,6 +876,9 @@ MRITorchKbNufftuses_sense
Return True if the operator uses sensitivity maps.
+backend
+
+
diff --git a/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html b/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html
index 73934bce..38e4db75 100644
--- a/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html
+++ b/generated/_autosummary/mrinufft.operators.off_resonance.MRIFourierCorrected.html
@@ -877,6 +877,12 @@ MRIFourierCorrecteduses_sense
Return True if the operator uses sensitivity maps.
+backend
+
+
+available
+
+
diff --git a/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html b/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html
index 0dc8a280..4d828952 100644
--- a/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html
+++ b/generated/_autosummary/mrinufft.operators.subspace.MRISubspace.html
@@ -864,6 +864,12 @@ MRISubspaceuses_sense
Return True if the operator uses sensitivity maps.
+backend
+
+
+available
+
+
diff --git a/generated/autoexamples/GPU/example_cg.html b/generated/autoexamples/GPU/example_cg.html
index 31e21e0f..e5bfd7de 100644
--- a/generated/autoexamples/GPU/example_cg.html
+++ b/generated/autoexamples/GPU/example_cg.html
@@ -831,7 +831,7 @@ Referencesplt.show()
-
Total running time of the script: (0 minutes 1.149 seconds)
+
Total running time of the script: (0 minutes 1.494 seconds)
-
[0.00881 0.04010868 0.08096503 ... 3.2314696 2.6597955 3.4447331 ]
+
[0.00884288 0.04072602 0.08075811 ... 3.229551 2.6582165 3.442688 ]
-Total running time of the script: (0 minutes 4.500 seconds)
+Total running time of the script: (0 minutes 5.638 seconds)
0%| | 0/100 [00:00<?, ?steps/s]
- 0%| | 0/100 [00:00<?, ?steps/s, loss=0.843]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
+ 0%| | 0/100 [00:00<?, ?steps/s, loss=0.92]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
axs[0].imshow(np.abs(mri_2D[0]), cmap="gray")
- 1%| | 1/100 [00:00<01:34, 1.05steps/s, loss=0.843]
- 1%| | 1/100 [00:01<01:34, 1.05steps/s, loss=0.708]
- 2%|▏ | 2/100 [00:01<01:27, 1.11steps/s, loss=0.708]
- 2%|▏ | 2/100 [00:01<01:27, 1.11steps/s, loss=0.634]
- 3%|▎ | 3/100 [00:02<01:24, 1.15steps/s, loss=0.634]
- 3%|▎ | 3/100 [00:02<01:24, 1.15steps/s, loss=0.594]
- 4%|▍ | 4/100 [00:03<01:22, 1.16steps/s, loss=0.594]
- 4%|▍ | 4/100 [00:03<01:22, 1.16steps/s, loss=0.57]
- 5%|▌ | 5/100 [00:04<01:21, 1.17steps/s, loss=0.57]
- 5%|▌ | 5/100 [00:04<01:21, 1.17steps/s, loss=0.554]
- 6%|▌ | 6/100 [00:05<01:20, 1.17steps/s, loss=0.554]
- 6%|▌ | 6/100 [00:05<01:20, 1.17steps/s, loss=0.528]
- 7%|▋ | 7/100 [00:06<01:26, 1.07steps/s, loss=0.528]
- 7%|▋ | 7/100 [00:06<01:26, 1.07steps/s, loss=0.505]
- 8%|▊ | 8/100 [00:07<01:24, 1.09steps/s, loss=0.505]
- 8%|▊ | 8/100 [00:07<01:24, 1.09steps/s, loss=0.485]
- 9%|▉ | 9/100 [00:08<01:21, 1.11steps/s, loss=0.485]
- 9%|▉ | 9/100 [00:08<01:21, 1.11steps/s, loss=0.468]
- 10%|█ | 10/100 [00:08<01:19, 1.13steps/s, loss=0.468]
- 10%|█ | 10/100 [00:08<01:19, 1.13steps/s, loss=0.451]
- 11%|█ | 11/100 [00:09<01:17, 1.15steps/s, loss=0.451]
- 11%|█ | 11/100 [00:09<01:17, 1.15steps/s, loss=0.436]
- 12%|█▏ | 12/100 [00:10<01:16, 1.15steps/s, loss=0.436]
- 12%|█▏ | 12/100 [00:10<01:16, 1.15steps/s, loss=0.42]
- 13%|█▎ | 13/100 [00:11<01:15, 1.16steps/s, loss=0.42]
- 13%|█▎ | 13/100 [00:11<01:15, 1.16steps/s, loss=0.404]
- 14%|█▍ | 14/100 [00:12<01:13, 1.16steps/s, loss=0.404]
- 14%|█▍ | 14/100 [00:12<01:13, 1.16steps/s, loss=0.388]
- 15%|█▌ | 15/100 [00:13<01:13, 1.16steps/s, loss=0.388]
- 15%|█▌ | 15/100 [00:13<01:13, 1.16steps/s, loss=0.371]
- 16%|█▌ | 16/100 [00:14<01:12, 1.16steps/s, loss=0.371]
- 16%|█▌ | 16/100 [00:14<01:12, 1.16steps/s, loss=0.355]
- 17%|█▋ | 17/100 [00:15<01:17, 1.06steps/s, loss=0.355]
- 17%|█▋ | 17/100 [00:15<01:17, 1.06steps/s, loss=0.339]
- 18%|█▊ | 18/100 [00:16<01:15, 1.09steps/s, loss=0.339]
- 18%|█▊ | 18/100 [00:16<01:15, 1.09steps/s, loss=0.323]
- 19%|█▉ | 19/100 [00:16<01:13, 1.11steps/s, loss=0.323]
- 19%|█▉ | 19/100 [00:16<01:13, 1.11steps/s, loss=0.308]
- 20%|██ | 20/100 [00:17<01:11, 1.13steps/s, loss=0.308]
- 20%|██ | 20/100 [00:17<01:11, 1.13steps/s, loss=0.293]
- 21%|██ | 21/100 [00:18<01:09, 1.14steps/s, loss=0.293]
- 21%|██ | 21/100 [00:18<01:09, 1.14steps/s, loss=0.279]
- 22%|██▏ | 22/100 [00:19<01:07, 1.15steps/s, loss=0.279]
- 22%|██▏ | 22/100 [00:19<01:07, 1.15steps/s, loss=0.266]
- 23%|██▎ | 23/100 [00:20<01:06, 1.16steps/s, loss=0.266]
- 23%|██▎ | 23/100 [00:20<01:06, 1.16steps/s, loss=0.254]
- 24%|██▍ | 24/100 [00:21<01:05, 1.16steps/s, loss=0.254]
- 24%|██▍ | 24/100 [00:21<01:05, 1.16steps/s, loss=0.242]
- 25%|██▌ | 25/100 [00:21<01:04, 1.17steps/s, loss=0.242]
- 25%|██▌ | 25/100 [00:22<01:04, 1.17steps/s, loss=0.231]
- 26%|██▌ | 26/100 [00:22<01:03, 1.16steps/s, loss=0.231]
- 26%|██▌ | 26/100 [00:22<01:03, 1.16steps/s, loss=0.22]
- 27%|██▋ | 27/100 [00:24<01:09, 1.05steps/s, loss=0.22]
- 27%|██▋ | 27/100 [00:24<01:09, 1.05steps/s, loss=0.21]
- 28%|██▊ | 28/100 [00:24<01:06, 1.08steps/s, loss=0.21]
- 28%|██▊ | 28/100 [00:24<01:06, 1.08steps/s, loss=0.201]
- 29%|██▉ | 29/100 [00:25<01:04, 1.10steps/s, loss=0.201]
- 29%|██▉ | 29/100 [00:25<01:04, 1.10steps/s, loss=0.193]
- 30%|███ | 30/100 [00:26<01:02, 1.11steps/s, loss=0.193]
- 30%|███ | 30/100 [00:26<01:02, 1.11steps/s, loss=0.185]
- 31%|███ | 31/100 [00:27<01:01, 1.12steps/s, loss=0.185]
- 31%|███ | 31/100 [00:27<01:01, 1.12steps/s, loss=0.178]
- 32%|███▏ | 32/100 [00:28<01:00, 1.12steps/s, loss=0.178]
- 32%|███▏ | 32/100 [00:28<01:00, 1.12steps/s, loss=0.171]
- 33%|███▎ | 33/100 [00:29<00:59, 1.13steps/s, loss=0.171]
- 33%|███▎ | 33/100 [00:29<00:59, 1.13steps/s, loss=0.165]
- 34%|███▍ | 34/100 [00:30<00:57, 1.14steps/s, loss=0.165]
- 34%|███▍ | 34/100 [00:30<00:57, 1.14steps/s, loss=0.158]
- 35%|███▌ | 35/100 [00:31<00:57, 1.14steps/s, loss=0.158]
- 35%|███▌ | 35/100 [00:31<00:57, 1.14steps/s, loss=0.152]
- 36%|███▌ | 36/100 [00:31<00:56, 1.14steps/s, loss=0.152]
- 36%|███▌ | 36/100 [00:31<00:56, 1.14steps/s, loss=0.147]
- 37%|███▋ | 37/100 [00:33<01:00, 1.04steps/s, loss=0.147]
- 37%|███▋ | 37/100 [00:33<01:00, 1.04steps/s, loss=0.141]
- 38%|███▊ | 38/100 [00:33<00:57, 1.08steps/s, loss=0.141]
- 38%|███▊ | 38/100 [00:34<00:57, 1.08steps/s, loss=0.136]
- 39%|███▉ | 39/100 [00:34<00:55, 1.10steps/s, loss=0.136]
- 39%|███▉ | 39/100 [00:34<00:55, 1.10steps/s, loss=0.131]
- 40%|████ | 40/100 [00:35<00:53, 1.11steps/s, loss=0.131]
- 40%|████ | 40/100 [00:35<00:53, 1.11steps/s, loss=0.127]
- 41%|████ | 41/100 [00:36<00:52, 1.13steps/s, loss=0.127]
- 41%|████ | 41/100 [00:36<00:52, 1.13steps/s, loss=0.122]
- 42%|████▏ | 42/100 [00:37<00:51, 1.13steps/s, loss=0.122]
- 42%|████▏ | 42/100 [00:37<00:51, 1.13steps/s, loss=0.118]
- 43%|████▎ | 43/100 [00:38<00:49, 1.14steps/s, loss=0.118]
- 43%|████▎ | 43/100 [00:38<00:49, 1.14steps/s, loss=0.114]
- 44%|████▍ | 44/100 [00:39<00:48, 1.15steps/s, loss=0.114]
- 44%|████▍ | 44/100 [00:39<00:48, 1.15steps/s, loss=0.111]
- 45%|████▌ | 45/100 [00:39<00:47, 1.15steps/s, loss=0.111]
- 45%|████▌ | 45/100 [00:40<00:47, 1.15steps/s, loss=0.109]
- 46%|████▌ | 46/100 [00:40<00:47, 1.15steps/s, loss=0.109]
- 46%|████▌ | 46/100 [00:40<00:47, 1.15steps/s, loss=0.108]
- 47%|████▋ | 47/100 [00:41<00:46, 1.15steps/s, loss=0.108]
- 47%|████▋ | 47/100 [00:41<00:46, 1.15steps/s, loss=0.105]
- 48%|████▊ | 48/100 [00:42<00:49, 1.05steps/s, loss=0.105]
- 48%|████▊ | 48/100 [00:42<00:49, 1.05steps/s, loss=0.0989]
- 49%|████▉ | 49/100 [00:43<00:47, 1.08steps/s, loss=0.0989]
- 49%|████▉ | 49/100 [00:43<00:47, 1.08steps/s, loss=0.0956]
- 50%|█████ | 50/100 [00:44<00:45, 1.10steps/s, loss=0.0956]
- 50%|█████ | 50/100 [00:44<00:45, 1.10steps/s, loss=0.0947]
- 51%|█████ | 51/100 [00:45<00:44, 1.11steps/s, loss=0.0947]
- 51%|█████ | 51/100 [00:45<00:44, 1.11steps/s, loss=0.0912]
- 52%|█████▏ | 52/100 [00:46<00:42, 1.12steps/s, loss=0.0912]
- 52%|█████▏ | 52/100 [00:46<00:42, 1.12steps/s, loss=0.0891]
- 53%|█████▎ | 53/100 [00:47<00:41, 1.13steps/s, loss=0.0891]
- 53%|█████▎ | 53/100 [00:47<00:41, 1.13steps/s, loss=0.0869]
- 54%|█████▍ | 54/100 [00:48<00:40, 1.14steps/s, loss=0.0869]
- 54%|█████▍ | 54/100 [00:48<00:40, 1.14steps/s, loss=0.0869]
- 55%|█████▌ | 55/100 [00:48<00:39, 1.14steps/s, loss=0.0869]
- 55%|█████▌ | 55/100 [00:49<00:39, 1.14steps/s, loss=0.0886]
- 56%|█████▌ | 56/100 [00:49<00:38, 1.15steps/s, loss=0.0886]
- 56%|█████▌ | 56/100 [00:49<00:38, 1.15steps/s, loss=0.0848]
- 57%|█████▋ | 57/100 [00:50<00:37, 1.15steps/s, loss=0.0848]
- 57%|█████▋ | 57/100 [00:50<00:37, 1.15steps/s, loss=0.0787]
- 58%|█████▊ | 58/100 [00:51<00:39, 1.05steps/s, loss=0.0787]
- 58%|█████▊ | 58/100 [00:51<00:39, 1.05steps/s, loss=0.0756]
- 59%|█████▉ | 59/100 [00:52<00:38, 1.07steps/s, loss=0.0756]
- 59%|█████▉ | 59/100 [00:52<00:38, 1.07steps/s, loss=0.0753]
- 60%|██████ | 60/100 [00:53<00:36, 1.09steps/s, loss=0.0753]
- 60%|██████ | 60/100 [00:53<00:36, 1.09steps/s, loss=0.0765]
- 61%|██████ | 61/100 [00:54<00:35, 1.11steps/s, loss=0.0765]
- 61%|██████ | 61/100 [00:54<00:35, 1.11steps/s, loss=0.0726]
- 62%|██████▏ | 62/100 [00:55<00:33, 1.12steps/s, loss=0.0726]
- 62%|██████▏ | 62/100 [00:55<00:33, 1.12steps/s, loss=0.0698]
- 63%|██████▎ | 63/100 [00:56<00:33, 1.11steps/s, loss=0.0698]
- 63%|██████▎ | 63/100 [00:56<00:33, 1.11steps/s, loss=0.0678]
- 64%|██████▍ | 64/100 [00:57<00:32, 1.12steps/s, loss=0.0678]
- 64%|██████▍ | 64/100 [00:57<00:32, 1.12steps/s, loss=0.0681]
- 65%|██████▌ | 65/100 [00:57<00:31, 1.13steps/s, loss=0.0681]
- 65%|██████▌ | 65/100 [00:58<00:31, 1.13steps/s, loss=0.067]
- 66%|██████▌ | 66/100 [00:58<00:30, 1.13steps/s, loss=0.067]
- 66%|██████▌ | 66/100 [00:58<00:30, 1.13steps/s, loss=0.0667]
- 67%|██████▋ | 67/100 [00:59<00:29, 1.14steps/s, loss=0.0667]
- 67%|██████▋ | 67/100 [00:59<00:29, 1.14steps/s, loss=0.0671]
- 68%|██████▊ | 68/100 [01:00<00:30, 1.04steps/s, loss=0.0671]
- 68%|██████▊ | 68/100 [01:00<00:30, 1.04steps/s, loss=0.0655]
- 69%|██████▉ | 69/100 [01:01<00:28, 1.07steps/s, loss=0.0655]
- 69%|██████▉ | 69/100 [01:01<00:28, 1.07steps/s, loss=0.0628]
- 70%|███████ | 70/100 [01:02<00:27, 1.09steps/s, loss=0.0628]
- 70%|███████ | 70/100 [01:02<00:27, 1.09steps/s, loss=0.0617]
- 71%|███████ | 71/100 [01:03<00:26, 1.11steps/s, loss=0.0617]
- 71%|███████ | 71/100 [01:03<00:26, 1.11steps/s, loss=0.058]
- 72%|███████▏ | 72/100 [01:04<00:25, 1.12steps/s, loss=0.058]
- 72%|███████▏ | 72/100 [01:04<00:25, 1.12steps/s, loss=0.0565]
- 73%|███████▎ | 73/100 [01:05<00:23, 1.13steps/s, loss=0.0565]
- 73%|███████▎ | 73/100 [01:05<00:23, 1.13steps/s, loss=0.0559]
- 74%|███████▍ | 74/100 [01:06<00:22, 1.14steps/s, loss=0.0559]
- 74%|███████▍ | 74/100 [01:06<00:22, 1.14steps/s, loss=0.0559]
- 75%|███████▌ | 75/100 [01:06<00:21, 1.15steps/s, loss=0.0559]
- 75%|███████▌ | 75/100 [01:07<00:21, 1.15steps/s, loss=0.0578]
- 76%|███████▌ | 76/100 [01:07<00:20, 1.15steps/s, loss=0.0578]
- 76%|███████▌ | 76/100 [01:07<00:20, 1.15steps/s, loss=0.0554]
- 77%|███████▋ | 77/100 [01:08<00:19, 1.16steps/s, loss=0.0554]
- 77%|███████▋ | 77/100 [01:08<00:19, 1.16steps/s, loss=0.0526]
- 78%|███████▊ | 78/100 [01:09<00:20, 1.06steps/s, loss=0.0526]
- 78%|███████▊ | 78/100 [01:09<00:20, 1.06steps/s, loss=0.0544]
- 79%|███████▉ | 79/100 [01:10<00:19, 1.09steps/s, loss=0.0544]
- 79%|███████▉ | 79/100 [01:10<00:19, 1.09steps/s, loss=0.0601]
- 80%|████████ | 80/100 [01:11<00:18, 1.11steps/s, loss=0.0601]
- 80%|████████ | 80/100 [01:11<00:18, 1.11steps/s, loss=0.0568]
- 81%|████████ | 81/100 [01:12<00:16, 1.12steps/s, loss=0.0568]
- 81%|████████ | 81/100 [01:12<00:16, 1.12steps/s, loss=0.0551]
- 82%|████████▏ | 82/100 [01:13<00:15, 1.13steps/s, loss=0.0551]
- 82%|████████▏ | 82/100 [01:13<00:15, 1.13steps/s, loss=0.0522]
- 83%|████████▎ | 83/100 [01:14<00:14, 1.14steps/s, loss=0.0522]
- 83%|████████▎ | 83/100 [01:14<00:14, 1.14steps/s, loss=0.0533]
- 84%|████████▍ | 84/100 [01:14<00:13, 1.15steps/s, loss=0.0533]
- 84%|████████▍ | 84/100 [01:15<00:13, 1.15steps/s, loss=0.0534]
- 85%|████████▌ | 85/100 [01:15<00:13, 1.15steps/s, loss=0.0534]
- 85%|████████▌ | 85/100 [01:15<00:13, 1.15steps/s, loss=0.0492]
- 86%|████████▌ | 86/100 [01:16<00:12, 1.15steps/s, loss=0.0492]
- 86%|████████▌ | 86/100 [01:16<00:12, 1.15steps/s, loss=0.048]
- 87%|████████▋ | 87/100 [01:17<00:11, 1.15steps/s, loss=0.048]
- 87%|████████▋ | 87/100 [01:17<00:11, 1.15steps/s, loss=0.0494]
- 88%|████████▊ | 88/100 [01:18<00:11, 1.05steps/s, loss=0.0494]
- 88%|████████▊ | 88/100 [01:18<00:11, 1.05steps/s, loss=0.0482]
- 89%|████████▉ | 89/100 [01:19<00:10, 1.09steps/s, loss=0.0482]
- 89%|████████▉ | 89/100 [01:19<00:10, 1.09steps/s, loss=0.047]
- 90%|█████████ | 90/100 [01:20<00:09, 1.11steps/s, loss=0.047]
- 90%|█████████ | 90/100 [01:20<00:09, 1.11steps/s, loss=0.0453]
- 91%|█████████ | 91/100 [01:21<00:08, 1.12steps/s, loss=0.0453]
- 91%|█████████ | 91/100 [01:21<00:08, 1.12steps/s, loss=0.0458]
- 92%|█████████▏| 92/100 [01:22<00:07, 1.13steps/s, loss=0.0458]
- 92%|█████████▏| 92/100 [01:22<00:07, 1.13steps/s, loss=0.0453]
- 93%|█████████▎| 93/100 [01:23<00:06, 1.14steps/s, loss=0.0453]
- 93%|█████████▎| 93/100 [01:23<00:06, 1.14steps/s, loss=0.0486]
- 94%|█████████▍| 94/100 [01:23<00:05, 1.14steps/s, loss=0.0486]
- 94%|█████████▍| 94/100 [01:24<00:05, 1.14steps/s, loss=0.0552]
- 95%|█████████▌| 95/100 [01:24<00:04, 1.14steps/s, loss=0.0552]
- 95%|█████████▌| 95/100 [01:24<00:04, 1.14steps/s, loss=0.0495]
- 96%|█████████▌| 96/100 [01:25<00:03, 1.14steps/s, loss=0.0495]
- 96%|█████████▌| 96/100 [01:25<00:03, 1.14steps/s, loss=0.0442]
- 97%|█████████▋| 97/100 [01:26<00:02, 1.15steps/s, loss=0.0442]
- 97%|█████████▋| 97/100 [01:26<00:02, 1.15steps/s, loss=0.0417]
- 98%|█████████▊| 98/100 [01:27<00:01, 1.05steps/s, loss=0.0417]
- 98%|█████████▊| 98/100 [01:27<00:01, 1.05steps/s, loss=0.0437]
- 99%|█████████▉| 99/100 [01:28<00:00, 1.08steps/s, loss=0.0437]
- 99%|█████████▉| 99/100 [01:28<00:00, 1.08steps/s, loss=0.051]
-100%|██████████| 100/100 [01:29<00:00, 1.09steps/s, loss=0.051]
-100%|██████████| 100/100 [01:29<00:00, 1.12steps/s, loss=0.051]
+ 1%| | 1/100 [00:01<02:47, 1.69s/steps, loss=0.92]
+ 1%| | 1/100 [00:02<02:47, 1.69s/steps, loss=0.874]
+ 2%|▏ | 2/100 [00:03<02:46, 1.70s/steps, loss=0.874]
+ 2%|▏ | 2/100 [00:03<02:46, 1.70s/steps, loss=0.838]
+ 3%|▎ | 3/100 [00:05<03:11, 1.97s/steps, loss=0.838]
+ 3%|▎ | 3/100 [00:06<03:11, 1.97s/steps, loss=0.809]
+ 4%|▍ | 4/100 [00:07<03:07, 1.96s/steps, loss=0.809]
+ 4%|▍ | 4/100 [00:08<03:07, 1.96s/steps, loss=0.786]
+ 5%|▌ | 5/100 [00:09<02:59, 1.89s/steps, loss=0.786]
+ 5%|▌ | 5/100 [00:09<02:59, 1.89s/steps, loss=0.766]
+ 6%|▌ | 6/100 [00:11<03:07, 2.00s/steps, loss=0.766]
+ 6%|▌ | 6/100 [00:12<03:07, 2.00s/steps, loss=0.726]
+ 7%|▋ | 7/100 [00:13<03:13, 2.08s/steps, loss=0.726]
+ 7%|▋ | 7/100 [00:14<03:13, 2.08s/steps, loss=0.694]
+ 8%|▊ | 8/100 [00:15<03:11, 2.08s/steps, loss=0.694]
+ 8%|▊ | 8/100 [00:16<03:11, 2.08s/steps, loss=0.667]
+ 9%|▉ | 9/100 [00:18<03:17, 2.17s/steps, loss=0.667]
+ 9%|▉ | 9/100 [00:18<03:17, 2.17s/steps, loss=0.641]
+ 10%|█ | 10/100 [00:19<02:59, 2.00s/steps, loss=0.641]
+ 10%|█ | 10/100 [00:20<02:59, 2.00s/steps, loss=0.616]
+ 11%|█ | 11/100 [00:21<02:58, 2.01s/steps, loss=0.616]
+ 11%|█ | 11/100 [00:22<02:58, 2.01s/steps, loss=0.592]
+ 12%|█▏ | 12/100 [00:23<02:41, 1.83s/steps, loss=0.592]
+ 12%|█▏ | 12/100 [00:23<02:41, 1.83s/steps, loss=0.568]
+ 13%|█▎ | 13/100 [00:24<02:26, 1.69s/steps, loss=0.568]
+ 13%|█▎ | 13/100 [00:24<02:26, 1.69s/steps, loss=0.545]
+ 14%|█▍ | 14/100 [00:26<02:14, 1.56s/steps, loss=0.545]
+ 14%|█▍ | 14/100 [00:26<02:14, 1.56s/steps, loss=0.523]
+ 15%|█▌ | 15/100 [00:27<02:05, 1.48s/steps, loss=0.523]
+ 15%|█▌ | 15/100 [00:27<02:05, 1.48s/steps, loss=0.502]
+ 16%|█▌ | 16/100 [00:28<02:01, 1.44s/steps, loss=0.502]
+ 16%|█▌ | 16/100 [00:28<02:01, 1.44s/steps, loss=0.481]
+ 17%|█▋ | 17/100 [00:30<02:10, 1.57s/steps, loss=0.481]
+ 17%|█▋ | 17/100 [00:30<02:10, 1.57s/steps, loss=0.462]
+ 18%|█▊ | 18/100 [00:31<02:05, 1.53s/steps, loss=0.462]
+ 18%|█▊ | 18/100 [00:32<02:05, 1.53s/steps, loss=0.443]
+ 19%|█▉ | 19/100 [00:33<02:04, 1.54s/steps, loss=0.443]
+ 19%|█▉ | 19/100 [00:33<02:04, 1.54s/steps, loss=0.424]
+ 20%|██ | 20/100 [00:34<02:01, 1.52s/steps, loss=0.424]
+ 20%|██ | 20/100 [00:35<02:01, 1.52s/steps, loss=0.405]
+ 21%|██ | 21/100 [00:36<01:59, 1.51s/steps, loss=0.405]
+ 21%|██ | 21/100 [00:36<01:59, 1.51s/steps, loss=0.388]
+ 22%|██▏ | 22/100 [00:37<01:54, 1.46s/steps, loss=0.388]
+ 22%|██▏ | 22/100 [00:38<01:54, 1.46s/steps, loss=0.371]
+ 23%|██▎ | 23/100 [00:39<01:56, 1.51s/steps, loss=0.371]
+ 23%|██▎ | 23/100 [00:39<01:56, 1.51s/steps, loss=0.356]
+ 24%|██▍ | 24/100 [00:40<01:51, 1.47s/steps, loss=0.356]
+ 24%|██▍ | 24/100 [00:41<01:51, 1.47s/steps, loss=0.341]
+ 25%|██▌ | 25/100 [00:42<01:52, 1.49s/steps, loss=0.341]
+ 25%|██▌ | 25/100 [00:42<01:52, 1.49s/steps, loss=0.327]
+ 26%|██▌ | 26/100 [00:44<01:59, 1.62s/steps, loss=0.327]
+ 26%|██▌ | 26/100 [00:44<01:59, 1.62s/steps, loss=0.313]
+ 27%|██▋ | 27/100 [00:46<02:02, 1.68s/steps, loss=0.313]
+ 27%|██▋ | 27/100 [00:46<02:02, 1.68s/steps, loss=0.3]
+ 28%|██▊ | 28/100 [00:47<02:05, 1.74s/steps, loss=0.3]
+ 28%|██▊ | 28/100 [00:48<02:05, 1.74s/steps, loss=0.288]
+ 29%|██▉ | 29/100 [00:49<02:07, 1.79s/steps, loss=0.288]
+ 29%|██▉ | 29/100 [00:50<02:07, 1.79s/steps, loss=0.276]
+ 30%|███ | 30/100 [00:51<02:04, 1.77s/steps, loss=0.276]
+ 30%|███ | 30/100 [00:51<02:04, 1.77s/steps, loss=0.264]
+ 31%|███ | 31/100 [00:53<01:55, 1.67s/steps, loss=0.264]
+ 31%|███ | 31/100 [00:53<01:55, 1.67s/steps, loss=0.253]
+ 32%|███▏ | 32/100 [00:54<01:57, 1.72s/steps, loss=0.253]
+ 32%|███▏ | 32/100 [00:55<01:57, 1.72s/steps, loss=0.243]
+ 33%|███▎ | 33/100 [00:56<01:57, 1.75s/steps, loss=0.243]
+ 33%|███▎ | 33/100 [00:56<01:57, 1.75s/steps, loss=0.234]
+ 34%|███▍ | 34/100 [00:57<01:44, 1.58s/steps, loss=0.234]
+ 34%|███▍ | 34/100 [00:58<01:44, 1.58s/steps, loss=0.225]
+ 35%|███▌ | 35/100 [00:59<01:40, 1.55s/steps, loss=0.225]
+ 35%|███▌ | 35/100 [00:59<01:40, 1.55s/steps, loss=0.216]
+ 36%|███▌ | 36/100 [01:01<01:49, 1.71s/steps, loss=0.216]
+ 36%|███▌ | 36/100 [01:01<01:49, 1.71s/steps, loss=0.208]
+ 37%|███▋ | 37/100 [01:03<01:53, 1.79s/steps, loss=0.208]
+ 37%|███▋ | 37/100 [01:04<01:53, 1.79s/steps, loss=0.2]
+ 38%|███▊ | 38/100 [01:05<01:58, 1.91s/steps, loss=0.2]
+ 38%|███▊ | 38/100 [01:06<01:58, 1.91s/steps, loss=0.193]
+ 39%|███▉ | 39/100 [01:07<01:58, 1.95s/steps, loss=0.193]
+ 39%|███▉ | 39/100 [01:08<01:58, 1.95s/steps, loss=0.186]
+ 40%|████ | 40/100 [01:09<01:51, 1.85s/steps, loss=0.186]
+ 40%|████ | 40/100 [01:09<01:51, 1.85s/steps, loss=0.179]
+ 41%|████ | 41/100 [01:11<01:49, 1.86s/steps, loss=0.179]
+ 41%|████ | 41/100 [01:11<01:49, 1.86s/steps, loss=0.173]
+ 42%|████▏ | 42/100 [01:12<01:42, 1.78s/steps, loss=0.173]
+ 42%|████▏ | 42/100 [01:13<01:42, 1.78s/steps, loss=0.167]
+ 43%|████▎ | 43/100 [01:14<01:40, 1.76s/steps, loss=0.167]
+ 43%|████▎ | 43/100 [01:14<01:40, 1.76s/steps, loss=0.162]
+ 44%|████▍ | 44/100 [01:15<01:32, 1.65s/steps, loss=0.162]
+ 44%|████▍ | 44/100 [01:16<01:32, 1.65s/steps, loss=0.157]
+ 45%|████▌ | 45/100 [01:17<01:30, 1.65s/steps, loss=0.157]
+ 45%|████▌ | 45/100 [01:17<01:30, 1.65s/steps, loss=0.152]
+ 46%|████▌ | 46/100 [01:19<01:26, 1.60s/steps, loss=0.152]
+ 46%|████▌ | 46/100 [01:19<01:26, 1.60s/steps, loss=0.145]
+ 47%|████▋ | 47/100 [01:21<01:31, 1.72s/steps, loss=0.145]
+ 47%|████▋ | 47/100 [01:21<01:31, 1.72s/steps, loss=0.14]
+ 48%|████▊ | 48/100 [01:22<01:25, 1.65s/steps, loss=0.14]
+ 48%|████▊ | 48/100 [01:22<01:25, 1.65s/steps, loss=0.135]
+ 49%|████▉ | 49/100 [01:23<01:21, 1.59s/steps, loss=0.135]
+ 49%|████▉ | 49/100 [01:24<01:21, 1.59s/steps, loss=0.131]
+ 50%|█████ | 50/100 [01:25<01:17, 1.54s/steps, loss=0.131]
+ 50%|█████ | 50/100 [01:25<01:17, 1.54s/steps, loss=0.131]
+ 51%|█████ | 51/100 [01:26<01:16, 1.55s/steps, loss=0.131]
+ 51%|█████ | 51/100 [01:27<01:16, 1.55s/steps, loss=0.132]
+ 52%|█████▏ | 52/100 [01:28<01:12, 1.50s/steps, loss=0.132]
+ 52%|█████▏ | 52/100 [01:28<01:12, 1.50s/steps, loss=0.126]
+ 53%|█████▎ | 53/100 [01:29<01:09, 1.48s/steps, loss=0.126]
+ 53%|█████▎ | 53/100 [01:30<01:09, 1.48s/steps, loss=0.119]
+ 54%|█████▍ | 54/100 [01:31<01:08, 1.48s/steps, loss=0.119]
+ 54%|█████▍ | 54/100 [01:31<01:08, 1.48s/steps, loss=0.117]
+ 55%|█████▌ | 55/100 [01:32<01:05, 1.46s/steps, loss=0.117]
+ 55%|█████▌ | 55/100 [01:32<01:05, 1.46s/steps, loss=0.113]
+ 56%|█████▌ | 56/100 [01:34<01:03, 1.45s/steps, loss=0.113]
+ 56%|█████▌ | 56/100 [01:34<01:03, 1.45s/steps, loss=0.109]
+ 57%|█████▋ | 57/100 [01:36<01:08, 1.60s/steps, loss=0.109]
+ 57%|█████▋ | 57/100 [01:36<01:08, 1.60s/steps, loss=0.108]
+ 58%|█████▊ | 58/100 [01:37<01:07, 1.61s/steps, loss=0.108]
+ 58%|█████▊ | 58/100 [01:38<01:07, 1.61s/steps, loss=0.104]
+ 59%|█████▉ | 59/100 [01:39<01:04, 1.57s/steps, loss=0.104]
+ 59%|█████▉ | 59/100 [01:39<01:04, 1.57s/steps, loss=0.1]
+ 60%|██████ | 60/100 [01:40<01:01, 1.53s/steps, loss=0.1]
+ 60%|██████ | 60/100 [01:40<01:01, 1.53s/steps, loss=0.0969]
+ 61%|██████ | 61/100 [01:41<00:57, 1.48s/steps, loss=0.0969]
+ 61%|██████ | 61/100 [01:42<00:57, 1.48s/steps, loss=0.0935]
+ 62%|██████▏ | 62/100 [01:43<00:52, 1.38s/steps, loss=0.0935]
+ 62%|██████▏ | 62/100 [01:43<00:52, 1.38s/steps, loss=0.0936]
+ 63%|██████▎ | 63/100 [01:44<00:50, 1.36s/steps, loss=0.0936]
+ 63%|██████▎ | 63/100 [01:44<00:50, 1.36s/steps, loss=0.0956]
+ 64%|██████▍ | 64/100 [01:45<00:48, 1.36s/steps, loss=0.0956]
+ 64%|██████▍ | 64/100 [01:46<00:48, 1.36s/steps, loss=0.0986]
+ 65%|██████▌ | 65/100 [01:47<00:46, 1.33s/steps, loss=0.0986]
+ 65%|██████▌ | 65/100 [01:47<00:46, 1.33s/steps, loss=0.0952]
+ 66%|██████▌ | 66/100 [01:48<00:44, 1.31s/steps, loss=0.0952]
+ 66%|██████▌ | 66/100 [01:48<00:44, 1.31s/steps, loss=0.0849]
+ 67%|██████▋ | 67/100 [01:49<00:43, 1.31s/steps, loss=0.0849]
+ 67%|██████▋ | 67/100 [01:49<00:43, 1.31s/steps, loss=0.0846]
+ 68%|██████▊ | 68/100 [01:51<00:46, 1.47s/steps, loss=0.0846]
+ 68%|██████▊ | 68/100 [01:51<00:46, 1.47s/steps, loss=0.0893]
+ 69%|██████▉ | 69/100 [01:52<00:44, 1.42s/steps, loss=0.0893]
+ 69%|██████▉ | 69/100 [01:53<00:44, 1.42s/steps, loss=0.0839]
+ 70%|███████ | 70/100 [01:54<00:42, 1.41s/steps, loss=0.0839]
+ 70%|███████ | 70/100 [01:54<00:42, 1.41s/steps, loss=0.0782]
+ 71%|███████ | 71/100 [01:55<00:40, 1.38s/steps, loss=0.0782]
+ 71%|███████ | 71/100 [01:55<00:40, 1.38s/steps, loss=0.0777]
+ 72%|███████▏ | 72/100 [01:57<00:40, 1.44s/steps, loss=0.0777]
+ 72%|███████▏ | 72/100 [01:57<00:40, 1.44s/steps, loss=0.0765]
+ 73%|███████▎ | 73/100 [01:58<00:38, 1.43s/steps, loss=0.0765]
+ 73%|███████▎ | 73/100 [01:58<00:38, 1.43s/steps, loss=0.0777]
+ 74%|███████▍ | 74/100 [01:59<00:34, 1.32s/steps, loss=0.0777]
+ 74%|███████▍ | 74/100 [01:59<00:34, 1.32s/steps, loss=0.0762]
+ 75%|███████▌ | 75/100 [02:00<00:32, 1.31s/steps, loss=0.0762]
+ 75%|███████▌ | 75/100 [02:01<00:32, 1.31s/steps, loss=0.0731]
+ 76%|███████▌ | 76/100 [02:02<00:32, 1.36s/steps, loss=0.0731]
+ 76%|███████▌ | 76/100 [02:02<00:32, 1.36s/steps, loss=0.0721]
+ 77%|███████▋ | 77/100 [02:03<00:31, 1.35s/steps, loss=0.0721]
+ 77%|███████▋ | 77/100 [02:03<00:31, 1.35s/steps, loss=0.0691]
+ 78%|███████▊ | 78/100 [02:05<00:32, 1.49s/steps, loss=0.0691]
+ 78%|███████▊ | 78/100 [02:05<00:32, 1.49s/steps, loss=0.0673]
+ 79%|███████▉ | 79/100 [02:06<00:30, 1.44s/steps, loss=0.0673]
+ 79%|███████▉ | 79/100 [02:06<00:30, 1.44s/steps, loss=0.069]
+ 80%|████████ | 80/100 [02:07<00:27, 1.36s/steps, loss=0.069]
+ 80%|████████ | 80/100 [02:08<00:27, 1.36s/steps, loss=0.0676]
+ 81%|████████ | 81/100 [02:09<00:25, 1.32s/steps, loss=0.0676]
+ 81%|████████ | 81/100 [02:09<00:25, 1.32s/steps, loss=0.0641]
+ 82%|████████▏ | 82/100 [02:10<00:24, 1.37s/steps, loss=0.0641]
+ 82%|████████▏ | 82/100 [02:10<00:24, 1.37s/steps, loss=0.0618]
+ 83%|████████▎ | 83/100 [02:12<00:23, 1.40s/steps, loss=0.0618]
+ 83%|████████▎ | 83/100 [02:12<00:23, 1.40s/steps, loss=0.0617]
+ 84%|████████▍ | 84/100 [02:13<00:23, 1.49s/steps, loss=0.0617]
+ 84%|████████▍ | 84/100 [02:14<00:23, 1.49s/steps, loss=0.0632]
+ 85%|████████▌ | 85/100 [02:15<00:21, 1.45s/steps, loss=0.0632]
+ 85%|████████▌ | 85/100 [02:15<00:21, 1.45s/steps, loss=0.0656]
+ 86%|████████▌ | 86/100 [02:16<00:19, 1.40s/steps, loss=0.0656]
+ 86%|████████▌ | 86/100 [02:16<00:19, 1.40s/steps, loss=0.0721]
+ 87%|████████▋ | 87/100 [02:17<00:18, 1.40s/steps, loss=0.0721]
+ 87%|████████▋ | 87/100 [02:18<00:18, 1.40s/steps, loss=0.0723]
+ 88%|████████▊ | 88/100 [02:19<00:17, 1.43s/steps, loss=0.0723]
+ 88%|████████▊ | 88/100 [02:19<00:17, 1.43s/steps, loss=0.06]
+ 89%|████████▉ | 89/100 [02:21<00:17, 1.59s/steps, loss=0.06]
+ 89%|████████▉ | 89/100 [02:21<00:17, 1.59s/steps, loss=0.0579]
+ 90%|█████████ | 90/100 [02:22<00:15, 1.57s/steps, loss=0.0579]
+ 90%|█████████ | 90/100 [02:23<00:15, 1.57s/steps, loss=0.0624]
+ 91%|█████████ | 91/100 [02:24<00:13, 1.54s/steps, loss=0.0624]
+ 91%|█████████ | 91/100 [02:24<00:13, 1.54s/steps, loss=0.0631]
+ 92%|█████████▏| 92/100 [02:25<00:12, 1.55s/steps, loss=0.0631]
+ 92%|█████████▏| 92/100 [02:26<00:12, 1.55s/steps, loss=0.0647]
+ 93%|█████████▎| 93/100 [02:27<00:10, 1.47s/steps, loss=0.0647]
+ 93%|█████████▎| 93/100 [02:27<00:10, 1.47s/steps, loss=0.0585]
+ 94%|█████████▍| 94/100 [02:28<00:08, 1.43s/steps, loss=0.0585]
+ 94%|█████████▍| 94/100 [02:28<00:08, 1.43s/steps, loss=0.0561]
+ 95%|█████████▌| 95/100 [02:29<00:07, 1.40s/steps, loss=0.0561]
+ 95%|█████████▌| 95/100 [02:30<00:07, 1.40s/steps, loss=0.055]
+ 96%|█████████▌| 96/100 [02:31<00:05, 1.33s/steps, loss=0.055]
+ 96%|█████████▌| 96/100 [02:31<00:05, 1.33s/steps, loss=0.0552]
+ 97%|█████████▋| 97/100 [02:32<00:04, 1.38s/steps, loss=0.0552]
+ 97%|█████████▋| 97/100 [02:32<00:04, 1.38s/steps, loss=0.0557]
+ 98%|█████████▊| 98/100 [02:33<00:02, 1.38s/steps, loss=0.0557]
+ 98%|█████████▊| 98/100 [02:34<00:02, 1.38s/steps, loss=0.0582]
+ 99%|█████████▉| 99/100 [02:35<00:01, 1.43s/steps, loss=0.0582]
+ 99%|█████████▉| 99/100 [02:36<00:01, 1.43s/steps, loss=0.0585]
+100%|██████████| 100/100 [02:38<00:00, 1.83s/steps, loss=0.0585]
+100%|██████████| 100/100 [02:38<00:00, 1.58s/steps, loss=0.0585]

Reconstruction from partially trained U-Net model
@@ -1308,7 +1308,7 @@ Referencesfacebookresearch/fastMRI
-Total running time of the script: (1 minutes 35.580 seconds)
+Total running time of the script: (2 minutes 46.440 seconds)
-Total running time of the script: (1 minutes 9.613 seconds)
+Total running time of the script: (1 minutes 42.418 seconds)
-Total running time of the script: (1 minutes 25.665 seconds)
+Total running time of the script: (2 minutes 9.696 seconds)
-Total running time of the script: (4 minutes 59.897 seconds)
+Total running time of the script: (6 minutes 18.661 seconds)