diff --git a/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip b/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip index ca093244..a2a617ef 100644 Binary files a/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip and b/_downloads/01e51c9dd42be7fa4afb015669305065/example_learn_straight_line_readouts.zip differ diff --git a/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip b/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip index 5891fb74..422852e9 100644 Binary files a/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip and b/_downloads/038126aa6dd78d627c7aa86b076e558f/example_readme.zip differ diff --git a/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip b/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip index 03fdfef8..6e3b1837 100644 Binary files a/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip and b/_downloads/05ff0e4a4c7542701609a314823a9531/example_stacked.zip differ diff --git a/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip b/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip index 4a53f138..6eec1ec0 100644 Binary files a/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip and b/_downloads/07fc94ab669542d5bb33853fd085cadb/example_density.zip differ diff --git a/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip b/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip index b94927b5..1028d695 100644 Binary files a/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip and b/_downloads/0862f4b2f296755c1b3d7adbaf2fe5cc/example_offresonance.zip differ diff --git a/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip b/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip index 701c5962..4dbbe6cc 100644 Binary files a/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip and b/_downloads/0af583f7ca05ba0a72371e8173ea2e58/example_display_config.zip differ diff --git a/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip b/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip index 730a7161..981ca67a 100644 Binary files a/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip and b/_downloads/0da04bc6f4d83fe8027e3a21c9295109/example_2D_trajectories.zip differ diff --git a/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip b/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip index 7b8802d0..3135e677 100644 Binary files a/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip and b/_downloads/10408bfbfe8d3e76f2be7acbbfc703f9/example_trajectory_tools.zip differ diff --git a/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip b/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip index c4585109..d6003439 100644 Binary files a/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip and b/_downloads/13bb15de5481cb9869dd72ac2f59a90c/example_cg.zip differ diff --git a/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip b/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip index a32576f5..f887e6d1 100644 Binary files a/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip and b/_downloads/1850d87d0a3a6a59ff8bef208bf12555/example_fastMRI_UNet.zip differ diff --git a/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip b/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip index 23a5f5b1..7515c5c9 100644 Binary files a/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip and b/_downloads/1988af5f75066a9b7665590c10b7a02f/autoexamples_jupyter.zip differ diff --git a/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip b/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip index 39cd6f29..a30e06e7 100644 Binary files a/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip and b/_downloads/21e1a44b51b2ed4565475ed05ab5e732/example_subspace.zip differ diff --git a/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip b/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip index d503b995..ef88b4d8 100644 Binary files a/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip and b/_downloads/2426f4ce2014f5630d86d45d62b37749/autoexamples_python.zip differ diff --git a/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip b/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip index 5f5640f0..9e86862f 100644 Binary files a/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip and b/_downloads/311a9b79ee5ede36f4088f2263a69963/example_learn_samples.zip differ diff --git a/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip b/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip index f0d785cd..94512b4c 100644 Binary files a/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip and b/_downloads/592845a87450091541674bff1b2a8d24/example_gif_3D.zip differ diff --git a/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip b/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip index dbea37bd..40a8e56c 100644 Binary files a/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip and b/_downloads/69ad0d96ef5a8c47033a87a0e228798c/example_gif_2D.zip differ diff --git a/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip b/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip index d6937201..2e81642f 100644 Binary files a/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip and b/_downloads/a0bd69790bd0c33131382602e80540fb/example_sampling_densities.zip differ diff --git a/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip b/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip index 7a9f02e5..2d2b751c 100644 Binary files a/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip and b/_downloads/b02f5a1bd2a2a90bd2e08987661dc2c3/example_learn_samples_multires.zip differ diff --git a/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip b/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip index 70f5398b..28e326c2 100644 Binary files a/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip and b/_downloads/bb69a753e8eea9533dd888f2c16abe64/example_learn_samples_multicoil.zip differ diff --git a/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip b/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip index 8516beea..80f70bc9 100644 Binary files a/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip and b/_downloads/ecff5db0d530c01f65853d24ac7d55b5/example_3D_trajectories.zip differ diff --git a/_images/mrinufft_learn_2d_sampling_pattern.gif b/_images/mrinufft_learn_2d_sampling_pattern.gif index 0d74e5ab..0cae6edc 100644 Binary files a/_images/mrinufft_learn_2d_sampling_pattern.gif and b/_images/mrinufft_learn_2d_sampling_pattern.gif differ diff --git a/_images/mrinufft_learn_traj.gif b/_images/mrinufft_learn_traj.gif index f360d8b0..a6fbda88 100644 Binary files a/_images/mrinufft_learn_traj.gif and b/_images/mrinufft_learn_traj.gif differ diff --git a/_images/mrinufft_learn_traj_mc.gif b/_images/mrinufft_learn_traj_mc.gif index cac3c45a..fd643eec 100644 Binary files a/_images/mrinufft_learn_traj_mc.gif and b/_images/mrinufft_learn_traj_mc.gif differ diff --git a/_images/mrinufft_learn_unet.gif b/_images/mrinufft_learn_unet.gif index c0718c20..26bf26cc 100644 Binary files a/_images/mrinufft_learn_unet.gif and b/_images/mrinufft_learn_unet.gif differ diff --git a/_images/sphx_glr_example_3D_trajectories_019.png b/_images/sphx_glr_example_3D_trajectories_019.png index 7e303299..8c8019a8 100644 Binary files a/_images/sphx_glr_example_3D_trajectories_019.png and b/_images/sphx_glr_example_3D_trajectories_019.png differ diff --git a/_images/sphx_glr_example_3D_trajectories_020.png b/_images/sphx_glr_example_3D_trajectories_020.png index cab4d70c..abd0a481 100644 Binary files a/_images/sphx_glr_example_3D_trajectories_020.png and b/_images/sphx_glr_example_3D_trajectories_020.png differ diff --git a/_images/sphx_glr_example_cg_001.png b/_images/sphx_glr_example_cg_001.png index 50a2ba76..9bb356e9 100644 Binary files a/_images/sphx_glr_example_cg_001.png and b/_images/sphx_glr_example_cg_001.png differ diff --git a/_images/sphx_glr_example_cg_thumb.png b/_images/sphx_glr_example_cg_thumb.png index 912e74a7..e9cffd36 100644 Binary files a/_images/sphx_glr_example_cg_thumb.png and b/_images/sphx_glr_example_cg_thumb.png differ diff --git a/_images/sphx_glr_example_density_005.png b/_images/sphx_glr_example_density_005.png index 53adfbac..c1451ec3 100644 Binary files a/_images/sphx_glr_example_density_005.png and b/_images/sphx_glr_example_density_005.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_001.png b/_images/sphx_glr_example_fastMRI_UNet_001.png index 360c118f..40d05280 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_001.png and b/_images/sphx_glr_example_fastMRI_UNet_001.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_002.png b/_images/sphx_glr_example_fastMRI_UNet_002.png index a7dfb727..d496a1ba 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_002.png and b/_images/sphx_glr_example_fastMRI_UNet_002.png differ diff --git a/_images/sphx_glr_example_fastMRI_UNet_thumb.gif b/_images/sphx_glr_example_fastMRI_UNet_thumb.gif index c0718c20..26bf26cc 100644 Binary files a/_images/sphx_glr_example_fastMRI_UNet_thumb.gif and b/_images/sphx_glr_example_fastMRI_UNet_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_samples_001.png b/_images/sphx_glr_example_learn_samples_001.png index 521a7e03..13480342 100644 Binary files a/_images/sphx_glr_example_learn_samples_001.png and b/_images/sphx_glr_example_learn_samples_001.png differ diff --git a/_images/sphx_glr_example_learn_samples_002.png b/_images/sphx_glr_example_learn_samples_002.png index 64e093fa..b7ed2faa 100644 Binary files a/_images/sphx_glr_example_learn_samples_002.png and b/_images/sphx_glr_example_learn_samples_002.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_001.png b/_images/sphx_glr_example_learn_samples_multicoil_001.png index 8ede2417..72ba7c23 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_001.png and b/_images/sphx_glr_example_learn_samples_multicoil_001.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_003.png b/_images/sphx_glr_example_learn_samples_multicoil_003.png index cd559b25..fd5d18f0 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_003.png and b/_images/sphx_glr_example_learn_samples_multicoil_003.png differ diff --git a/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif b/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif index cac3c45a..fd643eec 100644 Binary files a/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif and b/_images/sphx_glr_example_learn_samples_multicoil_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_samples_thumb.gif b/_images/sphx_glr_example_learn_samples_thumb.gif index f360d8b0..a6fbda88 100644 Binary files a/_images/sphx_glr_example_learn_samples_thumb.gif and b/_images/sphx_glr_example_learn_samples_thumb.gif differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_001.png b/_images/sphx_glr_example_learn_straight_line_readouts_001.png index db9d9da2..7021667c 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_001.png and b/_images/sphx_glr_example_learn_straight_line_readouts_001.png differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_002.png b/_images/sphx_glr_example_learn_straight_line_readouts_002.png index 96c0ab14..160e8b88 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_002.png and b/_images/sphx_glr_example_learn_straight_line_readouts_002.png differ diff --git a/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif b/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif index 0d74e5ab..0cae6edc 100644 Binary files a/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif and b/_images/sphx_glr_example_learn_straight_line_readouts_thumb.gif differ diff --git a/_images/sphx_glr_example_sampling_densities_012.png b/_images/sphx_glr_example_sampling_densities_012.png index 2ff886fa..99132e02 100644 Binary files a/_images/sphx_glr_example_sampling_densities_012.png and b/_images/sphx_glr_example_sampling_densities_012.png differ diff --git a/_images/sphx_glr_example_sampling_densities_013.png b/_images/sphx_glr_example_sampling_densities_013.png index f212a874..26d13fa2 100644 Binary files a/_images/sphx_glr_example_sampling_densities_013.png and b/_images/sphx_glr_example_sampling_densities_013.png differ diff --git a/_images/sphx_glr_example_sampling_densities_014.png b/_images/sphx_glr_example_sampling_densities_014.png index 2fff8371..fdd97b40 100644 Binary files a/_images/sphx_glr_example_sampling_densities_014.png and b/_images/sphx_glr_example_sampling_densities_014.png differ diff --git a/_images/sphx_glr_example_sampling_densities_015.png b/_images/sphx_glr_example_sampling_densities_015.png index eb96bfa4..5e40052a 100644 Binary files a/_images/sphx_glr_example_sampling_densities_015.png and b/_images/sphx_glr_example_sampling_densities_015.png differ diff --git a/_images/sphx_glr_example_sampling_densities_016.png b/_images/sphx_glr_example_sampling_densities_016.png index 0c6906bc..bce3b41d 100644 Binary files a/_images/sphx_glr_example_sampling_densities_016.png and b/_images/sphx_glr_example_sampling_densities_016.png differ diff --git a/_images/sphx_glr_example_sampling_densities_017.png b/_images/sphx_glr_example_sampling_densities_017.png index a1137e0c..08d2ee2f 100644 Binary files a/_images/sphx_glr_example_sampling_densities_017.png and b/_images/sphx_glr_example_sampling_densities_017.png differ diff --git a/_images/sphx_glr_example_sampling_densities_018.png b/_images/sphx_glr_example_sampling_densities_018.png index 45bc49df..121c0e40 100644 Binary files a/_images/sphx_glr_example_sampling_densities_018.png and b/_images/sphx_glr_example_sampling_densities_018.png differ diff --git a/_images/sphx_glr_example_sampling_densities_019.png b/_images/sphx_glr_example_sampling_densities_019.png index a8678513..54496451 100644 Binary files a/_images/sphx_glr_example_sampling_densities_019.png and b/_images/sphx_glr_example_sampling_densities_019.png differ diff --git a/_images/sphx_glr_example_sampling_densities_020.png b/_images/sphx_glr_example_sampling_densities_020.png index 944c0ebd..28674ba3 100644 Binary files a/_images/sphx_glr_example_sampling_densities_020.png and b/_images/sphx_glr_example_sampling_densities_020.png differ diff --git a/_modules/mrinufft/operators/interfaces/utils/gpu_utils.html b/_modules/mrinufft/operators/interfaces/utils/gpu_utils.html index 7b47c974..2731eee6 100644 --- a/_modules/mrinufft/operators/interfaces/utils/gpu_utils.html +++ b/_modules/mrinufft/operators/interfaces/utils/gpu_utils.html @@ -712,7 +712,7 @@

Source code for mrinufft.operators.interfaces.utils.gpu_utils

[docs] def is_cuda_tensor(var): """Check if var is a CUDA tensor.""" - return isinstance(var, torch.Tensor) and var.is_cuda
+ return TORCH_AVAILABLE and isinstance(var, torch.Tensor) and var.is_cuda diff --git a/_sources/generated/autoexamples/GPU/example_cg.rst b/_sources/generated/autoexamples/GPU/example_cg.rst index cb99da7c..a1da428f 100644 --- a/_sources/generated/autoexamples/GPU/example_cg.rst +++ b/_sources/generated/autoexamples/GPU/example_cg.rst @@ -170,7 +170,7 @@ Display the results .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 1.080 seconds) + **Total running time of the script:** (0 minutes 1.177 seconds) .. _sphx_glr_download_generated_autoexamples_GPU_example_cg.py: diff --git a/_sources/generated/autoexamples/GPU/example_density.rst b/_sources/generated/autoexamples/GPU/example_density.rst index 14caae64..3a801598 100644 --- a/_sources/generated/autoexamples/GPU/example_density.rst +++ b/_sources/generated/autoexamples/GPU/example_density.rst @@ -103,7 +103,7 @@ Create sample data /volatile/github-ci-mind-inria/gpu_runner2/_work/_tool/Python/3.10.16/x64/lib/python3.10/site-packages/finufft/_interfaces.py:329: UserWarning: Argument `data` does not satisfy the following requirement: C. Copying array (this may reduce performance) warnings.warn(f"Argument `{name}` does not satisfy the following requirement: {prop}. Copying array (this may reduce performance)") - + @@ -331,7 +331,7 @@ Pipe's method is an iterative scheme, that use the interpolation and spreading k .. code-block:: none - [0.00880264 0.04015241 0.08094852 ... 3.2305737 2.659058 3.443778 ] + [0.00879562 0.0401402 0.08093609 ... 3.1808376 2.8537495 2.5255663 ] @@ -339,7 +339,7 @@ Pipe's method is an iterative scheme, that use the interpolation and spreading k .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 4.346 seconds) + **Total running time of the script:** (0 minutes 4.358 seconds) .. _sphx_glr_download_generated_autoexamples_GPU_example_density.py: diff --git a/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst b/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst index 01c611ac..aa6c00db 100644 --- a/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst +++ b/_sources/generated/autoexamples/GPU/example_fastMRI_UNet.rst @@ -456,9 +456,9 @@ Start training loop .. code-block:: none - 0%| | 0/100 [00:00coverage: 81.81%coverage81.81% \ No newline at end of file +coverage: 81.80%coverage81.80% \ No newline at end of file diff --git a/generated/autoexamples/GPU/example_cg.html b/generated/autoexamples/GPU/example_cg.html index 50ae6d8b..1187bb7a 100644 --- a/generated/autoexamples/GPU/example_cg.html +++ b/generated/autoexamples/GPU/example_cg.html @@ -831,7 +831,7 @@

Referencesplt.show() -Original image, Conjugate gradient, Adjoint NUFFT

Total running time of the script: (0 minutes 1.080 seconds)

+Original image, Conjugate gradient, Adjoint NUFFT

Total running time of the script: (0 minutes 1.177 seconds)

-Ground Truth, no density compensation, Pipe density compensation
[0.00880264 0.04015241 0.08094852 ... 3.2305737  2.659058   3.443778  ]
+Ground Truth, no density compensation, Pipe density compensation
[0.00879562 0.0401402  0.08093609 ... 3.1808376  2.8537495  2.5255663 ]
 
-

Total running time of the script: (0 minutes 4.346 seconds)

+

Total running time of the script: (0 minutes 4.358 seconds)

  0%|          | 0/100 [00:00<?, ?steps/s]
-  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.912]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
+  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.96]/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_fastMRI_UNet.py:104: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
   axs[0].imshow(np.abs(mri_2D[0]), cmap="gray")
 
-  1%|          | 1/100 [00:00<01:35,  1.04steps/s, loss=0.912]
-  1%|          | 1/100 [00:01<01:35,  1.04steps/s, loss=0.778]
-  2%|▏         | 2/100 [00:01<01:26,  1.13steps/s, loss=0.778]
-  2%|▏         | 2/100 [00:01<01:26,  1.13steps/s, loss=0.666]
-  3%|▎         | 3/100 [00:02<01:22,  1.17steps/s, loss=0.666]
-  3%|▎         | 3/100 [00:02<01:22,  1.17steps/s, loss=0.582]
-  4%|▍         | 4/100 [00:03<01:20,  1.19steps/s, loss=0.582]
-  4%|▍         | 4/100 [00:03<01:20,  1.19steps/s, loss=0.525]
-  5%|▌         | 5/100 [00:04<01:19,  1.20steps/s, loss=0.525]
-  5%|▌         | 5/100 [00:04<01:19,  1.20steps/s, loss=0.487]
-  6%|▌         | 6/100 [00:05<01:18,  1.20steps/s, loss=0.487]
-  6%|▌         | 6/100 [00:05<01:18,  1.20steps/s, loss=0.454]
-  7%|▋         | 7/100 [00:06<01:23,  1.11steps/s, loss=0.454]
-  7%|▋         | 7/100 [00:06<01:23,  1.11steps/s, loss=0.426]
-  8%|▊         | 8/100 [00:06<01:20,  1.14steps/s, loss=0.426]
-  8%|▊         | 8/100 [00:07<01:20,  1.14steps/s, loss=0.403]
-  9%|▉         | 9/100 [00:07<01:17,  1.17steps/s, loss=0.403]
-  9%|▉         | 9/100 [00:07<01:17,  1.17steps/s, loss=0.386]
- 10%|█         | 10/100 [00:08<01:15,  1.19steps/s, loss=0.386]
- 10%|█         | 10/100 [00:08<01:15,  1.19steps/s, loss=0.372]
- 11%|█         | 11/100 [00:09<01:14,  1.20steps/s, loss=0.372]
- 11%|█         | 11/100 [00:09<01:14,  1.20steps/s, loss=0.36]
- 12%|█▏        | 12/100 [00:10<01:13,  1.20steps/s, loss=0.36]
- 12%|█▏        | 12/100 [00:10<01:13,  1.20steps/s, loss=0.348]
- 13%|█▎        | 13/100 [00:11<01:14,  1.17steps/s, loss=0.348]
- 13%|█▎        | 13/100 [00:11<01:14,  1.17steps/s, loss=0.337]
- 14%|█▍        | 14/100 [00:11<01:13,  1.18steps/s, loss=0.337]
- 14%|█▍        | 14/100 [00:12<01:13,  1.18steps/s, loss=0.325]
- 15%|█▌        | 15/100 [00:12<01:11,  1.18steps/s, loss=0.325]
- 15%|█▌        | 15/100 [00:12<01:11,  1.18steps/s, loss=0.314]
- 16%|█▌        | 16/100 [00:13<01:10,  1.19steps/s, loss=0.314]
- 16%|█▌        | 16/100 [00:13<01:10,  1.19steps/s, loss=0.303]
- 17%|█▋        | 17/100 [00:14<01:16,  1.09steps/s, loss=0.303]
- 17%|█▋        | 17/100 [00:14<01:16,  1.09steps/s, loss=0.292]
- 18%|█▊        | 18/100 [00:15<01:13,  1.12steps/s, loss=0.292]
- 18%|█▊        | 18/100 [00:15<01:13,  1.12steps/s, loss=0.281]
- 19%|█▉        | 19/100 [00:16<01:11,  1.14steps/s, loss=0.281]
- 19%|█▉        | 19/100 [00:16<01:11,  1.14steps/s, loss=0.27]
- 20%|██        | 20/100 [00:17<01:08,  1.16steps/s, loss=0.27]
- 20%|██        | 20/100 [00:17<01:08,  1.16steps/s, loss=0.259]
- 21%|██        | 21/100 [00:18<01:07,  1.17steps/s, loss=0.259]
- 21%|██        | 21/100 [00:18<01:07,  1.17steps/s, loss=0.249]
- 22%|██▏       | 22/100 [00:18<01:05,  1.19steps/s, loss=0.249]
- 22%|██▏       | 22/100 [00:18<01:05,  1.19steps/s, loss=0.238]
- 23%|██▎       | 23/100 [00:19<01:04,  1.19steps/s, loss=0.238]
- 23%|██▎       | 23/100 [00:19<01:04,  1.19steps/s, loss=0.228]
- 24%|██▍       | 24/100 [00:20<01:04,  1.18steps/s, loss=0.228]
- 24%|██▍       | 24/100 [00:20<01:04,  1.18steps/s, loss=0.219]
- 25%|██▌       | 25/100 [00:21<01:03,  1.18steps/s, loss=0.219]
- 25%|██▌       | 25/100 [00:21<01:03,  1.18steps/s, loss=0.211]
- 26%|██▌       | 26/100 [00:22<01:02,  1.19steps/s, loss=0.211]
- 26%|██▌       | 26/100 [00:22<01:02,  1.19steps/s, loss=0.203]
- 27%|██▋       | 27/100 [00:23<01:08,  1.07steps/s, loss=0.203]
- 27%|██▋       | 27/100 [00:23<01:08,  1.07steps/s, loss=0.195]
- 28%|██▊       | 28/100 [00:24<01:06,  1.09steps/s, loss=0.195]
- 28%|██▊       | 28/100 [00:24<01:06,  1.09steps/s, loss=0.188]
- 29%|██▉       | 29/100 [00:25<01:03,  1.11steps/s, loss=0.188]
- 29%|██▉       | 29/100 [00:25<01:03,  1.11steps/s, loss=0.182]
- 30%|███       | 30/100 [00:26<01:02,  1.12steps/s, loss=0.182]
- 30%|███       | 30/100 [00:26<01:02,  1.12steps/s, loss=0.175]
- 31%|███       | 31/100 [00:26<01:01,  1.12steps/s, loss=0.175]
- 31%|███       | 31/100 [00:27<01:01,  1.12steps/s, loss=0.169]
- 32%|███▏      | 32/100 [00:27<00:59,  1.14steps/s, loss=0.169]
- 32%|███▏      | 32/100 [00:27<00:59,  1.14steps/s, loss=0.163]
- 33%|███▎      | 33/100 [00:28<00:57,  1.16steps/s, loss=0.163]
- 33%|███▎      | 33/100 [00:28<00:57,  1.16steps/s, loss=0.157]
- 34%|███▍      | 34/100 [00:29<00:56,  1.17steps/s, loss=0.157]
- 34%|███▍      | 34/100 [00:29<00:56,  1.17steps/s, loss=0.152]
- 35%|███▌      | 35/100 [00:30<00:55,  1.18steps/s, loss=0.152]
- 35%|███▌      | 35/100 [00:30<00:55,  1.18steps/s, loss=0.147]
- 36%|███▌      | 36/100 [00:31<00:54,  1.18steps/s, loss=0.147]
- 36%|███▌      | 36/100 [00:31<00:54,  1.18steps/s, loss=0.141]
- 37%|███▋      | 37/100 [00:32<00:59,  1.06steps/s, loss=0.141]
- 37%|███▋      | 37/100 [00:32<00:59,  1.06steps/s, loss=0.137]
- 38%|███▊      | 38/100 [00:33<00:56,  1.10steps/s, loss=0.137]
- 38%|███▊      | 38/100 [00:33<00:56,  1.10steps/s, loss=0.132]
- 39%|███▉      | 39/100 [00:33<00:53,  1.14steps/s, loss=0.132]
- 39%|███▉      | 39/100 [00:33<00:53,  1.14steps/s, loss=0.128]
- 40%|████      | 40/100 [00:34<00:51,  1.16steps/s, loss=0.128]
- 40%|████      | 40/100 [00:34<00:51,  1.16steps/s, loss=0.123]
- 41%|████      | 41/100 [00:35<00:50,  1.17steps/s, loss=0.123]
- 41%|████      | 41/100 [00:35<00:50,  1.17steps/s, loss=0.119]
- 42%|████▏     | 42/100 [00:36<00:49,  1.18steps/s, loss=0.119]
- 42%|████▏     | 42/100 [00:36<00:49,  1.18steps/s, loss=0.116]
- 43%|████▎     | 43/100 [00:37<00:48,  1.18steps/s, loss=0.116]
- 43%|████▎     | 43/100 [00:37<00:48,  1.18steps/s, loss=0.112]
- 44%|████▍     | 44/100 [00:38<00:47,  1.17steps/s, loss=0.112]
- 44%|████▍     | 44/100 [00:38<00:47,  1.17steps/s, loss=0.109]
- 45%|████▌     | 45/100 [00:38<00:46,  1.18steps/s, loss=0.109]
- 45%|████▌     | 45/100 [00:39<00:46,  1.18steps/s, loss=0.106]
- 46%|████▌     | 46/100 [00:39<00:45,  1.19steps/s, loss=0.106]
- 46%|████▌     | 46/100 [00:39<00:45,  1.19steps/s, loss=0.103]
- 47%|████▋     | 47/100 [00:40<00:49,  1.08steps/s, loss=0.103]
- 47%|████▋     | 47/100 [00:40<00:49,  1.08steps/s, loss=0.101]
- 48%|████▊     | 48/100 [00:41<00:46,  1.12steps/s, loss=0.101]
- 48%|████▊     | 48/100 [00:41<00:46,  1.12steps/s, loss=0.0969]
- 49%|████▉     | 49/100 [00:42<00:44,  1.14steps/s, loss=0.0969]
- 49%|████▉     | 49/100 [00:42<00:44,  1.14steps/s, loss=0.0956]
- 50%|█████     | 50/100 [00:43<00:43,  1.16steps/s, loss=0.0956]
- 50%|█████     | 50/100 [00:43<00:43,  1.16steps/s, loss=0.0977]
- 51%|█████     | 51/100 [00:44<00:41,  1.17steps/s, loss=0.0977]
- 51%|█████     | 51/100 [00:44<00:41,  1.17steps/s, loss=0.0927]
- 52%|█████▏    | 52/100 [00:45<00:40,  1.19steps/s, loss=0.0927]
- 52%|█████▏    | 52/100 [00:45<00:40,  1.19steps/s, loss=0.0883]
- 53%|█████▎    | 53/100 [00:45<00:39,  1.20steps/s, loss=0.0883]
- 53%|█████▎    | 53/100 [00:45<00:39,  1.20steps/s, loss=0.0847]
- 54%|█████▍    | 54/100 [00:46<00:37,  1.22steps/s, loss=0.0847]
- 54%|█████▍    | 54/100 [00:46<00:37,  1.22steps/s, loss=0.0831]
- 55%|█████▌    | 55/100 [00:47<00:36,  1.23steps/s, loss=0.0831]
- 55%|█████▌    | 55/100 [00:47<00:36,  1.23steps/s, loss=0.0824]
- 56%|█████▌    | 56/100 [00:48<00:35,  1.23steps/s, loss=0.0824]
- 56%|█████▌    | 56/100 [00:48<00:35,  1.23steps/s, loss=0.0813]
- 57%|█████▋    | 57/100 [00:49<00:34,  1.23steps/s, loss=0.0813]
- 57%|█████▋    | 57/100 [00:49<00:34,  1.23steps/s, loss=0.0783]
- 58%|█████▊    | 58/100 [00:50<00:37,  1.13steps/s, loss=0.0783]
- 58%|█████▊    | 58/100 [00:50<00:37,  1.13steps/s, loss=0.0747]
- 59%|█████▉    | 59/100 [00:50<00:36,  1.13steps/s, loss=0.0747]
- 59%|█████▉    | 59/100 [00:51<00:36,  1.13steps/s, loss=0.0724]
- 60%|██████    | 60/100 [00:51<00:34,  1.16steps/s, loss=0.0724]
- 60%|██████    | 60/100 [00:51<00:34,  1.16steps/s, loss=0.0696]
- 61%|██████    | 61/100 [00:52<00:33,  1.18steps/s, loss=0.0696]
- 61%|██████    | 61/100 [00:52<00:33,  1.18steps/s, loss=0.0675]
- 62%|██████▏   | 62/100 [00:53<00:32,  1.19steps/s, loss=0.0675]
- 62%|██████▏   | 62/100 [00:53<00:32,  1.19steps/s, loss=0.0659]
- 63%|██████▎   | 63/100 [00:54<00:31,  1.18steps/s, loss=0.0659]
- 63%|██████▎   | 63/100 [00:54<00:31,  1.18steps/s, loss=0.0657]
- 64%|██████▍   | 64/100 [00:55<00:30,  1.20steps/s, loss=0.0657]
- 64%|██████▍   | 64/100 [00:55<00:30,  1.20steps/s, loss=0.0697]
- 65%|██████▌   | 65/100 [00:55<00:28,  1.21steps/s, loss=0.0697]
- 65%|██████▌   | 65/100 [00:56<00:28,  1.21steps/s, loss=0.0757]
- 66%|██████▌   | 66/100 [00:56<00:27,  1.22steps/s, loss=0.0757]
- 66%|██████▌   | 66/100 [00:56<00:27,  1.22steps/s, loss=0.0658]
- 67%|██████▋   | 67/100 [00:57<00:26,  1.23steps/s, loss=0.0658]
- 67%|██████▋   | 67/100 [00:57<00:26,  1.23steps/s, loss=0.0612]
- 68%|██████▊   | 68/100 [00:58<00:28,  1.11steps/s, loss=0.0612]
- 68%|██████▊   | 68/100 [00:58<00:28,  1.11steps/s, loss=0.0641]
- 69%|██████▉   | 69/100 [00:59<00:27,  1.14steps/s, loss=0.0641]
- 69%|██████▉   | 69/100 [00:59<00:27,  1.14steps/s, loss=0.064]
- 70%|███████   | 70/100 [01:00<00:25,  1.16steps/s, loss=0.064]
- 70%|███████   | 70/100 [01:00<00:25,  1.16steps/s, loss=0.0591]
- 71%|███████   | 71/100 [01:01<00:24,  1.18steps/s, loss=0.0591]
- 71%|███████   | 71/100 [01:01<00:24,  1.18steps/s, loss=0.0569]
- 72%|███████▏  | 72/100 [01:01<00:23,  1.17steps/s, loss=0.0569]
- 72%|███████▏  | 72/100 [01:02<00:23,  1.17steps/s, loss=0.0556]
- 73%|███████▎  | 73/100 [01:02<00:22,  1.18steps/s, loss=0.0556]
- 73%|███████▎  | 73/100 [01:02<00:22,  1.18steps/s, loss=0.0559]
- 74%|███████▍  | 74/100 [01:03<00:21,  1.19steps/s, loss=0.0559]
- 74%|███████▍  | 74/100 [01:03<00:21,  1.19steps/s, loss=0.056]
- 75%|███████▌  | 75/100 [01:04<00:20,  1.20steps/s, loss=0.056]
- 75%|███████▌  | 75/100 [01:04<00:20,  1.20steps/s, loss=0.0546]
- 76%|███████▌  | 76/100 [01:05<00:19,  1.21steps/s, loss=0.0546]
- 76%|███████▌  | 76/100 [01:05<00:19,  1.21steps/s, loss=0.0521]
- 77%|███████▋  | 77/100 [01:06<00:18,  1.23steps/s, loss=0.0521]
- 77%|███████▋  | 77/100 [01:06<00:18,  1.23steps/s, loss=0.0524]
- 78%|███████▊  | 78/100 [01:06<00:17,  1.23steps/s, loss=0.0524]
- 78%|███████▊  | 78/100 [01:06<00:17,  1.23steps/s, loss=0.052]
- 79%|███████▉  | 79/100 [01:07<00:18,  1.12steps/s, loss=0.052]
- 79%|███████▉  | 79/100 [01:08<00:18,  1.12steps/s, loss=0.0493]
- 80%|████████  | 80/100 [01:08<00:17,  1.15steps/s, loss=0.0493]
- 80%|████████  | 80/100 [01:08<00:17,  1.15steps/s, loss=0.0467]
- 81%|████████  | 81/100 [01:09<00:16,  1.18steps/s, loss=0.0467]
- 81%|████████  | 81/100 [01:09<00:16,  1.18steps/s, loss=0.0454]
- 82%|████████▏ | 82/100 [01:10<00:15,  1.20steps/s, loss=0.0454]
- 82%|████████▏ | 82/100 [01:10<00:15,  1.20steps/s, loss=0.0454]
- 83%|████████▎ | 83/100 [01:11<00:14,  1.20steps/s, loss=0.0454]
- 83%|████████▎ | 83/100 [01:11<00:14,  1.20steps/s, loss=0.0478]
- 84%|████████▍ | 84/100 [01:11<00:13,  1.22steps/s, loss=0.0478]
- 84%|████████▍ | 84/100 [01:12<00:13,  1.22steps/s, loss=0.052]
- 85%|████████▌ | 85/100 [01:12<00:12,  1.23steps/s, loss=0.052]
- 85%|████████▌ | 85/100 [01:12<00:12,  1.23steps/s, loss=0.0545]
- 86%|████████▌ | 86/100 [01:13<00:11,  1.23steps/s, loss=0.0545]
- 86%|████████▌ | 86/100 [01:13<00:11,  1.23steps/s, loss=0.0465]
- 87%|████████▋ | 87/100 [01:14<00:10,  1.24steps/s, loss=0.0465]
- 87%|████████▋ | 87/100 [01:14<00:10,  1.24steps/s, loss=0.0432]
- 88%|████████▊ | 88/100 [01:15<00:09,  1.24steps/s, loss=0.0432]
- 88%|████████▊ | 88/100 [01:15<00:09,  1.24steps/s, loss=0.0444]
- 89%|████████▉ | 89/100 [01:16<00:09,  1.12steps/s, loss=0.0444]
- 89%|████████▉ | 89/100 [01:16<00:09,  1.12steps/s, loss=0.0458]
- 90%|█████████ | 90/100 [01:17<00:08,  1.15steps/s, loss=0.0458]
- 90%|█████████ | 90/100 [01:17<00:08,  1.15steps/s, loss=0.0472]
- 91%|█████████ | 91/100 [01:17<00:07,  1.18steps/s, loss=0.0472]
- 91%|█████████ | 91/100 [01:17<00:07,  1.18steps/s, loss=0.0456]
- 92%|█████████▏| 92/100 [01:18<00:06,  1.20steps/s, loss=0.0456]
- 92%|█████████▏| 92/100 [01:18<00:06,  1.20steps/s, loss=0.0412]
- 93%|█████████▎| 93/100 [01:19<00:05,  1.22steps/s, loss=0.0412]
- 93%|█████████▎| 93/100 [01:19<00:05,  1.22steps/s, loss=0.0394]
- 94%|█████████▍| 94/100 [01:20<00:04,  1.23steps/s, loss=0.0394]
- 94%|█████████▍| 94/100 [01:20<00:04,  1.23steps/s, loss=0.0404]
- 95%|█████████▌| 95/100 [01:21<00:04,  1.23steps/s, loss=0.0404]
- 95%|█████████▌| 95/100 [01:21<00:04,  1.23steps/s, loss=0.0395]
- 96%|█████████▌| 96/100 [01:21<00:03,  1.23steps/s, loss=0.0395]
- 96%|█████████▌| 96/100 [01:21<00:03,  1.23steps/s, loss=0.0412]
- 97%|█████████▋| 97/100 [01:22<00:02,  1.23steps/s, loss=0.0412]
- 97%|█████████▋| 97/100 [01:22<00:02,  1.23steps/s, loss=0.0431]
- 98%|█████████▊| 98/100 [01:23<00:01,  1.23steps/s, loss=0.0431]
- 98%|█████████▊| 98/100 [01:23<00:01,  1.23steps/s, loss=0.0424]
- 99%|█████████▉| 99/100 [01:24<00:00,  1.23steps/s, loss=0.0424]
- 99%|█████████▉| 99/100 [01:24<00:00,  1.23steps/s, loss=0.0392]
-100%|██████████| 100/100 [01:25<00:00,  1.12steps/s, loss=0.0392]
-100%|██████████| 100/100 [01:25<00:00,  1.17steps/s, loss=0.0392]
+  1%|          | 1/100 [00:00<01:35,  1.03steps/s, loss=0.96]
+  1%|          | 1/100 [00:01<01:35,  1.03steps/s, loss=0.922]
+  2%|▏         | 2/100 [00:01<01:28,  1.11steps/s, loss=0.922]
+  2%|▏         | 2/100 [00:01<01:28,  1.11steps/s, loss=0.891]
+  3%|▎         | 3/100 [00:02<01:24,  1.15steps/s, loss=0.891]
+  3%|▎         | 3/100 [00:02<01:24,  1.15steps/s, loss=0.863]
+  4%|▍         | 4/100 [00:03<01:24,  1.14steps/s, loss=0.863]
+  4%|▍         | 4/100 [00:03<01:24,  1.14steps/s, loss=0.838]
+  5%|▌         | 5/100 [00:04<01:22,  1.15steps/s, loss=0.838]
+  5%|▌         | 5/100 [00:04<01:22,  1.15steps/s, loss=0.817]
+  6%|▌         | 6/100 [00:05<01:21,  1.16steps/s, loss=0.817]
+  6%|▌         | 6/100 [00:05<01:21,  1.16steps/s, loss=0.766]
+  7%|▋         | 7/100 [00:06<01:27,  1.07steps/s, loss=0.766]
+  7%|▋         | 7/100 [00:06<01:27,  1.07steps/s, loss=0.725]
+  8%|▊         | 8/100 [00:07<01:23,  1.11steps/s, loss=0.725]
+  8%|▊         | 8/100 [00:07<01:23,  1.11steps/s, loss=0.693]
+  9%|▉         | 9/100 [00:07<01:19,  1.14steps/s, loss=0.693]
+  9%|▉         | 9/100 [00:08<01:19,  1.14steps/s, loss=0.663]
+ 10%|█         | 10/100 [00:08<01:18,  1.15steps/s, loss=0.663]
+ 10%|█         | 10/100 [00:08<01:18,  1.15steps/s, loss=0.637]
+ 11%|█         | 11/100 [00:09<01:16,  1.16steps/s, loss=0.637]
+ 11%|█         | 11/100 [00:09<01:16,  1.16steps/s, loss=0.612]
+ 12%|█▏        | 12/100 [00:10<01:15,  1.16steps/s, loss=0.612]
+ 12%|█▏        | 12/100 [00:10<01:15,  1.16steps/s, loss=0.589]
+ 13%|█▎        | 13/100 [00:11<01:14,  1.16steps/s, loss=0.589]
+ 13%|█▎        | 13/100 [00:11<01:14,  1.16steps/s, loss=0.568]
+ 14%|█▍        | 14/100 [00:12<01:14,  1.16steps/s, loss=0.568]
+ 14%|█▍        | 14/100 [00:12<01:14,  1.16steps/s, loss=0.549]
+ 15%|█▌        | 15/100 [00:13<01:12,  1.17steps/s, loss=0.549]
+ 15%|█▌        | 15/100 [00:13<01:12,  1.17steps/s, loss=0.531]
+ 16%|█▌        | 16/100 [00:13<01:11,  1.18steps/s, loss=0.531]
+ 16%|█▌        | 16/100 [00:14<01:11,  1.18steps/s, loss=0.514]
+ 17%|█▋        | 17/100 [00:15<01:16,  1.08steps/s, loss=0.514]
+ 17%|█▋        | 17/100 [00:15<01:16,  1.08steps/s, loss=0.498]
+ 18%|█▊        | 18/100 [00:15<01:13,  1.11steps/s, loss=0.498]
+ 18%|█▊        | 18/100 [00:15<01:13,  1.11steps/s, loss=0.482]
+ 19%|█▉        | 19/100 [00:16<01:11,  1.13steps/s, loss=0.482]
+ 19%|█▉        | 19/100 [00:16<01:11,  1.13steps/s, loss=0.466]
+ 20%|██        | 20/100 [00:17<01:08,  1.16steps/s, loss=0.466]
+ 20%|██        | 20/100 [00:17<01:08,  1.16steps/s, loss=0.45]
+ 21%|██        | 21/100 [00:18<01:06,  1.18steps/s, loss=0.45]
+ 21%|██        | 21/100 [00:18<01:06,  1.18steps/s, loss=0.434]
+ 22%|██▏       | 22/100 [00:19<01:05,  1.19steps/s, loss=0.434]
+ 22%|██▏       | 22/100 [00:19<01:05,  1.19steps/s, loss=0.42]
+ 23%|██▎       | 23/100 [00:20<01:04,  1.20steps/s, loss=0.42]
+ 23%|██▎       | 23/100 [00:20<01:04,  1.20steps/s, loss=0.405]
+ 24%|██▍       | 24/100 [00:20<01:04,  1.17steps/s, loss=0.405]
+ 24%|██▍       | 24/100 [00:21<01:04,  1.17steps/s, loss=0.391]
+ 25%|██▌       | 25/100 [00:21<01:04,  1.17steps/s, loss=0.391]
+ 25%|██▌       | 25/100 [00:21<01:04,  1.17steps/s, loss=0.378]
+ 26%|██▌       | 26/100 [00:22<01:02,  1.18steps/s, loss=0.378]
+ 26%|██▌       | 26/100 [00:22<01:02,  1.18steps/s, loss=0.364]
+ 27%|██▋       | 27/100 [00:23<01:07,  1.09steps/s, loss=0.364]
+ 27%|██▋       | 27/100 [00:23<01:07,  1.09steps/s, loss=0.352]
+ 28%|██▊       | 28/100 [00:24<01:04,  1.12steps/s, loss=0.352]
+ 28%|██▊       | 28/100 [00:24<01:04,  1.12steps/s, loss=0.339]
+ 29%|██▉       | 29/100 [00:25<01:02,  1.14steps/s, loss=0.339]
+ 29%|██▉       | 29/100 [00:25<01:02,  1.14steps/s, loss=0.327]
+ 30%|███       | 30/100 [00:26<01:00,  1.15steps/s, loss=0.327]
+ 30%|███       | 30/100 [00:26<01:00,  1.15steps/s, loss=0.315]
+ 31%|███       | 31/100 [00:27<00:59,  1.16steps/s, loss=0.315]
+ 31%|███       | 31/100 [00:27<00:59,  1.16steps/s, loss=0.304]
+ 32%|███▏      | 32/100 [00:27<00:58,  1.17steps/s, loss=0.304]
+ 32%|███▏      | 32/100 [00:27<00:58,  1.17steps/s, loss=0.292]
+ 33%|███▎      | 33/100 [00:28<00:57,  1.17steps/s, loss=0.292]
+ 33%|███▎      | 33/100 [00:28<00:57,  1.17steps/s, loss=0.282]
+ 34%|███▍      | 34/100 [00:29<00:55,  1.18steps/s, loss=0.282]
+ 34%|███▍      | 34/100 [00:29<00:55,  1.18steps/s, loss=0.271]
+ 35%|███▌      | 35/100 [00:30<00:54,  1.18steps/s, loss=0.271]
+ 35%|███▌      | 35/100 [00:30<00:54,  1.18steps/s, loss=0.261]
+ 36%|███▌      | 36/100 [00:31<00:55,  1.16steps/s, loss=0.261]
+ 36%|███▌      | 36/100 [00:31<00:55,  1.16steps/s, loss=0.251]
+ 37%|███▋      | 37/100 [00:32<00:59,  1.06steps/s, loss=0.251]
+ 37%|███▋      | 37/100 [00:32<00:59,  1.06steps/s, loss=0.241]
+ 38%|███▊      | 38/100 [00:33<00:56,  1.11steps/s, loss=0.241]
+ 38%|███▊      | 38/100 [00:33<00:56,  1.11steps/s, loss=0.232]
+ 39%|███▉      | 39/100 [00:34<00:55,  1.09steps/s, loss=0.232]
+ 39%|███▉      | 39/100 [00:34<00:55,  1.09steps/s, loss=0.224]
+ 40%|████      | 40/100 [00:35<00:53,  1.12steps/s, loss=0.224]
+ 40%|████      | 40/100 [00:35<00:53,  1.12steps/s, loss=0.216]
+ 41%|████      | 41/100 [00:35<00:51,  1.14steps/s, loss=0.216]
+ 41%|████      | 41/100 [00:35<00:51,  1.14steps/s, loss=0.207]
+ 42%|████▏     | 42/100 [00:36<00:51,  1.13steps/s, loss=0.207]
+ 42%|████▏     | 42/100 [00:36<00:51,  1.13steps/s, loss=0.2]
+ 43%|████▎     | 43/100 [00:37<00:49,  1.15steps/s, loss=0.2]
+ 43%|████▎     | 43/100 [00:37<00:49,  1.15steps/s, loss=0.194]
+ 44%|████▍     | 44/100 [00:38<00:48,  1.17steps/s, loss=0.194]
+ 44%|████▍     | 44/100 [00:38<00:48,  1.17steps/s, loss=0.188]
+ 45%|████▌     | 45/100 [00:39<00:46,  1.18steps/s, loss=0.188]
+ 45%|████▌     | 45/100 [00:39<00:46,  1.18steps/s, loss=0.181]
+ 46%|████▌     | 46/100 [00:40<00:45,  1.18steps/s, loss=0.181]
+ 46%|████▌     | 46/100 [00:40<00:45,  1.18steps/s, loss=0.175]
+ 47%|████▋     | 47/100 [00:41<00:48,  1.08steps/s, loss=0.175]
+ 47%|████▋     | 47/100 [00:41<00:48,  1.08steps/s, loss=0.171]
+ 48%|████▊     | 48/100 [00:42<00:46,  1.11steps/s, loss=0.171]
+ 48%|████▊     | 48/100 [00:42<00:46,  1.11steps/s, loss=0.164]
+ 49%|████▉     | 49/100 [00:42<00:44,  1.13steps/s, loss=0.164]
+ 49%|████▉     | 49/100 [00:42<00:44,  1.13steps/s, loss=0.156]
+ 50%|█████     | 50/100 [00:43<00:43,  1.14steps/s, loss=0.156]
+ 50%|█████     | 50/100 [00:43<00:43,  1.14steps/s, loss=0.151]
+ 51%|█████     | 51/100 [00:44<00:42,  1.14steps/s, loss=0.151]
+ 51%|█████     | 51/100 [00:44<00:42,  1.14steps/s, loss=0.148]
+ 52%|█████▏    | 52/100 [00:45<00:41,  1.16steps/s, loss=0.148]
+ 52%|█████▏    | 52/100 [00:45<00:41,  1.16steps/s, loss=0.145]
+ 53%|█████▎    | 53/100 [00:46<00:40,  1.16steps/s, loss=0.145]
+ 53%|█████▎    | 53/100 [00:46<00:40,  1.16steps/s, loss=0.145]
+ 54%|█████▍    | 54/100 [00:47<00:39,  1.16steps/s, loss=0.145]
+ 54%|█████▍    | 54/100 [00:47<00:39,  1.16steps/s, loss=0.138]
+ 55%|█████▌    | 55/100 [00:47<00:38,  1.18steps/s, loss=0.138]
+ 55%|█████▌    | 55/100 [00:48<00:38,  1.18steps/s, loss=0.13]
+ 56%|█████▌    | 56/100 [00:48<00:37,  1.19steps/s, loss=0.13]
+ 56%|█████▌    | 56/100 [00:48<00:37,  1.19steps/s, loss=0.127]
+ 57%|█████▋    | 57/100 [00:49<00:39,  1.09steps/s, loss=0.127]
+ 57%|█████▋    | 57/100 [00:50<00:39,  1.09steps/s, loss=0.123]
+ 58%|█████▊    | 58/100 [00:50<00:37,  1.13steps/s, loss=0.123]
+ 58%|█████▊    | 58/100 [00:50<00:37,  1.13steps/s, loss=0.119]
+ 59%|█████▉    | 59/100 [00:51<00:35,  1.15steps/s, loss=0.119]
+ 59%|█████▉    | 59/100 [00:51<00:35,  1.15steps/s, loss=0.118]
+ 60%|██████    | 60/100 [00:52<00:34,  1.17steps/s, loss=0.118]
+ 60%|██████    | 60/100 [00:52<00:34,  1.17steps/s, loss=0.113]
+ 61%|██████    | 61/100 [00:53<00:33,  1.17steps/s, loss=0.113]
+ 61%|██████    | 61/100 [00:53<00:33,  1.17steps/s, loss=0.109]
+ 62%|██████▏   | 62/100 [00:54<00:32,  1.17steps/s, loss=0.109]
+ 62%|██████▏   | 62/100 [00:54<00:32,  1.17steps/s, loss=0.111]
+ 63%|██████▎   | 63/100 [00:54<00:31,  1.17steps/s, loss=0.111]
+ 63%|██████▎   | 63/100 [00:55<00:31,  1.17steps/s, loss=0.111]
+ 64%|██████▍   | 64/100 [00:55<00:30,  1.17steps/s, loss=0.111]
+ 64%|██████▍   | 64/100 [00:55<00:30,  1.17steps/s, loss=0.109]
+ 65%|██████▌   | 65/100 [00:56<00:29,  1.18steps/s, loss=0.109]
+ 65%|██████▌   | 65/100 [00:56<00:29,  1.18steps/s, loss=0.108]
+ 66%|██████▌   | 66/100 [00:57<00:28,  1.19steps/s, loss=0.108]
+ 66%|██████▌   | 66/100 [00:57<00:28,  1.19steps/s, loss=0.104]
+ 67%|██████▋   | 67/100 [00:58<00:27,  1.20steps/s, loss=0.104]
+ 67%|██████▋   | 67/100 [00:58<00:27,  1.20steps/s, loss=0.0994]
+ 68%|██████▊   | 68/100 [00:59<00:29,  1.08steps/s, loss=0.0994]
+ 68%|██████▊   | 68/100 [00:59<00:29,  1.08steps/s, loss=0.0948]
+ 69%|██████▉   | 69/100 [01:00<00:27,  1.12steps/s, loss=0.0948]
+ 69%|██████▉   | 69/100 [01:00<00:27,  1.12steps/s, loss=0.0937]
+ 70%|███████   | 70/100 [01:01<00:26,  1.14steps/s, loss=0.0937]
+ 70%|███████   | 70/100 [01:01<00:26,  1.14steps/s, loss=0.0944]
+ 71%|███████   | 71/100 [01:01<00:24,  1.16steps/s, loss=0.0944]
+ 71%|███████   | 71/100 [01:01<00:24,  1.16steps/s, loss=0.0903]
+ 72%|███████▏  | 72/100 [01:02<00:23,  1.18steps/s, loss=0.0903]
+ 72%|███████▏  | 72/100 [01:02<00:23,  1.18steps/s, loss=0.0892]
+ 73%|███████▎  | 73/100 [01:03<00:22,  1.19steps/s, loss=0.0892]
+ 73%|███████▎  | 73/100 [01:03<00:22,  1.19steps/s, loss=0.0862]
+ 74%|███████▍  | 74/100 [01:04<00:21,  1.20steps/s, loss=0.0862]
+ 74%|███████▍  | 74/100 [01:04<00:21,  1.20steps/s, loss=0.0835]
+ 75%|███████▌  | 75/100 [01:05<00:20,  1.21steps/s, loss=0.0835]
+ 75%|███████▌  | 75/100 [01:05<00:20,  1.21steps/s, loss=0.0842]
+ 76%|███████▌  | 76/100 [01:05<00:19,  1.21steps/s, loss=0.0842]
+ 76%|███████▌  | 76/100 [01:06<00:19,  1.21steps/s, loss=0.0863]
+ 77%|███████▋  | 77/100 [01:06<00:18,  1.21steps/s, loss=0.0863]
+ 77%|███████▋  | 77/100 [01:06<00:18,  1.21steps/s, loss=0.086]
+ 78%|███████▊  | 78/100 [01:07<00:20,  1.10steps/s, loss=0.086]
+ 78%|███████▊  | 78/100 [01:08<00:20,  1.10steps/s, loss=0.0835]
+ 79%|███████▉  | 79/100 [01:08<00:18,  1.13steps/s, loss=0.0835]
+ 79%|███████▉  | 79/100 [01:08<00:18,  1.13steps/s, loss=0.0788]
+ 80%|████████  | 80/100 [01:09<00:17,  1.16steps/s, loss=0.0788]
+ 80%|████████  | 80/100 [01:09<00:17,  1.16steps/s, loss=0.0777]
+ 81%|████████  | 81/100 [01:10<00:16,  1.18steps/s, loss=0.0777]
+ 81%|████████  | 81/100 [01:10<00:16,  1.18steps/s, loss=0.0776]
+ 82%|████████▏ | 82/100 [01:11<00:15,  1.19steps/s, loss=0.0776]
+ 82%|████████▏ | 82/100 [01:11<00:15,  1.19steps/s, loss=0.0757]
+ 83%|████████▎ | 83/100 [01:11<00:14,  1.20steps/s, loss=0.0757]
+ 83%|████████▎ | 83/100 [01:12<00:14,  1.20steps/s, loss=0.0756]
+ 84%|████████▍ | 84/100 [01:12<00:13,  1.20steps/s, loss=0.0756]
+ 84%|████████▍ | 84/100 [01:12<00:13,  1.20steps/s, loss=0.0724]
+ 85%|████████▌ | 85/100 [01:13<00:12,  1.21steps/s, loss=0.0724]
+ 85%|████████▌ | 85/100 [01:13<00:12,  1.21steps/s, loss=0.071]
+ 86%|████████▌ | 86/100 [01:14<00:11,  1.21steps/s, loss=0.071]
+ 86%|████████▌ | 86/100 [01:14<00:11,  1.21steps/s, loss=0.0723]
+ 87%|████████▋ | 87/100 [01:15<00:10,  1.21steps/s, loss=0.0723]
+ 87%|████████▋ | 87/100 [01:15<00:10,  1.21steps/s, loss=0.0708]
+ 88%|████████▊ | 88/100 [01:16<00:09,  1.22steps/s, loss=0.0708]
+ 88%|████████▊ | 88/100 [01:16<00:09,  1.22steps/s, loss=0.0694]
+ 89%|████████▉ | 89/100 [01:17<00:09,  1.11steps/s, loss=0.0694]
+ 89%|████████▉ | 89/100 [01:17<00:09,  1.11steps/s, loss=0.0702]
+ 90%|█████████ | 90/100 [01:17<00:08,  1.14steps/s, loss=0.0702]
+ 90%|█████████ | 90/100 [01:18<00:08,  1.14steps/s, loss=0.0719]
+ 91%|█████████ | 91/100 [01:18<00:07,  1.16steps/s, loss=0.0719]
+ 91%|█████████ | 91/100 [01:18<00:07,  1.16steps/s, loss=0.0726]
+ 92%|█████████▏| 92/100 [01:19<00:06,  1.18steps/s, loss=0.0726]
+ 92%|█████████▏| 92/100 [01:19<00:06,  1.18steps/s, loss=0.0723]
+ 93%|█████████▎| 93/100 [01:20<00:05,  1.19steps/s, loss=0.0723]
+ 93%|█████████▎| 93/100 [01:20<00:05,  1.19steps/s, loss=0.0701]
+ 94%|█████████▍| 94/100 [01:21<00:05,  1.20steps/s, loss=0.0701]
+ 94%|█████████▍| 94/100 [01:21<00:05,  1.20steps/s, loss=0.0664]
+ 95%|█████████▌| 95/100 [01:22<00:04,  1.21steps/s, loss=0.0664]
+ 95%|█████████▌| 95/100 [01:22<00:04,  1.21steps/s, loss=0.0674]
+ 96%|█████████▌| 96/100 [01:22<00:03,  1.21steps/s, loss=0.0674]
+ 96%|█████████▌| 96/100 [01:23<00:03,  1.21steps/s, loss=0.064]
+ 97%|█████████▋| 97/100 [01:23<00:02,  1.22steps/s, loss=0.064]
+ 97%|█████████▋| 97/100 [01:23<00:02,  1.22steps/s, loss=0.0614]
+ 98%|█████████▊| 98/100 [01:24<00:01,  1.22steps/s, loss=0.0614]
+ 98%|█████████▊| 98/100 [01:24<00:01,  1.22steps/s, loss=0.0641]
+ 99%|█████████▉| 99/100 [01:25<00:00,  1.11steps/s, loss=0.0641]
+ 99%|█████████▉| 99/100 [01:25<00:00,  1.11steps/s, loss=0.0632]
+100%|██████████| 100/100 [01:26<00:00,  1.14steps/s, loss=0.0632]
+100%|██████████| 100/100 [01:26<00:00,  1.16steps/s, loss=0.0632]
 
example learn_samples

Reconstruction from partially trained U-Net model

@@ -1308,7 +1308,7 @@

Referencesfacebookresearch/fastMRI

-

Total running time of the script: (1 minutes 31.303 seconds)

+

Total running time of the script: (1 minutes 32.406 seconds)

-MR Image, Trajectory, Reconstruction
/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_learn_samples.py:117: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at ../aten/src/ATen/native/Copy.cpp:308.)
-  mri_2D = torch.Tensor(np.flipud(bwdl.get_mri(4, "T1")[80, ...]).astype(np.complex64))[
-/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_learn_samples.py:84: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
+MR Image, Trajectory, Reconstruction
/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_learn_samples.py:84: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
   axs[0].imshow(np.abs(mri_2D[0]), cmap="gray")
 
@@ -927,207 +925,207 @@

Start training loop
  0%|          | 0/100 [00:00<?, ?steps/s]
-  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.29853126]
-  1%|          | 1/100 [00:00<01:00,  1.62steps/s, loss=0.29853126]
-  1%|          | 1/100 [00:00<01:00,  1.62steps/s, loss=0.37153688]
-  2%|▏         | 2/100 [00:01<01:00,  1.61steps/s, loss=0.37153688]
-  2%|▏         | 2/100 [00:01<01:00,  1.61steps/s, loss=0.32737318]
-  3%|▎         | 3/100 [00:01<01:00,  1.61steps/s, loss=0.32737318]
-  3%|▎         | 3/100 [00:01<01:00,  1.61steps/s, loss=0.27335256]
-  4%|▍         | 4/100 [00:02<01:00,  1.59steps/s, loss=0.27335256]
-  4%|▍         | 4/100 [00:02<01:00,  1.59steps/s, loss=0.2859924]
-  5%|▌         | 5/100 [00:03<01:04,  1.46steps/s, loss=0.2859924]
-  5%|▌         | 5/100 [00:03<01:04,  1.46steps/s, loss=0.25705892]
-  6%|▌         | 6/100 [00:03<01:01,  1.53steps/s, loss=0.25705892]
-  6%|▌         | 6/100 [00:03<01:01,  1.53steps/s, loss=0.2545925]
-  7%|▋         | 7/100 [00:04<00:59,  1.56steps/s, loss=0.2545925]
-  7%|▋         | 7/100 [00:04<00:59,  1.56steps/s, loss=0.24547116]
-  8%|▊         | 8/100 [00:05<00:58,  1.58steps/s, loss=0.24547116]
-  8%|▊         | 8/100 [00:05<00:58,  1.58steps/s, loss=0.23609169]
-  9%|▉         | 9/100 [00:05<00:56,  1.62steps/s, loss=0.23609169]
-  9%|▉         | 9/100 [00:05<00:56,  1.62steps/s, loss=0.2349256]
- 10%|█         | 10/100 [00:06<00:55,  1.63steps/s, loss=0.2349256]
- 10%|█         | 10/100 [00:06<00:55,  1.63steps/s, loss=0.22141103]
- 11%|█         | 11/100 [00:06<00:54,  1.62steps/s, loss=0.22141103]
- 11%|█         | 11/100 [00:06<00:54,  1.62steps/s, loss=0.22366495]
- 12%|█▏        | 12/100 [00:07<00:53,  1.64steps/s, loss=0.22366495]
- 12%|█▏        | 12/100 [00:07<00:53,  1.64steps/s, loss=0.21244001]
- 13%|█▎        | 13/100 [00:08<00:53,  1.62steps/s, loss=0.21244001]
- 13%|█▎        | 13/100 [00:08<00:53,  1.62steps/s, loss=0.21071818]
- 14%|█▍        | 14/100 [00:09<00:59,  1.44steps/s, loss=0.21071818]
- 14%|█▍        | 14/100 [00:09<00:59,  1.44steps/s, loss=0.21013695]
- 15%|█▌        | 15/100 [00:09<00:57,  1.48steps/s, loss=0.21013695]
- 15%|█▌        | 15/100 [00:09<00:57,  1.48steps/s, loss=0.20071918]
- 16%|█▌        | 16/100 [00:10<00:55,  1.52steps/s, loss=0.20071918]
- 16%|█▌        | 16/100 [00:10<00:55,  1.52steps/s, loss=0.20267369]
- 17%|█▋        | 17/100 [00:10<00:53,  1.55steps/s, loss=0.20267369]
- 17%|█▋        | 17/100 [00:10<00:53,  1.55steps/s, loss=0.20140396]
- 18%|█▊        | 18/100 [00:11<00:53,  1.54steps/s, loss=0.20140396]
- 18%|█▊        | 18/100 [00:11<00:53,  1.54steps/s, loss=0.19936146]
- 19%|█▉        | 19/100 [00:12<00:52,  1.54steps/s, loss=0.19936146]
- 19%|█▉        | 19/100 [00:12<00:52,  1.54steps/s, loss=0.19241212]
- 20%|██        | 20/100 [00:12<00:51,  1.57steps/s, loss=0.19241212]
- 20%|██        | 20/100 [00:12<00:51,  1.57steps/s, loss=0.19856767]
- 21%|██        | 21/100 [00:13<00:49,  1.60steps/s, loss=0.19856767]
- 21%|██        | 21/100 [00:13<00:49,  1.60steps/s, loss=0.19242188]
- 22%|██▏       | 22/100 [00:14<00:49,  1.59steps/s, loss=0.19242188]
- 22%|██▏       | 22/100 [00:14<00:49,  1.59steps/s, loss=0.18290852]
- 23%|██▎       | 23/100 [00:14<00:54,  1.42steps/s, loss=0.18290852]
- 23%|██▎       | 23/100 [00:15<00:54,  1.42steps/s, loss=0.18571244]
- 24%|██▍       | 24/100 [00:15<00:52,  1.45steps/s, loss=0.18571244]
- 24%|██▍       | 24/100 [00:15<00:52,  1.45steps/s, loss=0.17995901]
- 25%|██▌       | 25/100 [00:16<00:50,  1.50steps/s, loss=0.17995901]
- 25%|██▌       | 25/100 [00:16<00:50,  1.50steps/s, loss=0.17775103]
- 26%|██▌       | 26/100 [00:16<00:48,  1.52steps/s, loss=0.17775103]
- 26%|██▌       | 26/100 [00:16<00:48,  1.52steps/s, loss=0.17822441]
- 27%|██▋       | 27/100 [00:17<00:47,  1.54steps/s, loss=0.17822441]
- 27%|██▋       | 27/100 [00:17<00:47,  1.54steps/s, loss=0.17515598]
- 28%|██▊       | 28/100 [00:18<00:46,  1.57steps/s, loss=0.17515598]
- 28%|██▊       | 28/100 [00:18<00:46,  1.57steps/s, loss=0.17449167]
- 29%|██▉       | 29/100 [00:18<00:44,  1.58steps/s, loss=0.17449167]
- 29%|██▉       | 29/100 [00:18<00:44,  1.58steps/s, loss=0.17339464]
- 30%|███       | 30/100 [00:19<00:44,  1.56steps/s, loss=0.17339464]
- 30%|███       | 30/100 [00:19<00:44,  1.56steps/s, loss=0.16960682]
- 31%|███       | 31/100 [00:19<00:44,  1.56steps/s, loss=0.16960682]
- 31%|███       | 31/100 [00:20<00:44,  1.56steps/s, loss=0.16653246]
- 32%|███▏      | 32/100 [00:20<00:47,  1.42steps/s, loss=0.16653246]
- 32%|███▏      | 32/100 [00:20<00:47,  1.42steps/s, loss=0.16543244]
- 33%|███▎      | 33/100 [00:21<00:45,  1.49steps/s, loss=0.16543244]
- 33%|███▎      | 33/100 [00:21<00:45,  1.49steps/s, loss=0.1647923]
- 34%|███▍      | 34/100 [00:22<00:42,  1.55steps/s, loss=0.1647923]
- 34%|███▍      | 34/100 [00:22<00:42,  1.55steps/s, loss=0.16233486]
- 35%|███▌      | 35/100 [00:22<00:42,  1.54steps/s, loss=0.16233486]
- 35%|███▌      | 35/100 [00:22<00:42,  1.54steps/s, loss=0.16711524]
- 36%|███▌      | 36/100 [00:23<00:40,  1.56steps/s, loss=0.16711524]
- 36%|███▌      | 36/100 [00:23<00:40,  1.56steps/s, loss=0.1615305]
- 37%|███▋      | 37/100 [00:23<00:39,  1.59steps/s, loss=0.1615305]
- 37%|███▋      | 37/100 [00:23<00:39,  1.59steps/s, loss=0.15843087]
- 38%|███▊      | 38/100 [00:24<00:38,  1.63steps/s, loss=0.15843087]
- 38%|███▊      | 38/100 [00:24<00:38,  1.63steps/s, loss=0.16516346]
- 39%|███▉      | 39/100 [00:25<00:36,  1.66steps/s, loss=0.16516346]
- 39%|███▉      | 39/100 [00:25<00:36,  1.66steps/s, loss=0.17028438]
- 40%|████      | 40/100 [00:25<00:35,  1.67steps/s, loss=0.17028438]
- 40%|████      | 40/100 [00:25<00:35,  1.67steps/s, loss=0.16393895]
- 41%|████      | 41/100 [00:26<00:39,  1.48steps/s, loss=0.16393895]
- 41%|████      | 41/100 [00:26<00:39,  1.48steps/s, loss=0.16744798]
- 42%|████▏     | 42/100 [00:27<00:38,  1.51steps/s, loss=0.16744798]
- 42%|████▏     | 42/100 [00:27<00:38,  1.51steps/s, loss=0.16292937]
- 43%|████▎     | 43/100 [00:27<00:37,  1.50steps/s, loss=0.16292937]
- 43%|████▎     | 43/100 [00:27<00:37,  1.50steps/s, loss=0.16942659]
- 44%|████▍     | 44/100 [00:28<00:35,  1.56steps/s, loss=0.16942659]
- 44%|████▍     | 44/100 [00:28<00:35,  1.56steps/s, loss=0.16283251]
- 45%|████▌     | 45/100 [00:28<00:34,  1.58steps/s, loss=0.16283251]
- 45%|████▌     | 45/100 [00:29<00:34,  1.58steps/s, loss=0.16683118]
- 46%|████▌     | 46/100 [00:29<00:33,  1.60steps/s, loss=0.16683118]
- 46%|████▌     | 46/100 [00:29<00:33,  1.60steps/s, loss=0.1682873]
- 47%|████▋     | 47/100 [00:30<00:32,  1.63steps/s, loss=0.1682873]
- 47%|████▋     | 47/100 [00:30<00:32,  1.63steps/s, loss=0.16246581]
- 48%|████▊     | 48/100 [00:30<00:31,  1.65steps/s, loss=0.16246581]
- 48%|████▊     | 48/100 [00:30<00:31,  1.65steps/s, loss=0.16207741]
- 49%|████▉     | 49/100 [00:31<00:30,  1.65steps/s, loss=0.16207741]
- 49%|████▉     | 49/100 [00:31<00:30,  1.65steps/s, loss=0.1611036]
- 50%|█████     | 50/100 [00:31<00:30,  1.65steps/s, loss=0.1611036]
- 50%|█████     | 50/100 [00:32<00:30,  1.65steps/s, loss=0.16309176]
- 51%|█████     | 51/100 [00:32<00:33,  1.47steps/s, loss=0.16309176]
- 51%|█████     | 51/100 [00:32<00:33,  1.47steps/s, loss=0.16548356]
- 52%|█████▏    | 52/100 [00:33<00:31,  1.50steps/s, loss=0.16548356]
- 52%|█████▏    | 52/100 [00:33<00:31,  1.50steps/s, loss=0.16359606]
- 53%|█████▎    | 53/100 [00:34<00:30,  1.53steps/s, loss=0.16359606]
- 53%|█████▎    | 53/100 [00:34<00:30,  1.53steps/s, loss=0.16885835]
- 54%|█████▍    | 54/100 [00:34<00:29,  1.57steps/s, loss=0.16885835]
- 54%|█████▍    | 54/100 [00:34<00:29,  1.57steps/s, loss=0.16726527]
- 55%|█████▌    | 55/100 [00:35<00:28,  1.60steps/s, loss=0.16726527]
- 55%|█████▌    | 55/100 [00:35<00:28,  1.60steps/s, loss=0.15941715]
- 56%|█████▌    | 56/100 [00:35<00:27,  1.60steps/s, loss=0.15941715]
- 56%|█████▌    | 56/100 [00:35<00:27,  1.60steps/s, loss=0.15981565]
- 57%|█████▋    | 57/100 [00:36<00:26,  1.61steps/s, loss=0.15981565]
- 57%|█████▋    | 57/100 [00:36<00:26,  1.61steps/s, loss=0.15360183]
- 58%|█████▊    | 58/100 [00:37<00:25,  1.62steps/s, loss=0.15360183]
- 58%|█████▊    | 58/100 [00:37<00:25,  1.62steps/s, loss=0.15214276]
- 59%|█████▉    | 59/100 [00:37<00:25,  1.63steps/s, loss=0.15214276]
- 59%|█████▉    | 59/100 [00:37<00:25,  1.63steps/s, loss=0.1576615]
- 60%|██████    | 60/100 [00:38<00:27,  1.45steps/s, loss=0.1576615]
- 60%|██████    | 60/100 [00:38<00:27,  1.45steps/s, loss=0.15840659]
- 61%|██████    | 61/100 [00:39<00:26,  1.50steps/s, loss=0.15840659]
- 61%|██████    | 61/100 [00:39<00:26,  1.50steps/s, loss=0.15486123]
- 62%|██████▏   | 62/100 [00:39<00:24,  1.54steps/s, loss=0.15486123]
- 62%|██████▏   | 62/100 [00:39<00:24,  1.54steps/s, loss=0.15786697]
- 63%|██████▎   | 63/100 [00:40<00:23,  1.56steps/s, loss=0.15786697]
- 63%|██████▎   | 63/100 [00:40<00:23,  1.56steps/s, loss=0.15967725]
- 64%|██████▍   | 64/100 [00:41<00:22,  1.59steps/s, loss=0.15967725]
- 64%|██████▍   | 64/100 [00:41<00:22,  1.59steps/s, loss=0.15869364]
- 65%|██████▌   | 65/100 [00:41<00:21,  1.61steps/s, loss=0.15869364]
- 65%|██████▌   | 65/100 [00:41<00:21,  1.61steps/s, loss=0.16174054]
- 66%|██████▌   | 66/100 [00:42<00:20,  1.63steps/s, loss=0.16174054]
- 66%|██████▌   | 66/100 [00:42<00:20,  1.63steps/s, loss=0.15542935]
- 67%|██████▋   | 67/100 [00:42<00:20,  1.63steps/s, loss=0.15542935]
- 67%|██████▋   | 67/100 [00:42<00:20,  1.63steps/s, loss=0.15168907]
- 68%|██████▊   | 68/100 [00:43<00:19,  1.63steps/s, loss=0.15168907]
- 68%|██████▊   | 68/100 [00:43<00:19,  1.63steps/s, loss=0.14976229]
- 69%|██████▉   | 69/100 [00:44<00:21,  1.45steps/s, loss=0.14976229]
- 69%|██████▉   | 69/100 [00:44<00:21,  1.45steps/s, loss=0.15273345]
- 70%|███████   | 70/100 [00:44<00:19,  1.50steps/s, loss=0.15273345]
- 70%|███████   | 70/100 [00:45<00:19,  1.50steps/s, loss=0.15467848]
- 71%|███████   | 71/100 [00:45<00:18,  1.55steps/s, loss=0.15467848]
- 71%|███████   | 71/100 [00:45<00:18,  1.55steps/s, loss=0.14678198]
- 72%|███████▏  | 72/100 [00:46<00:17,  1.57steps/s, loss=0.14678198]
- 72%|███████▏  | 72/100 [00:46<00:17,  1.57steps/s, loss=0.14352123]
- 73%|███████▎  | 73/100 [00:46<00:17,  1.59steps/s, loss=0.14352123]
- 73%|███████▎  | 73/100 [00:46<00:17,  1.59steps/s, loss=0.14557019]
- 74%|███████▍  | 74/100 [00:47<00:16,  1.62steps/s, loss=0.14557019]
- 74%|███████▍  | 74/100 [00:47<00:16,  1.62steps/s, loss=0.14637591]
- 75%|███████▌  | 75/100 [00:47<00:15,  1.64steps/s, loss=0.14637591]
- 75%|███████▌  | 75/100 [00:48<00:15,  1.64steps/s, loss=0.14506432]
- 76%|███████▌  | 76/100 [00:48<00:14,  1.65steps/s, loss=0.14506432]
- 76%|███████▌  | 76/100 [00:48<00:14,  1.65steps/s, loss=0.14379528]
- 77%|███████▋  | 77/100 [00:49<00:13,  1.65steps/s, loss=0.14379528]
- 77%|███████▋  | 77/100 [00:49<00:13,  1.65steps/s, loss=0.14354503]
- 78%|███████▊  | 78/100 [00:49<00:13,  1.60steps/s, loss=0.14354503]
- 78%|███████▊  | 78/100 [00:49<00:13,  1.60steps/s, loss=0.14274073]
- 79%|███████▉  | 79/100 [00:50<00:14,  1.44steps/s, loss=0.14274073]
- 79%|███████▉  | 79/100 [00:50<00:14,  1.44steps/s, loss=0.14163911]
- 80%|████████  | 80/100 [00:51<00:13,  1.51steps/s, loss=0.14163911]
- 80%|████████  | 80/100 [00:51<00:13,  1.51steps/s, loss=0.14239253]
- 81%|████████  | 81/100 [00:51<00:12,  1.55steps/s, loss=0.14239253]
- 81%|████████  | 81/100 [00:51<00:12,  1.55steps/s, loss=0.14263307]
- 82%|████████▏ | 82/100 [00:52<00:11,  1.57steps/s, loss=0.14263307]
- 82%|████████▏ | 82/100 [00:52<00:11,  1.57steps/s, loss=0.14030267]
- 83%|████████▎ | 83/100 [00:53<00:10,  1.60steps/s, loss=0.14030267]
- 83%|████████▎ | 83/100 [00:53<00:10,  1.60steps/s, loss=0.13804494]
- 84%|████████▍ | 84/100 [00:53<00:09,  1.62steps/s, loss=0.13804494]
- 84%|████████▍ | 84/100 [00:53<00:09,  1.62steps/s, loss=0.13743582]
- 85%|████████▌ | 85/100 [00:54<00:09,  1.65steps/s, loss=0.13743582]
- 85%|████████▌ | 85/100 [00:54<00:09,  1.65steps/s, loss=0.13684429]
- 86%|████████▌ | 86/100 [00:54<00:08,  1.66steps/s, loss=0.13684429]
- 86%|████████▌ | 86/100 [00:54<00:08,  1.66steps/s, loss=0.13817665]
- 87%|████████▋ | 87/100 [00:55<00:07,  1.67steps/s, loss=0.13817665]
- 87%|████████▋ | 87/100 [00:55<00:07,  1.67steps/s, loss=0.13768494]
- 88%|████████▊ | 88/100 [00:56<00:08,  1.49steps/s, loss=0.13768494]
- 88%|████████▊ | 88/100 [00:56<00:08,  1.49steps/s, loss=0.13617986]
- 89%|████████▉ | 89/100 [00:56<00:07,  1.55steps/s, loss=0.13617986]
- 89%|████████▉ | 89/100 [00:56<00:07,  1.55steps/s, loss=0.13492078]
- 90%|█████████ | 90/100 [00:57<00:06,  1.60steps/s, loss=0.13492078]
- 90%|█████████ | 90/100 [00:57<00:06,  1.60steps/s, loss=0.13507023]
- 91%|█████████ | 91/100 [00:58<00:05,  1.62steps/s, loss=0.13507023]
- 91%|█████████ | 91/100 [00:58<00:05,  1.62steps/s, loss=0.13537358]
- 92%|█████████▏| 92/100 [00:58<00:04,  1.64steps/s, loss=0.13537358]
- 92%|█████████▏| 92/100 [00:58<00:04,  1.64steps/s, loss=0.13491678]
- 93%|█████████▎| 93/100 [00:59<00:04,  1.65steps/s, loss=0.13491678]
- 93%|█████████▎| 93/100 [00:59<00:04,  1.65steps/s, loss=0.13430983]
- 94%|█████████▍| 94/100 [00:59<00:03,  1.67steps/s, loss=0.13430983]
- 94%|█████████▍| 94/100 [00:59<00:03,  1.67steps/s, loss=0.13397248]
- 95%|█████████▌| 95/100 [01:00<00:02,  1.68steps/s, loss=0.13397248]
- 95%|█████████▌| 95/100 [01:00<00:02,  1.68steps/s, loss=0.13395423]
- 96%|█████████▌| 96/100 [01:01<00:02,  1.69steps/s, loss=0.13395423]
- 96%|█████████▌| 96/100 [01:01<00:02,  1.69steps/s, loss=0.13353457]
- 97%|█████████▋| 97/100 [01:01<00:01,  1.69steps/s, loss=0.13353457]
- 97%|█████████▋| 97/100 [01:01<00:01,  1.69steps/s, loss=0.13348448]
- 98%|█████████▊| 98/100 [01:02<00:01,  1.50steps/s, loss=0.13348448]
- 98%|█████████▊| 98/100 [01:02<00:01,  1.50steps/s, loss=0.13283503]
- 99%|█████████▉| 99/100 [01:03<00:00,  1.54steps/s, loss=0.13283503]
- 99%|█████████▉| 99/100 [01:03<00:00,  1.54steps/s, loss=0.13245253]
-100%|██████████| 100/100 [01:03<00:00,  1.58steps/s, loss=0.13245253]
-100%|██████████| 100/100 [01:03<00:00,  1.57steps/s, loss=0.13245253]
+  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.29853112]
+  1%|          | 1/100 [00:00<01:08,  1.45steps/s, loss=0.29853112]
+  1%|          | 1/100 [00:00<01:08,  1.45steps/s, loss=0.37153837]
+  2%|▏         | 2/100 [00:01<01:04,  1.53steps/s, loss=0.37153837]
+  2%|▏         | 2/100 [00:01<01:04,  1.53steps/s, loss=0.32753098]
+  3%|▎         | 3/100 [00:01<01:02,  1.55steps/s, loss=0.32753098]
+  3%|▎         | 3/100 [00:02<01:02,  1.55steps/s, loss=0.2728366]
+  4%|▍         | 4/100 [00:02<01:01,  1.56steps/s, loss=0.2728366]
+  4%|▍         | 4/100 [00:02<01:01,  1.56steps/s, loss=0.28296492]
+  5%|▌         | 5/100 [00:03<00:59,  1.59steps/s, loss=0.28296492]
+  5%|▌         | 5/100 [00:03<00:59,  1.59steps/s, loss=0.25791705]
+  6%|▌         | 6/100 [00:03<01:01,  1.54steps/s, loss=0.25791705]
+  6%|▌         | 6/100 [00:03<01:01,  1.54steps/s, loss=0.25636005]
+  7%|▋         | 7/100 [00:04<01:00,  1.55steps/s, loss=0.25636005]
+  7%|▋         | 7/100 [00:04<01:00,  1.55steps/s, loss=0.24623524]
+  8%|▊         | 8/100 [00:05<00:59,  1.54steps/s, loss=0.24623524]
+  8%|▊         | 8/100 [00:05<00:59,  1.54steps/s, loss=0.23680945]
+  9%|▉         | 9/100 [00:06<01:07,  1.34steps/s, loss=0.23680945]
+  9%|▉         | 9/100 [00:06<01:07,  1.34steps/s, loss=0.23554897]
+ 10%|█         | 10/100 [00:06<01:04,  1.40steps/s, loss=0.23554897]
+ 10%|█         | 10/100 [00:06<01:04,  1.40steps/s, loss=0.22177278]
+ 11%|█         | 11/100 [00:07<01:01,  1.45steps/s, loss=0.22177278]
+ 11%|█         | 11/100 [00:07<01:01,  1.45steps/s, loss=0.22326635]
+ 12%|█▏        | 12/100 [00:08<00:59,  1.48steps/s, loss=0.22326635]
+ 12%|█▏        | 12/100 [00:08<00:59,  1.48steps/s, loss=0.21097243]
+ 13%|█▎        | 13/100 [00:08<00:57,  1.50steps/s, loss=0.21097243]
+ 13%|█▎        | 13/100 [00:08<00:57,  1.50steps/s, loss=0.20977552]
+ 14%|█▍        | 14/100 [00:09<00:57,  1.48steps/s, loss=0.20977552]
+ 14%|█▍        | 14/100 [00:09<00:57,  1.48steps/s, loss=0.20553194]
+ 15%|█▌        | 15/100 [00:10<00:57,  1.49steps/s, loss=0.20553194]
+ 15%|█▌        | 15/100 [00:10<00:57,  1.49steps/s, loss=0.20458463]
+ 16%|█▌        | 16/100 [00:10<00:56,  1.49steps/s, loss=0.20458463]
+ 16%|█▌        | 16/100 [00:10<00:56,  1.49steps/s, loss=0.2027421]
+ 17%|█▋        | 17/100 [00:11<00:55,  1.49steps/s, loss=0.2027421]
+ 17%|█▋        | 17/100 [00:11<00:55,  1.49steps/s, loss=0.20028645]
+ 18%|█▊        | 18/100 [00:12<01:04,  1.28steps/s, loss=0.20028645]
+ 18%|█▊        | 18/100 [00:12<01:04,  1.28steps/s, loss=0.19293267]
+ 19%|█▉        | 19/100 [00:13<01:00,  1.33steps/s, loss=0.19293267]
+ 19%|█▉        | 19/100 [00:13<01:00,  1.33steps/s, loss=0.19800338]
+ 20%|██        | 20/100 [00:13<00:57,  1.39steps/s, loss=0.19800338]
+ 20%|██        | 20/100 [00:13<00:57,  1.39steps/s, loss=0.1935342]
+ 21%|██        | 21/100 [00:14<00:55,  1.43steps/s, loss=0.1935342]
+ 21%|██        | 21/100 [00:14<00:55,  1.43steps/s, loss=0.18940341]
+ 22%|██▏       | 22/100 [00:15<00:53,  1.46steps/s, loss=0.18940341]
+ 22%|██▏       | 22/100 [00:15<00:53,  1.46steps/s, loss=0.18834706]
+ 23%|██▎       | 23/100 [00:15<00:51,  1.48steps/s, loss=0.18834706]
+ 23%|██▎       | 23/100 [00:15<00:51,  1.48steps/s, loss=0.18557695]
+ 24%|██▍       | 24/100 [00:16<00:50,  1.50steps/s, loss=0.18557695]
+ 24%|██▍       | 24/100 [00:16<00:50,  1.50steps/s, loss=0.18106793]
+ 25%|██▌       | 25/100 [00:17<00:49,  1.50steps/s, loss=0.18106793]
+ 25%|██▌       | 25/100 [00:17<00:49,  1.50steps/s, loss=0.18013091]
+ 26%|██▌       | 26/100 [00:17<00:48,  1.52steps/s, loss=0.18013091]
+ 26%|██▌       | 26/100 [00:17<00:48,  1.52steps/s, loss=0.17909385]
+ 27%|██▋       | 27/100 [00:18<00:55,  1.32steps/s, loss=0.17909385]
+ 27%|██▋       | 27/100 [00:18<00:55,  1.32steps/s, loss=0.18527964]
+ 28%|██▊       | 28/100 [00:19<00:52,  1.38steps/s, loss=0.18527964]
+ 28%|██▊       | 28/100 [00:19<00:52,  1.38steps/s, loss=0.17446959]
+ 29%|██▉       | 29/100 [00:19<00:50,  1.41steps/s, loss=0.17446959]
+ 29%|██▉       | 29/100 [00:20<00:50,  1.41steps/s, loss=0.17448144]
+ 30%|███       | 30/100 [00:20<00:48,  1.44steps/s, loss=0.17448144]
+ 30%|███       | 30/100 [00:20<00:48,  1.44steps/s, loss=0.17114356]
+ 31%|███       | 31/100 [00:21<00:47,  1.47steps/s, loss=0.17114356]
+ 31%|███       | 31/100 [00:21<00:47,  1.47steps/s, loss=0.17090546]
+ 32%|███▏      | 32/100 [00:21<00:45,  1.48steps/s, loss=0.17090546]
+ 32%|███▏      | 32/100 [00:22<00:45,  1.48steps/s, loss=0.1715662]
+ 33%|███▎      | 33/100 [00:22<00:44,  1.49steps/s, loss=0.1715662]
+ 33%|███▎      | 33/100 [00:22<00:44,  1.49steps/s, loss=0.17081684]
+ 34%|███▍      | 34/100 [00:23<00:44,  1.49steps/s, loss=0.17081684]
+ 34%|███▍      | 34/100 [00:23<00:44,  1.49steps/s, loss=0.16552405]
+ 35%|███▌      | 35/100 [00:23<00:42,  1.52steps/s, loss=0.16552405]
+ 35%|███▌      | 35/100 [00:23<00:42,  1.52steps/s, loss=0.17064823]
+ 36%|███▌      | 36/100 [00:24<00:47,  1.34steps/s, loss=0.17064823]
+ 36%|███▌      | 36/100 [00:24<00:47,  1.34steps/s, loss=0.15979783]
+ 37%|███▋      | 37/100 [00:25<00:44,  1.41steps/s, loss=0.15979783]
+ 37%|███▋      | 37/100 [00:25<00:44,  1.41steps/s, loss=0.16761747]
+ 38%|███▊      | 38/100 [00:26<00:41,  1.49steps/s, loss=0.16761747]
+ 38%|███▊      | 38/100 [00:26<00:41,  1.49steps/s, loss=0.15866636]
+ 39%|███▉      | 39/100 [00:26<00:39,  1.53steps/s, loss=0.15866636]
+ 39%|███▉      | 39/100 [00:26<00:39,  1.53steps/s, loss=0.15880579]
+ 40%|████      | 40/100 [00:27<00:38,  1.55steps/s, loss=0.15880579]
+ 40%|████      | 40/100 [00:27<00:38,  1.55steps/s, loss=0.16610485]
+ 41%|████      | 41/100 [00:27<00:37,  1.58steps/s, loss=0.16610485]
+ 41%|████      | 41/100 [00:27<00:37,  1.58steps/s, loss=0.16401899]
+ 42%|████▏     | 42/100 [00:28<00:36,  1.61steps/s, loss=0.16401899]
+ 42%|████▏     | 42/100 [00:28<00:36,  1.61steps/s, loss=0.16417222]
+ 43%|████▎     | 43/100 [00:29<00:35,  1.62steps/s, loss=0.16417222]
+ 43%|████▎     | 43/100 [00:29<00:35,  1.62steps/s, loss=0.17872293]
+ 44%|████▍     | 44/100 [00:29<00:34,  1.64steps/s, loss=0.17872293]
+ 44%|████▍     | 44/100 [00:29<00:34,  1.64steps/s, loss=0.16829814]
+ 45%|████▌     | 45/100 [00:30<00:39,  1.40steps/s, loss=0.16829814]
+ 45%|████▌     | 45/100 [00:30<00:39,  1.40steps/s, loss=0.15921041]
+ 46%|████▌     | 46/100 [00:31<00:36,  1.47steps/s, loss=0.15921041]
+ 46%|████▌     | 46/100 [00:31<00:36,  1.47steps/s, loss=0.15973324]
+ 47%|████▋     | 47/100 [00:31<00:34,  1.52steps/s, loss=0.15973324]
+ 47%|████▋     | 47/100 [00:31<00:34,  1.52steps/s, loss=0.16465144]
+ 48%|████▊     | 48/100 [00:32<00:33,  1.57steps/s, loss=0.16465144]
+ 48%|████▊     | 48/100 [00:32<00:33,  1.57steps/s, loss=0.1637486]
+ 49%|████▉     | 49/100 [00:33<00:32,  1.59steps/s, loss=0.1637486]
+ 49%|████▉     | 49/100 [00:33<00:32,  1.59steps/s, loss=0.16071782]
+ 50%|█████     | 50/100 [00:33<00:31,  1.57steps/s, loss=0.16071782]
+ 50%|█████     | 50/100 [00:33<00:31,  1.57steps/s, loss=0.16380285]
+ 51%|█████     | 51/100 [00:34<00:30,  1.59steps/s, loss=0.16380285]
+ 51%|█████     | 51/100 [00:34<00:30,  1.59steps/s, loss=0.16213192]
+ 52%|█████▏    | 52/100 [00:34<00:29,  1.62steps/s, loss=0.16213192]
+ 52%|█████▏    | 52/100 [00:35<00:29,  1.62steps/s, loss=0.16151422]
+ 53%|█████▎    | 53/100 [00:35<00:28,  1.63steps/s, loss=0.16151422]
+ 53%|█████▎    | 53/100 [00:35<00:28,  1.63steps/s, loss=0.16234721]
+ 54%|█████▍    | 54/100 [00:36<00:28,  1.62steps/s, loss=0.16234721]
+ 54%|█████▍    | 54/100 [00:36<00:28,  1.62steps/s, loss=0.16792989]
+ 55%|█████▌    | 55/100 [00:37<00:32,  1.38steps/s, loss=0.16792989]
+ 55%|█████▌    | 55/100 [00:37<00:32,  1.38steps/s, loss=0.17556721]
+ 56%|█████▌    | 56/100 [00:37<00:30,  1.45steps/s, loss=0.17556721]
+ 56%|█████▌    | 56/100 [00:37<00:30,  1.45steps/s, loss=0.17933542]
+ 57%|█████▋    | 57/100 [00:38<00:28,  1.50steps/s, loss=0.17933542]
+ 57%|█████▋    | 57/100 [00:38<00:28,  1.50steps/s, loss=0.17455722]
+ 58%|█████▊    | 58/100 [00:38<00:27,  1.54steps/s, loss=0.17455722]
+ 58%|█████▊    | 58/100 [00:39<00:27,  1.54steps/s, loss=0.16885789]
+ 59%|█████▉    | 59/100 [00:39<00:26,  1.57steps/s, loss=0.16885789]
+ 59%|█████▉    | 59/100 [00:39<00:26,  1.57steps/s, loss=0.1657783]
+ 60%|██████    | 60/100 [00:40<00:25,  1.60steps/s, loss=0.1657783]
+ 60%|██████    | 60/100 [00:40<00:25,  1.60steps/s, loss=0.16391261]
+ 61%|██████    | 61/100 [00:40<00:24,  1.61steps/s, loss=0.16391261]
+ 61%|██████    | 61/100 [00:40<00:24,  1.61steps/s, loss=0.17128053]
+ 62%|██████▏   | 62/100 [00:41<00:23,  1.62steps/s, loss=0.17128053]
+ 62%|██████▏   | 62/100 [00:41<00:23,  1.62steps/s, loss=0.17103367]
+ 63%|██████▎   | 63/100 [00:42<00:22,  1.63steps/s, loss=0.17103367]
+ 63%|██████▎   | 63/100 [00:42<00:22,  1.63steps/s, loss=0.16684432]
+ 64%|██████▍   | 64/100 [00:42<00:25,  1.41steps/s, loss=0.16684432]
+ 64%|██████▍   | 64/100 [00:43<00:25,  1.41steps/s, loss=0.17590573]
+ 65%|██████▌   | 65/100 [00:43<00:23,  1.48steps/s, loss=0.17590573]
+ 65%|██████▌   | 65/100 [00:43<00:23,  1.48steps/s, loss=0.168659]
+ 66%|██████▌   | 66/100 [00:44<00:22,  1.52steps/s, loss=0.168659]
+ 66%|██████▌   | 66/100 [00:44<00:22,  1.52steps/s, loss=0.15599346]
+ 67%|██████▋   | 67/100 [00:44<00:21,  1.56steps/s, loss=0.15599346]
+ 67%|██████▋   | 67/100 [00:44<00:21,  1.56steps/s, loss=0.17240323]
+ 68%|██████▊   | 68/100 [00:45<00:20,  1.57steps/s, loss=0.17240323]
+ 68%|██████▊   | 68/100 [00:45<00:20,  1.57steps/s, loss=0.16892458]
+ 69%|██████▉   | 69/100 [00:46<00:19,  1.59steps/s, loss=0.16892458]
+ 69%|██████▉   | 69/100 [00:46<00:19,  1.59steps/s, loss=0.15279564]
+ 70%|███████   | 70/100 [00:46<00:18,  1.60steps/s, loss=0.15279564]
+ 70%|███████   | 70/100 [00:46<00:18,  1.60steps/s, loss=0.15968338]
+ 71%|███████   | 71/100 [00:47<00:18,  1.60steps/s, loss=0.15968338]
+ 71%|███████   | 71/100 [00:47<00:18,  1.60steps/s, loss=0.1567983]
+ 72%|███████▏  | 72/100 [00:47<00:17,  1.59steps/s, loss=0.1567983]
+ 72%|███████▏  | 72/100 [00:47<00:17,  1.59steps/s, loss=0.14930055]
+ 73%|███████▎  | 73/100 [00:48<00:19,  1.39steps/s, loss=0.14930055]
+ 73%|███████▎  | 73/100 [00:48<00:19,  1.39steps/s, loss=0.15078755]
+ 74%|███████▍  | 74/100 [00:49<00:17,  1.47steps/s, loss=0.15078755]
+ 74%|███████▍  | 74/100 [00:49<00:17,  1.47steps/s, loss=0.1582215]
+ 75%|███████▌  | 75/100 [00:49<00:16,  1.53steps/s, loss=0.1582215]
+ 75%|███████▌  | 75/100 [00:50<00:16,  1.53steps/s, loss=0.15188923]
+ 76%|███████▌  | 76/100 [00:50<00:15,  1.58steps/s, loss=0.15188923]
+ 76%|███████▌  | 76/100 [00:50<00:15,  1.58steps/s, loss=0.15268104]
+ 77%|███████▋  | 77/100 [00:51<00:14,  1.61steps/s, loss=0.15268104]
+ 77%|███████▋  | 77/100 [00:51<00:14,  1.61steps/s, loss=0.15026653]
+ 78%|███████▊  | 78/100 [00:51<00:13,  1.62steps/s, loss=0.15026653]
+ 78%|███████▊  | 78/100 [00:51<00:13,  1.62steps/s, loss=0.14584652]
+ 79%|███████▉  | 79/100 [00:52<00:12,  1.65steps/s, loss=0.14584652]
+ 79%|███████▉  | 79/100 [00:52<00:12,  1.65steps/s, loss=0.15007895]
+ 80%|████████  | 80/100 [00:52<00:12,  1.66steps/s, loss=0.15007895]
+ 80%|████████  | 80/100 [00:53<00:12,  1.66steps/s, loss=0.14835957]
+ 81%|████████  | 81/100 [00:53<00:11,  1.64steps/s, loss=0.14835957]
+ 81%|████████  | 81/100 [00:53<00:11,  1.64steps/s, loss=0.1439644]
+ 82%|████████▏ | 82/100 [00:54<00:10,  1.65steps/s, loss=0.1439644]
+ 82%|████████▏ | 82/100 [00:54<00:10,  1.65steps/s, loss=0.14399996]
+ 83%|████████▎ | 83/100 [00:55<00:11,  1.42steps/s, loss=0.14399996]
+ 83%|████████▎ | 83/100 [00:55<00:11,  1.42steps/s, loss=0.14442265]
+ 84%|████████▍ | 84/100 [00:55<00:10,  1.49steps/s, loss=0.14442265]
+ 84%|████████▍ | 84/100 [00:55<00:10,  1.49steps/s, loss=0.14358276]
+ 85%|████████▌ | 85/100 [00:56<00:09,  1.54steps/s, loss=0.14358276]
+ 85%|████████▌ | 85/100 [00:56<00:09,  1.54steps/s, loss=0.14183655]
+ 86%|████████▌ | 86/100 [00:56<00:08,  1.58steps/s, loss=0.14183655]
+ 86%|████████▌ | 86/100 [00:56<00:08,  1.58steps/s, loss=0.14260742]
+ 87%|████████▋ | 87/100 [00:57<00:08,  1.59steps/s, loss=0.14260742]
+ 87%|████████▋ | 87/100 [00:57<00:08,  1.59steps/s, loss=0.14337397]
+ 88%|████████▊ | 88/100 [00:58<00:07,  1.62steps/s, loss=0.14337397]
+ 88%|████████▊ | 88/100 [00:58<00:07,  1.62steps/s, loss=0.14169924]
+ 89%|████████▉ | 89/100 [00:58<00:06,  1.63steps/s, loss=0.14169924]
+ 89%|████████▉ | 89/100 [00:58<00:06,  1.63steps/s, loss=0.14071676]
+ 90%|█████████ | 90/100 [00:59<00:06,  1.65steps/s, loss=0.14071676]
+ 90%|█████████ | 90/100 [00:59<00:06,  1.65steps/s, loss=0.14091441]
+ 91%|█████████ | 91/100 [00:59<00:05,  1.66steps/s, loss=0.14091441]
+ 91%|█████████ | 91/100 [00:59<00:05,  1.66steps/s, loss=0.14039984]
+ 92%|█████████▏| 92/100 [01:00<00:05,  1.44steps/s, loss=0.14039984]
+ 92%|█████████▏| 92/100 [01:00<00:05,  1.44steps/s, loss=0.1372433]
+ 93%|█████████▎| 93/100 [01:01<00:04,  1.50steps/s, loss=0.1372433]
+ 93%|█████████▎| 93/100 [01:01<00:04,  1.50steps/s, loss=0.13582084]
+ 94%|█████████▍| 94/100 [01:01<00:03,  1.56steps/s, loss=0.13582084]
+ 94%|█████████▍| 94/100 [01:02<00:03,  1.56steps/s, loss=0.13600537]
+ 95%|█████████▌| 95/100 [01:02<00:03,  1.58steps/s, loss=0.13600537]
+ 95%|█████████▌| 95/100 [01:02<00:03,  1.58steps/s, loss=0.13616289]
+ 96%|█████████▌| 96/100 [01:03<00:02,  1.60steps/s, loss=0.13616289]
+ 96%|█████████▌| 96/100 [01:03<00:02,  1.60steps/s, loss=0.13553114]
+ 97%|█████████▋| 97/100 [01:03<00:01,  1.61steps/s, loss=0.13553114]
+ 97%|█████████▋| 97/100 [01:03<00:01,  1.61steps/s, loss=0.13508096]
+ 98%|█████████▊| 98/100 [01:04<00:01,  1.62steps/s, loss=0.13508096]
+ 98%|█████████▊| 98/100 [01:04<00:01,  1.62steps/s, loss=0.13515672]
+ 99%|█████████▉| 99/100 [01:05<00:00,  1.63steps/s, loss=0.13515672]
+ 99%|█████████▉| 99/100 [01:05<00:00,  1.63steps/s, loss=0.13557652]
+100%|██████████| 100/100 [01:05<00:00,  1.63steps/s, loss=0.13557652]
+100%|██████████| 100/100 [01:05<00:00,  1.52steps/s, loss=0.13557652]
 

example learn_samples @@ -1165,7 +1163,7 @@

Referenceshttps://doi.org/10.3390/bioengineering10020158

-

Total running time of the script: (1 minutes 9.721 seconds)

+

Total running time of the script: (1 minutes 10.948 seconds)

-

Total running time of the script: (1 minutes 25.173 seconds)

+

Total running time of the script: (1 minutes 26.492 seconds)

-MR Image, Reconstruction, Trajectory
/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_learn_straight_line_readouts.py:126: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
+MR Image, Reconstruction, Trajectory
/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_learn_straight_line_readouts.py:174: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at ../aten/src/ATen/native/Copy.cpp:308.)
+  mri_3D = torch.Tensor(cart_data)[None]
+/volatile/github-ci-mind-inria/gpu_runner2/_work/mri-nufft/mri-nufft/examples/GPU/example_learn_straight_line_readouts.py:126: DeprecationWarning: __array_wrap__ must accept context and return_scalar arguments (positionally) in the future. (Deprecated NumPy 2.0)
   axs[0].imshow(np.abs(mri_2D[0][..., 11]), cmap="gray")
 
@@ -979,207 +981,207 @@

Start training loop
  0%|          | 0/100 [00:00<?, ?steps/s]
-  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.30309346]
-  1%|          | 1/100 [00:05<08:33,  5.18s/steps, loss=0.30309346]
-  1%|          | 1/100 [00:05<08:33,  5.18s/steps, loss=0.29061344]
-  2%|▏         | 2/100 [00:10<08:38,  5.29s/steps, loss=0.29061344]
-  2%|▏         | 2/100 [00:10<08:38,  5.29s/steps, loss=0.27955034]
-  3%|▎         | 3/100 [00:15<08:24,  5.20s/steps, loss=0.27955034]
-  3%|▎         | 3/100 [00:15<08:24,  5.20s/steps, loss=0.26559296]
-  4%|▍         | 4/100 [00:21<08:28,  5.30s/steps, loss=0.26559296]
-  4%|▍         | 4/100 [00:21<08:28,  5.30s/steps, loss=0.25970572]
-  5%|▌         | 5/100 [00:26<08:18,  5.25s/steps, loss=0.25970572]
-  5%|▌         | 5/100 [00:26<08:18,  5.25s/steps, loss=0.25261116]
-  6%|▌         | 6/100 [00:31<08:19,  5.31s/steps, loss=0.25261116]
-  6%|▌         | 6/100 [00:31<08:19,  5.31s/steps, loss=0.25515887]
-  7%|▋         | 7/100 [00:37<08:14,  5.31s/steps, loss=0.25515887]
-  7%|▋         | 7/100 [00:37<08:14,  5.31s/steps, loss=0.24767686]
-  8%|▊         | 8/100 [00:42<08:23,  5.47s/steps, loss=0.24767686]
-  8%|▊         | 8/100 [00:42<08:23,  5.47s/steps, loss=0.24929686]
-  9%|▉         | 9/100 [00:48<08:18,  5.48s/steps, loss=0.24929686]
-  9%|▉         | 9/100 [00:48<08:18,  5.48s/steps, loss=0.24864239]
- 10%|█         | 10/100 [00:53<08:15,  5.51s/steps, loss=0.24864239]
- 10%|█         | 10/100 [00:53<08:15,  5.51s/steps, loss=0.24988768]
- 11%|█         | 11/100 [00:59<08:20,  5.63s/steps, loss=0.24988768]
- 11%|█         | 11/100 [00:59<08:20,  5.63s/steps, loss=0.2520304]
- 12%|█▏        | 12/100 [01:05<08:09,  5.56s/steps, loss=0.2520304]
- 12%|█▏        | 12/100 [01:05<08:09,  5.56s/steps, loss=0.2428042]
- 13%|█▎        | 13/100 [01:10<08:05,  5.58s/steps, loss=0.2428042]
- 13%|█▎        | 13/100 [01:10<08:05,  5.58s/steps, loss=0.23971255]
- 14%|█▍        | 14/100 [01:16<07:49,  5.46s/steps, loss=0.23971255]
- 14%|█▍        | 14/100 [01:16<07:49,  5.46s/steps, loss=0.24027772]
- 15%|█▌        | 15/100 [01:21<07:45,  5.47s/steps, loss=0.24027772]
- 15%|█▌        | 15/100 [01:21<07:45,  5.47s/steps, loss=0.24041757]
- 16%|█▌        | 16/100 [01:26<07:31,  5.37s/steps, loss=0.24041757]
- 16%|█▌        | 16/100 [01:26<07:31,  5.37s/steps, loss=0.2396013]
- 17%|█▋        | 17/100 [01:31<07:15,  5.25s/steps, loss=0.2396013]
- 17%|█▋        | 17/100 [01:31<07:15,  5.25s/steps, loss=0.23890744]
- 18%|█▊        | 18/100 [01:36<07:09,  5.24s/steps, loss=0.23890744]
- 18%|█▊        | 18/100 [01:36<07:09,  5.24s/steps, loss=0.23783684]
- 19%|█▉        | 19/100 [01:41<06:56,  5.15s/steps, loss=0.23783684]
- 19%|█▉        | 19/100 [01:41<06:56,  5.15s/steps, loss=0.2382626]
- 20%|██        | 20/100 [01:46<06:51,  5.15s/steps, loss=0.2382626]
- 20%|██        | 20/100 [01:46<06:51,  5.15s/steps, loss=0.24026099]
- 21%|██        | 21/100 [01:51<06:41,  5.08s/steps, loss=0.24026099]
- 21%|██        | 21/100 [01:51<06:41,  5.08s/steps, loss=0.2380282]
- 22%|██▏       | 22/100 [01:56<06:38,  5.10s/steps, loss=0.2380282]
- 22%|██▏       | 22/100 [01:57<06:38,  5.10s/steps, loss=0.23602407]
- 23%|██▎       | 23/100 [02:01<06:29,  5.05s/steps, loss=0.23602407]
- 23%|██▎       | 23/100 [02:01<06:29,  5.05s/steps, loss=0.23179445]
- 24%|██▍       | 24/100 [02:07<06:26,  5.09s/steps, loss=0.23179445]
- 24%|██▍       | 24/100 [02:07<06:26,  5.09s/steps, loss=0.22994718]
- 25%|██▌       | 25/100 [02:12<06:18,  5.05s/steps, loss=0.22994718]
- 25%|██▌       | 25/100 [02:12<06:18,  5.05s/steps, loss=0.23477046]
- 26%|██▌       | 26/100 [02:17<06:17,  5.10s/steps, loss=0.23477046]
- 26%|██▌       | 26/100 [02:17<06:17,  5.10s/steps, loss=0.23384681]
- 27%|██▋       | 27/100 [02:22<06:09,  5.06s/steps, loss=0.23384681]
- 27%|██▋       | 27/100 [02:22<06:09,  5.06s/steps, loss=0.23426783]
- 28%|██▊       | 28/100 [02:27<06:01,  5.02s/steps, loss=0.23426783]
- 28%|██▊       | 28/100 [02:27<06:01,  5.02s/steps, loss=0.23378882]
- 29%|██▉       | 29/100 [02:32<06:00,  5.08s/steps, loss=0.23378882]
- 29%|██▉       | 29/100 [02:32<06:00,  5.08s/steps, loss=0.23847798]
- 30%|███       | 30/100 [02:37<05:53,  5.05s/steps, loss=0.23847798]
- 30%|███       | 30/100 [02:37<05:53,  5.05s/steps, loss=0.23743068]
- 31%|███       | 31/100 [02:42<05:51,  5.09s/steps, loss=0.23743068]
- 31%|███       | 31/100 [02:42<05:51,  5.09s/steps, loss=0.24135272]
- 32%|███▏      | 32/100 [02:47<05:43,  5.05s/steps, loss=0.24135272]
- 32%|███▏      | 32/100 [02:47<05:43,  5.05s/steps, loss=0.23623247]
- 33%|███▎      | 33/100 [02:52<05:41,  5.10s/steps, loss=0.23623247]
- 33%|███▎      | 33/100 [02:52<05:41,  5.10s/steps, loss=0.23429918]
- 34%|███▍      | 34/100 [02:57<05:32,  5.04s/steps, loss=0.23429918]
- 34%|███▍      | 34/100 [02:57<05:32,  5.04s/steps, loss=0.23889245]
- 35%|███▌      | 35/100 [03:02<05:25,  5.00s/steps, loss=0.23889245]
- 35%|███▌      | 35/100 [03:02<05:25,  5.00s/steps, loss=0.23879693]
- 36%|███▌      | 36/100 [03:07<05:23,  5.05s/steps, loss=0.23879693]
- 36%|███▌      | 36/100 [03:07<05:23,  5.05s/steps, loss=0.23669456]
- 37%|███▋      | 37/100 [03:12<05:15,  5.01s/steps, loss=0.23669456]
- 37%|███▋      | 37/100 [03:12<05:15,  5.01s/steps, loss=0.23371552]
- 38%|███▊      | 38/100 [03:17<05:12,  5.05s/steps, loss=0.23371552]
- 38%|███▊      | 38/100 [03:17<05:12,  5.05s/steps, loss=0.22647443]
- 39%|███▉      | 39/100 [03:22<05:05,  5.01s/steps, loss=0.22647443]
- 39%|███▉      | 39/100 [03:22<05:05,  5.01s/steps, loss=0.22260825]
- 40%|████      | 40/100 [03:27<05:02,  5.05s/steps, loss=0.22260825]
- 40%|████      | 40/100 [03:27<05:02,  5.05s/steps, loss=0.22246228]
- 41%|████      | 41/100 [03:32<04:55,  5.01s/steps, loss=0.22246228]
- 41%|████      | 41/100 [03:32<04:55,  5.01s/steps, loss=0.22383563]
- 42%|████▏     | 42/100 [03:37<04:52,  5.05s/steps, loss=0.22383563]
- 42%|████▏     | 42/100 [03:37<04:52,  5.05s/steps, loss=0.2256936]
- 43%|████▎     | 43/100 [03:42<04:45,  5.01s/steps, loss=0.2256936]
- 43%|████▎     | 43/100 [03:42<04:45,  5.01s/steps, loss=0.22963195]
- 44%|████▍     | 44/100 [03:47<04:43,  5.06s/steps, loss=0.22963195]
- 44%|████▍     | 44/100 [03:48<04:43,  5.06s/steps, loss=0.22962333]
- 45%|████▌     | 45/100 [03:52<04:35,  5.02s/steps, loss=0.22962333]
- 45%|████▌     | 45/100 [03:52<04:35,  5.02s/steps, loss=0.23353837]
- 46%|████▌     | 46/100 [03:57<04:29,  4.99s/steps, loss=0.23353837]
- 46%|████▌     | 46/100 [03:57<04:29,  4.99s/steps, loss=0.22545618]
- 47%|████▋     | 47/100 [04:02<04:27,  5.05s/steps, loss=0.22545618]
- 47%|████▋     | 47/100 [04:03<04:27,  5.05s/steps, loss=0.22273454]
- 48%|████▊     | 48/100 [04:07<04:20,  5.01s/steps, loss=0.22273454]
- 48%|████▊     | 48/100 [04:07<04:20,  5.01s/steps, loss=0.22111394]
- 49%|████▉     | 49/100 [04:13<04:17,  5.04s/steps, loss=0.22111394]
- 49%|████▉     | 49/100 [04:13<04:17,  5.04s/steps, loss=0.22054163]
- 50%|█████     | 50/100 [04:17<04:09,  5.00s/steps, loss=0.22054163]
- 50%|█████     | 50/100 [04:17<04:09,  5.00s/steps, loss=0.22201563]
- 51%|█████     | 51/100 [04:23<04:06,  5.03s/steps, loss=0.22201563]
- 51%|█████     | 51/100 [04:23<04:06,  5.03s/steps, loss=0.22652628]
- 52%|█████▏    | 52/100 [04:23<02:56,  3.67s/steps, loss=0.22652628]
- 52%|█████▏    | 52/100 [04:23<02:56,  3.67s/steps, loss=0.22560225]
- 53%|█████▎    | 53/100 [04:24<02:07,  2.72s/steps, loss=0.22560225]
- 53%|█████▎    | 53/100 [04:24<02:07,  2.72s/steps, loss=0.22091533]
- 54%|█████▍    | 54/100 [04:24<01:34,  2.05s/steps, loss=0.22091533]
- 54%|█████▍    | 54/100 [04:24<01:34,  2.05s/steps, loss=0.21720801]
- 55%|█████▌    | 55/100 [04:25<01:11,  1.59s/steps, loss=0.21720801]
- 55%|█████▌    | 55/100 [04:25<01:11,  1.59s/steps, loss=0.21565923]
- 56%|█████▌    | 56/100 [04:25<00:55,  1.26s/steps, loss=0.21565923]
- 56%|█████▌    | 56/100 [04:25<00:55,  1.26s/steps, loss=0.21432346]
- 57%|█████▋    | 57/100 [04:26<00:44,  1.03s/steps, loss=0.21432346]
- 57%|█████▋    | 57/100 [04:26<00:44,  1.03s/steps, loss=0.21574429]
- 58%|█████▊    | 58/100 [04:26<00:36,  1.15steps/s, loss=0.21574429]
- 58%|█████▊    | 58/100 [04:26<00:36,  1.15steps/s, loss=0.21670885]
- 59%|█████▉    | 59/100 [04:27<00:31,  1.31steps/s, loss=0.21670885]
- 59%|█████▉    | 59/100 [04:27<00:31,  1.31steps/s, loss=0.21971025]
- 60%|██████    | 60/100 [04:27<00:30,  1.32steps/s, loss=0.21971025]
- 60%|██████    | 60/100 [04:27<00:30,  1.32steps/s, loss=0.22082731]
- 61%|██████    | 61/100 [04:28<00:26,  1.46steps/s, loss=0.22082731]
- 61%|██████    | 61/100 [04:28<00:26,  1.46steps/s, loss=0.21839125]
- 62%|██████▏   | 62/100 [04:28<00:23,  1.59steps/s, loss=0.21839125]
- 62%|██████▏   | 62/100 [04:28<00:23,  1.59steps/s, loss=0.21566014]
- 63%|██████▎   | 63/100 [04:29<00:21,  1.69steps/s, loss=0.21566014]
- 63%|██████▎   | 63/100 [04:29<00:21,  1.69steps/s, loss=0.2144415]
- 64%|██████▍   | 64/100 [04:29<00:20,  1.77steps/s, loss=0.2144415]
- 64%|██████▍   | 64/100 [04:29<00:20,  1.77steps/s, loss=0.21433373]
- 65%|██████▌   | 65/100 [04:30<00:19,  1.83steps/s, loss=0.21433373]
- 65%|██████▌   | 65/100 [04:30<00:19,  1.83steps/s, loss=0.2144271]
- 66%|██████▌   | 66/100 [04:30<00:18,  1.87steps/s, loss=0.2144271]
- 66%|██████▌   | 66/100 [04:30<00:18,  1.87steps/s, loss=0.21593857]
- 67%|██████▋   | 67/100 [04:31<00:17,  1.90steps/s, loss=0.21593857]
- 67%|██████▋   | 67/100 [04:31<00:17,  1.90steps/s, loss=0.21702509]
- 68%|██████▊   | 68/100 [04:31<00:16,  1.92steps/s, loss=0.21702509]
- 68%|██████▊   | 68/100 [04:31<00:16,  1.92steps/s, loss=0.216033]
- 69%|██████▉   | 69/100 [04:32<00:18,  1.71steps/s, loss=0.216033]
- 69%|██████▉   | 69/100 [04:32<00:18,  1.71steps/s, loss=0.21394263]
- 70%|███████   | 70/100 [04:33<00:16,  1.78steps/s, loss=0.21394263]
- 70%|███████   | 70/100 [04:33<00:16,  1.78steps/s, loss=0.21299691]
- 71%|███████   | 71/100 [04:33<00:15,  1.83steps/s, loss=0.21299691]
- 71%|███████   | 71/100 [04:33<00:15,  1.83steps/s, loss=0.21287109]
- 72%|███████▏  | 72/100 [04:34<00:14,  1.87steps/s, loss=0.21287109]
- 72%|███████▏  | 72/100 [04:34<00:14,  1.87steps/s, loss=0.21326646]
- 73%|███████▎  | 73/100 [04:34<00:14,  1.90steps/s, loss=0.21326646]
- 73%|███████▎  | 73/100 [04:34<00:14,  1.90steps/s, loss=0.21457651]
- 74%|███████▍  | 74/100 [04:35<00:13,  1.94steps/s, loss=0.21457651]
- 74%|███████▍  | 74/100 [04:35<00:13,  1.94steps/s, loss=0.21529512]
- 75%|███████▌  | 75/100 [04:35<00:12,  1.97steps/s, loss=0.21529512]
- 75%|███████▌  | 75/100 [04:35<00:12,  1.97steps/s, loss=0.21451543]
- 76%|███████▌  | 76/100 [04:36<00:12,  1.99steps/s, loss=0.21451543]
- 76%|███████▌  | 76/100 [04:36<00:12,  1.99steps/s, loss=0.2132329]
- 77%|███████▋  | 77/100 [04:36<00:11,  2.01steps/s, loss=0.2132329]
- 77%|███████▋  | 77/100 [04:36<00:11,  2.01steps/s, loss=0.2126338]
- 78%|███████▊  | 78/100 [04:37<00:12,  1.77steps/s, loss=0.2126338]
- 78%|███████▊  | 78/100 [04:37<00:12,  1.77steps/s, loss=0.21248414]
- 79%|███████▉  | 79/100 [04:37<00:11,  1.83steps/s, loss=0.21248414]
- 79%|███████▉  | 79/100 [04:37<00:11,  1.83steps/s, loss=0.21250772]
- 80%|████████  | 80/100 [04:38<00:10,  1.88steps/s, loss=0.21250772]
- 80%|████████  | 80/100 [04:38<00:10,  1.88steps/s, loss=0.21330127]
- 81%|████████  | 81/100 [04:38<00:09,  1.92steps/s, loss=0.21330127]
- 81%|████████  | 81/100 [04:38<00:09,  1.92steps/s, loss=0.21392909]
- 82%|████████▏ | 82/100 [04:39<00:09,  1.95steps/s, loss=0.21392909]
- 82%|████████▏ | 82/100 [04:39<00:09,  1.95steps/s, loss=0.21317223]
- 83%|████████▎ | 83/100 [04:39<00:08,  1.97steps/s, loss=0.21317223]
- 83%|████████▎ | 83/100 [04:39<00:08,  1.97steps/s, loss=0.21232167]
- 84%|████████▍ | 84/100 [04:40<00:08,  1.98steps/s, loss=0.21232167]
- 84%|████████▍ | 84/100 [04:40<00:08,  1.98steps/s, loss=0.21171008]
- 85%|████████▌ | 85/100 [04:40<00:07,  1.99steps/s, loss=0.21171008]
- 85%|████████▌ | 85/100 [04:40<00:07,  1.99steps/s, loss=0.21165645]
- 86%|████████▌ | 86/100 [04:41<00:06,  2.00steps/s, loss=0.21165645]
- 86%|████████▌ | 86/100 [04:41<00:06,  2.00steps/s, loss=0.21209289]
- 87%|████████▋ | 87/100 [04:41<00:07,  1.77steps/s, loss=0.21209289]
- 87%|████████▋ | 87/100 [04:42<00:07,  1.77steps/s, loss=0.2126769]
- 88%|████████▊ | 88/100 [04:42<00:06,  1.84steps/s, loss=0.2126769]
- 88%|████████▊ | 88/100 [04:42<00:06,  1.84steps/s, loss=0.21314764]
- 89%|████████▉ | 89/100 [04:42<00:05,  1.89steps/s, loss=0.21314764]
- 89%|████████▉ | 89/100 [04:43<00:05,  1.89steps/s, loss=0.2129074]
- 90%|█████████ | 90/100 [04:43<00:05,  1.93steps/s, loss=0.2129074]
- 90%|█████████ | 90/100 [04:43<00:05,  1.93steps/s, loss=0.2126504]
- 91%|█████████ | 91/100 [04:43<00:04,  1.95steps/s, loss=0.2126504]
- 91%|█████████ | 91/100 [04:44<00:04,  1.95steps/s, loss=0.21188483]
- 92%|█████████▏| 92/100 [04:44<00:04,  1.98steps/s, loss=0.21188483]
- 92%|█████████▏| 92/100 [04:44<00:04,  1.98steps/s, loss=0.21192583]
- 93%|█████████▎| 93/100 [04:44<00:03,  1.99steps/s, loss=0.21192583]
- 93%|█████████▎| 93/100 [04:45<00:03,  1.99steps/s, loss=0.21227188]
- 94%|█████████▍| 94/100 [04:45<00:03,  2.00steps/s, loss=0.21227188]
- 94%|█████████▍| 94/100 [04:45<00:03,  2.00steps/s, loss=0.21268393]
- 95%|█████████▌| 95/100 [04:45<00:02,  2.01steps/s, loss=0.21268393]
- 95%|█████████▌| 95/100 [04:45<00:02,  2.01steps/s, loss=0.21255477]
- 96%|█████████▌| 96/100 [04:46<00:02,  1.75steps/s, loss=0.21255477]
- 96%|█████████▌| 96/100 [04:46<00:02,  1.75steps/s, loss=0.2120764]
- 97%|█████████▋| 97/100 [04:47<00:01,  1.81steps/s, loss=0.2120764]
- 97%|█████████▋| 97/100 [04:47<00:01,  1.81steps/s, loss=0.21179369]
- 98%|█████████▊| 98/100 [04:47<00:01,  1.86steps/s, loss=0.21179369]
- 98%|█████████▊| 98/100 [04:47<00:01,  1.86steps/s, loss=0.21164821]
- 99%|█████████▉| 99/100 [04:48<00:00,  1.90steps/s, loss=0.21164821]
- 99%|█████████▉| 99/100 [04:48<00:00,  1.90steps/s, loss=0.21178395]
-100%|██████████| 100/100 [04:48<00:00,  1.93steps/s, loss=0.21178395]
-100%|██████████| 100/100 [04:48<00:00,  2.89s/steps, loss=0.21178395]
+  0%|          | 0/100 [00:00<?, ?steps/s, loss=0.31029725]
+  1%|          | 1/100 [00:05<09:09,  5.55s/steps, loss=0.31029725]
+  1%|          | 1/100 [00:05<09:09,  5.55s/steps, loss=0.27873343]
+  2%|▏         | 2/100 [00:10<08:56,  5.47s/steps, loss=0.27873343]
+  2%|▏         | 2/100 [00:11<08:56,  5.47s/steps, loss=0.26571524]
+  3%|▎         | 3/100 [00:16<08:58,  5.55s/steps, loss=0.26571524]
+  3%|▎         | 3/100 [00:16<08:58,  5.55s/steps, loss=0.26458517]
+  4%|▍         | 4/100 [00:22<08:47,  5.49s/steps, loss=0.26458517]
+  4%|▍         | 4/100 [00:22<08:47,  5.49s/steps, loss=0.26768896]
+  5%|▌         | 5/100 [00:27<08:47,  5.56s/steps, loss=0.26768896]
+  5%|▌         | 5/100 [00:27<08:47,  5.56s/steps, loss=0.26320502]
+  6%|▌         | 6/100 [00:33<08:37,  5.51s/steps, loss=0.26320502]
+  6%|▌         | 6/100 [00:33<08:37,  5.51s/steps, loss=0.25488064]
+  7%|▋         | 7/100 [00:38<08:29,  5.48s/steps, loss=0.25488064]
+  7%|▋         | 7/100 [00:38<08:29,  5.48s/steps, loss=0.2565874]
+  8%|▊         | 8/100 [00:44<08:32,  5.57s/steps, loss=0.2565874]
+  8%|▊         | 8/100 [00:44<08:32,  5.57s/steps, loss=0.2465778]
+  9%|▉         | 9/100 [00:49<08:21,  5.51s/steps, loss=0.2465778]
+  9%|▉         | 9/100 [00:49<08:21,  5.51s/steps, loss=0.2445027]
+ 10%|█         | 10/100 [00:55<08:19,  5.55s/steps, loss=0.2445027]
+ 10%|█         | 10/100 [00:55<08:19,  5.55s/steps, loss=0.24142912]
+ 11%|█         | 11/100 [01:00<08:10,  5.51s/steps, loss=0.24142912]
+ 11%|█         | 11/100 [01:00<08:10,  5.51s/steps, loss=0.2401191]
+ 12%|█▏        | 12/100 [01:06<08:09,  5.56s/steps, loss=0.2401191]
+ 12%|█▏        | 12/100 [01:06<08:09,  5.56s/steps, loss=0.23453142]
+ 13%|█▎        | 13/100 [01:11<07:54,  5.45s/steps, loss=0.23453142]
+ 13%|█▎        | 13/100 [01:11<07:54,  5.45s/steps, loss=0.23250592]
+ 14%|█▍        | 14/100 [01:17<07:49,  5.46s/steps, loss=0.23250592]
+ 14%|█▍        | 14/100 [01:17<07:49,  5.46s/steps, loss=0.23128399]
+ 15%|█▌        | 15/100 [01:22<07:37,  5.39s/steps, loss=0.23128399]
+ 15%|█▌        | 15/100 [01:22<07:37,  5.39s/steps, loss=0.22924888]
+ 16%|█▌        | 16/100 [01:27<07:29,  5.36s/steps, loss=0.22924888]
+ 16%|█▌        | 16/100 [01:27<07:29,  5.36s/steps, loss=0.22850613]
+ 17%|█▋        | 17/100 [01:32<07:14,  5.23s/steps, loss=0.22850613]
+ 17%|█▋        | 17/100 [01:32<07:14,  5.23s/steps, loss=0.22917354]
+ 18%|█▊        | 18/100 [01:37<07:01,  5.14s/steps, loss=0.22917354]
+ 18%|█▊        | 18/100 [01:37<07:01,  5.14s/steps, loss=0.22653754]
+ 19%|█▉        | 19/100 [01:42<06:57,  5.15s/steps, loss=0.22653754]
+ 19%|█▉        | 19/100 [01:42<06:57,  5.15s/steps, loss=0.23021545]
+ 20%|██        | 20/100 [01:47<06:45,  5.07s/steps, loss=0.23021545]
+ 20%|██        | 20/100 [01:47<06:45,  5.07s/steps, loss=0.22552136]
+ 21%|██        | 21/100 [01:52<06:42,  5.09s/steps, loss=0.22552136]
+ 21%|██        | 21/100 [01:52<06:42,  5.09s/steps, loss=0.22244439]
+ 22%|██▏       | 22/100 [01:57<06:32,  5.03s/steps, loss=0.22244439]
+ 22%|██▏       | 22/100 [01:57<06:32,  5.03s/steps, loss=0.2259289]
+ 23%|██▎       | 23/100 [02:02<06:30,  5.07s/steps, loss=0.2259289]
+ 23%|██▎       | 23/100 [02:02<06:30,  5.07s/steps, loss=0.22621259]
+ 24%|██▍       | 24/100 [02:07<06:21,  5.02s/steps, loss=0.22621259]
+ 24%|██▍       | 24/100 [02:07<06:21,  5.02s/steps, loss=0.22562954]
+ 25%|██▌       | 25/100 [02:12<06:14,  4.99s/steps, loss=0.22562954]
+ 25%|██▌       | 25/100 [02:12<06:14,  4.99s/steps, loss=0.22509007]
+ 26%|██▌       | 26/100 [02:17<06:13,  5.05s/steps, loss=0.22509007]
+ 26%|██▌       | 26/100 [02:17<06:13,  5.05s/steps, loss=0.22617158]
+ 27%|██▋       | 27/100 [02:22<06:05,  5.01s/steps, loss=0.22617158]
+ 27%|██▋       | 27/100 [02:22<06:05,  5.01s/steps, loss=0.22062434]
+ 28%|██▊       | 28/100 [02:27<06:04,  5.06s/steps, loss=0.22062434]
+ 28%|██▊       | 28/100 [02:27<06:04,  5.06s/steps, loss=0.22018029]
+ 29%|██▉       | 29/100 [02:32<05:56,  5.02s/steps, loss=0.22018029]
+ 29%|██▉       | 29/100 [02:32<05:56,  5.02s/steps, loss=0.21931463]
+ 30%|███       | 30/100 [02:37<05:54,  5.06s/steps, loss=0.21931463]
+ 30%|███       | 30/100 [02:37<05:54,  5.06s/steps, loss=0.21961156]
+ 31%|███       | 31/100 [02:42<05:46,  5.03s/steps, loss=0.21961156]
+ 31%|███       | 31/100 [02:42<05:46,  5.03s/steps, loss=0.21951824]
+ 32%|███▏      | 32/100 [02:48<05:44,  5.07s/steps, loss=0.21951824]
+ 32%|███▏      | 32/100 [02:48<05:44,  5.07s/steps, loss=0.21988952]
+ 33%|███▎      | 33/100 [02:52<05:37,  5.03s/steps, loss=0.21988952]
+ 33%|███▎      | 33/100 [02:53<05:37,  5.03s/steps, loss=0.2206211]
+ 34%|███▍      | 34/100 [02:57<05:29,  4.99s/steps, loss=0.2206211]
+ 34%|███▍      | 34/100 [02:57<05:29,  4.99s/steps, loss=0.21993658]
+ 35%|███▌      | 35/100 [03:03<05:27,  5.04s/steps, loss=0.21993658]
+ 35%|███▌      | 35/100 [03:03<05:27,  5.04s/steps, loss=0.2181159]
+ 36%|███▌      | 36/100 [03:07<05:19,  5.00s/steps, loss=0.2181159]
+ 36%|███▌      | 36/100 [03:07<05:19,  5.00s/steps, loss=0.21761858]
+ 37%|███▋      | 37/100 [03:13<05:17,  5.03s/steps, loss=0.21761858]
+ 37%|███▋      | 37/100 [03:13<05:17,  5.03s/steps, loss=0.21779358]
+ 38%|███▊      | 38/100 [03:17<05:09,  4.99s/steps, loss=0.21779358]
+ 38%|███▊      | 38/100 [03:17<05:09,  4.99s/steps, loss=0.21832097]
+ 39%|███▉      | 39/100 [03:23<05:06,  5.02s/steps, loss=0.21832097]
+ 39%|███▉      | 39/100 [03:23<05:06,  5.02s/steps, loss=0.21838224]
+ 40%|████      | 40/100 [03:27<04:58,  4.98s/steps, loss=0.21838224]
+ 40%|████      | 40/100 [03:27<04:58,  4.98s/steps, loss=0.21827167]
+ 41%|████      | 41/100 [03:33<04:56,  5.03s/steps, loss=0.21827167]
+ 41%|████      | 41/100 [03:33<04:56,  5.03s/steps, loss=0.2188798]
+ 42%|████▏     | 42/100 [03:37<04:49,  4.99s/steps, loss=0.2188798]
+ 42%|████▏     | 42/100 [03:38<04:49,  4.99s/steps, loss=0.21965255]
+ 43%|████▎     | 43/100 [03:43<04:46,  5.03s/steps, loss=0.21965255]
+ 43%|████▎     | 43/100 [03:43<04:46,  5.03s/steps, loss=0.21975587]
+ 44%|████▍     | 44/100 [03:47<04:39,  4.99s/steps, loss=0.21975587]
+ 44%|████▍     | 44/100 [03:48<04:39,  4.99s/steps, loss=0.21963462]
+ 45%|████▌     | 45/100 [03:52<04:33,  4.96s/steps, loss=0.21963462]
+ 45%|████▌     | 45/100 [03:52<04:33,  4.96s/steps, loss=0.21945785]
+ 46%|████▌     | 46/100 [03:58<04:31,  5.02s/steps, loss=0.21945785]
+ 46%|████▌     | 46/100 [03:58<04:31,  5.02s/steps, loss=0.22052133]
+ 47%|████▋     | 47/100 [04:02<04:24,  4.98s/steps, loss=0.22052133]
+ 47%|████▋     | 47/100 [04:02<04:24,  4.98s/steps, loss=0.22119868]
+ 48%|████▊     | 48/100 [04:08<04:21,  5.03s/steps, loss=0.22119868]
+ 48%|████▊     | 48/100 [04:08<04:21,  5.03s/steps, loss=0.22061808]
+ 49%|████▉     | 49/100 [04:12<04:14,  4.99s/steps, loss=0.22061808]
+ 49%|████▉     | 49/100 [04:13<04:14,  4.99s/steps, loss=0.22052431]
+ 50%|█████     | 50/100 [04:18<04:11,  5.03s/steps, loss=0.22052431]
+ 50%|█████     | 50/100 [04:18<04:11,  5.03s/steps, loss=0.22059292]
+ 51%|█████     | 51/100 [04:22<04:04,  4.99s/steps, loss=0.22059292]
+ 51%|█████     | 51/100 [04:23<04:04,  4.99s/steps, loss=0.21991062]
+ 52%|█████▏    | 52/100 [04:23<02:54,  3.64s/steps, loss=0.21991062]
+ 52%|█████▏    | 52/100 [04:23<02:54,  3.64s/steps, loss=0.21914698]
+ 53%|█████▎    | 53/100 [04:23<02:06,  2.70s/steps, loss=0.21914698]
+ 53%|█████▎    | 53/100 [04:24<02:06,  2.70s/steps, loss=0.21910746]
+ 54%|█████▍    | 54/100 [04:24<01:33,  2.04s/steps, loss=0.21910746]
+ 54%|█████▍    | 54/100 [04:24<01:33,  2.04s/steps, loss=0.2193416]
+ 55%|█████▌    | 55/100 [04:24<01:10,  1.57s/steps, loss=0.2193416]
+ 55%|█████▌    | 55/100 [04:25<01:10,  1.57s/steps, loss=0.21862318]
+ 56%|█████▌    | 56/100 [04:25<00:55,  1.25s/steps, loss=0.21862318]
+ 56%|█████▌    | 56/100 [04:25<00:55,  1.25s/steps, loss=0.21765074]
+ 57%|█████▋    | 57/100 [04:26<00:47,  1.10s/steps, loss=0.21765074]
+ 57%|█████▋    | 57/100 [04:26<00:47,  1.10s/steps, loss=0.21744597]
+ 58%|█████▊    | 58/100 [04:26<00:38,  1.08steps/s, loss=0.21744597]
+ 58%|█████▊    | 58/100 [04:26<00:38,  1.08steps/s, loss=0.21722952]
+ 59%|█████▉    | 59/100 [04:27<00:32,  1.25steps/s, loss=0.21722952]
+ 59%|█████▉    | 59/100 [04:27<00:32,  1.25steps/s, loss=0.21647353]
+ 60%|██████    | 60/100 [04:27<00:28,  1.41steps/s, loss=0.21647353]
+ 60%|██████    | 60/100 [04:27<00:28,  1.41steps/s, loss=0.2162384]
+ 61%|██████    | 61/100 [04:28<00:25,  1.54steps/s, loss=0.2162384]
+ 61%|██████    | 61/100 [04:28<00:25,  1.54steps/s, loss=0.21620882]
+ 62%|██████▏   | 62/100 [04:28<00:22,  1.66steps/s, loss=0.21620882]
+ 62%|██████▏   | 62/100 [04:28<00:22,  1.66steps/s, loss=0.21567371]
+ 63%|██████▎   | 63/100 [04:29<00:21,  1.74steps/s, loss=0.21567371]
+ 63%|██████▎   | 63/100 [04:29<00:21,  1.74steps/s, loss=0.21522474]
+ 64%|██████▍   | 64/100 [04:29<00:19,  1.81steps/s, loss=0.21522474]
+ 64%|██████▍   | 64/100 [04:29<00:19,  1.81steps/s, loss=0.21571794]
+ 65%|██████▌   | 65/100 [04:30<00:18,  1.86steps/s, loss=0.21571794]
+ 65%|██████▌   | 65/100 [04:30<00:18,  1.86steps/s, loss=0.2155112]
+ 66%|██████▌   | 66/100 [04:30<00:20,  1.68steps/s, loss=0.2155112]
+ 66%|██████▌   | 66/100 [04:31<00:20,  1.68steps/s, loss=0.21505442]
+ 67%|██████▋   | 67/100 [04:31<00:18,  1.76steps/s, loss=0.21505442]
+ 67%|██████▋   | 67/100 [04:31<00:18,  1.76steps/s, loss=0.21508741]
+ 68%|██████▊   | 68/100 [04:31<00:17,  1.82steps/s, loss=0.21508741]
+ 68%|██████▊   | 68/100 [04:32<00:17,  1.82steps/s, loss=0.21509106]
+ 69%|██████▉   | 69/100 [04:32<00:16,  1.87steps/s, loss=0.21509106]
+ 69%|██████▉   | 69/100 [04:32<00:16,  1.87steps/s, loss=0.21509077]
+ 70%|███████   | 70/100 [04:32<00:15,  1.90steps/s, loss=0.21509077]
+ 70%|███████   | 70/100 [04:33<00:15,  1.90steps/s, loss=0.21512677]
+ 71%|███████   | 71/100 [04:33<00:15,  1.92steps/s, loss=0.21512677]
+ 71%|███████   | 71/100 [04:33<00:15,  1.92steps/s, loss=0.21522686]
+ 72%|███████▏  | 72/100 [04:33<00:14,  1.94steps/s, loss=0.21522686]
+ 72%|███████▏  | 72/100 [04:34<00:14,  1.94steps/s, loss=0.21511285]
+ 73%|███████▎  | 73/100 [04:34<00:13,  1.95steps/s, loss=0.21511285]
+ 73%|███████▎  | 73/100 [04:34<00:13,  1.95steps/s, loss=0.21523133]
+ 74%|███████▍  | 74/100 [04:34<00:13,  1.98steps/s, loss=0.21523133]
+ 74%|███████▍  | 74/100 [04:35<00:13,  1.98steps/s, loss=0.2151495]
+ 75%|███████▌  | 75/100 [04:35<00:14,  1.76steps/s, loss=0.2151495]
+ 75%|███████▌  | 75/100 [04:35<00:14,  1.76steps/s, loss=0.21547048]
+ 76%|███████▌  | 76/100 [04:36<00:13,  1.84steps/s, loss=0.21547048]
+ 76%|███████▌  | 76/100 [04:36<00:13,  1.84steps/s, loss=0.21574326]
+ 77%|███████▋  | 77/100 [04:36<00:12,  1.90steps/s, loss=0.21574326]
+ 77%|███████▋  | 77/100 [04:36<00:12,  1.90steps/s, loss=0.21575642]
+ 78%|███████▊  | 78/100 [04:37<00:11,  1.94steps/s, loss=0.21575642]
+ 78%|███████▊  | 78/100 [04:37<00:11,  1.94steps/s, loss=0.21606866]
+ 79%|███████▉  | 79/100 [04:37<00:10,  1.96steps/s, loss=0.21606866]
+ 79%|███████▉  | 79/100 [04:37<00:10,  1.96steps/s, loss=0.21594526]
+ 80%|████████  | 80/100 [04:38<00:10,  1.98steps/s, loss=0.21594526]
+ 80%|████████  | 80/100 [04:38<00:10,  1.98steps/s, loss=0.21630615]
+ 81%|████████  | 81/100 [04:38<00:09,  1.99steps/s, loss=0.21630615]
+ 81%|████████  | 81/100 [04:38<00:09,  1.99steps/s, loss=0.21641593]
+ 82%|████████▏ | 82/100 [04:39<00:08,  2.00steps/s, loss=0.21641593]
+ 82%|████████▏ | 82/100 [04:39<00:08,  2.00steps/s, loss=0.21700956]
+ 83%|████████▎ | 83/100 [04:39<00:08,  2.01steps/s, loss=0.21700956]
+ 83%|████████▎ | 83/100 [04:39<00:08,  2.01steps/s, loss=0.2165639]
+ 84%|████████▍ | 84/100 [04:40<00:09,  1.77steps/s, loss=0.2165639]
+ 84%|████████▍ | 84/100 [04:40<00:09,  1.77steps/s, loss=0.21679771]
+ 85%|████████▌ | 85/100 [04:40<00:08,  1.84steps/s, loss=0.21679771]
+ 85%|████████▌ | 85/100 [04:40<00:08,  1.84steps/s, loss=0.21689197]
+ 86%|████████▌ | 86/100 [04:41<00:07,  1.89steps/s, loss=0.21689197]
+ 86%|████████▌ | 86/100 [04:41<00:07,  1.89steps/s, loss=0.21677466]
+ 87%|████████▋ | 87/100 [04:41<00:06,  1.93steps/s, loss=0.21677466]
+ 87%|████████▋ | 87/100 [04:41<00:06,  1.93steps/s, loss=0.21673335]
+ 88%|████████▊ | 88/100 [04:42<00:06,  1.96steps/s, loss=0.21673335]
+ 88%|████████▊ | 88/100 [04:42<00:06,  1.96steps/s, loss=0.21665783]
+ 89%|████████▉ | 89/100 [04:42<00:05,  1.98steps/s, loss=0.21665783]
+ 89%|████████▉ | 89/100 [04:42<00:05,  1.98steps/s, loss=0.21688525]
+ 90%|█████████ | 90/100 [04:43<00:05,  2.00steps/s, loss=0.21688525]
+ 90%|█████████ | 90/100 [04:43<00:05,  2.00steps/s, loss=0.21690834]
+ 91%|█████████ | 91/100 [04:43<00:04,  2.01steps/s, loss=0.21690834]
+ 91%|█████████ | 91/100 [04:43<00:04,  2.01steps/s, loss=0.21665049]
+ 92%|█████████▏| 92/100 [04:44<00:03,  2.01steps/s, loss=0.21665049]
+ 92%|█████████▏| 92/100 [04:44<00:03,  2.01steps/s, loss=0.2167301]
+ 93%|█████████▎| 93/100 [04:44<00:03,  1.77steps/s, loss=0.2167301]
+ 93%|█████████▎| 93/100 [04:45<00:03,  1.77steps/s, loss=0.21616712]
+ 94%|█████████▍| 94/100 [04:45<00:03,  1.84steps/s, loss=0.21616712]
+ 94%|█████████▍| 94/100 [04:45<00:03,  1.84steps/s, loss=0.21630748]
+ 95%|█████████▌| 95/100 [04:45<00:02,  1.89steps/s, loss=0.21630748]
+ 95%|█████████▌| 95/100 [04:46<00:02,  1.89steps/s, loss=0.21651071]
+ 96%|█████████▌| 96/100 [04:46<00:02,  1.93steps/s, loss=0.21651071]
+ 96%|█████████▌| 96/100 [04:46<00:02,  1.93steps/s, loss=0.21621014]
+ 97%|█████████▋| 97/100 [04:46<00:01,  1.95steps/s, loss=0.21621014]
+ 97%|█████████▋| 97/100 [04:47<00:01,  1.95steps/s, loss=0.21655633]
+ 98%|█████████▊| 98/100 [04:47<00:01,  1.97steps/s, loss=0.21655633]
+ 98%|█████████▊| 98/100 [04:47<00:01,  1.97steps/s, loss=0.21654822]
+ 99%|█████████▉| 99/100 [04:47<00:00,  1.98steps/s, loss=0.21654822]
+ 99%|█████████▉| 99/100 [04:48<00:00,  1.98steps/s, loss=0.21599509]
+100%|██████████| 100/100 [04:48<00:00,  1.99steps/s, loss=0.21599509]
+100%|██████████| 100/100 [04:48<00:00,  2.88s/steps, loss=0.21599509]
 

example learn_samples @@ -1216,7 +1218,7 @@

Referenceshttps://doi.org/10.3390/bioengineering10020158

-

Total running time of the script: (4 minutes 56.673 seconds)

+

Total running time of the script: (4 minutes 58.021 seconds)