diff --git a/examples/plot_variable_importance_classif_classes.py b/examples/plot_variable_importance_classif_classes.py index e7bcb5a..5a07c88 100644 --- a/examples/plot_variable_importance_classif_classes.py +++ b/examples/plot_variable_importance_classif_classes.py @@ -43,7 +43,7 @@ # of the features. To make the problem more intuitive, we generate a non-linear # combination of the features inspired by the Body Mass Index (BMI) formula. # The BMI can be obtained by :math:`\text{BMI} = \frac{\text{weight}}{\text{height}^2}`. -# And we simply mimic the weight and height variables by rescalling 2 correlated +# And we simply mimic the weight and height variables by rescaling 2 correlated # features. The binary target is then generated using the formula: # :math:`y = \beta_1 \exp\left(\frac{|\text{bmi} - \text{mean(bmi)}|}{\text{std(bmi)}}\right) + \beta_2 \exp\left(|\text{weight}| \times 1\left[|\text{weight} - \text{mean(weight)}| > \text{quantile(weight, 0.80)}\right] \right) + \beta_3 \cdot \text{age} + \epsilon` where :math:`\epsilon`` is a Gaussian noise. # The first and second term are non-linear functions of the features, corresponding to