-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_mp.py
630 lines (591 loc) · 27.1 KB
/
utils_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
COMPONENTS FOR EXPERIMENTS W/ MULTI-PROCESSING
"""
import time, warnings, datetime, numpy as np
from agents import create_Skipper_agent, create_Skipper_network
from utils import *
from runtime import get_new_env, evaluate_agent, save_code_snapshot
import torch.multiprocessing as multiprocessing
from torch.multiprocessing import Process, Value, Event
from multiprocessing.managers import SyncManager
from cpprb import ReplayBuffer, PrioritizedReplayBuffer
from HER import HindsightReplayBuffer
from utils import *
import os, psutil, copy
from tensorboardX import SummaryWriter
from gym.envs.registration import register as gym_register
gym_register(id="RandDistShift-v1", entry_point="RandDistShift:RandDistShift1", reward_threshold=0.95)
gym_register(id="RandDistShift-v2", entry_point="RandDistShift:RandDistShift2", reward_threshold=0.95)
gym_register(id="RandDistShift-v3", entry_point="RandDistShift:RandDistShift3", reward_threshold=0.95)
def get_agent(env, args, rb=None, network_policy=None, network_target=None, inference_only=False, silent=False):
if args.method == "Skipper":
agent = create_Skipper_agent(
args,
env=env,
dim_embed=args.dim_embed,
num_actions=env.action_space.n,
device=None,
hrb=rb,
network_policy=network_policy,
network_target=network_target,
inference_only=inference_only,
silent=silent,
)
else:
raise NotImplementedError
return agent
def prepare_experiment(args, config_train):
env = get_new_env(args, **config_train)
SyncManager.register("SummaryWriter", SummaryWriter)
SyncManager.register("ReplayBuffer", ReplayBuffer)
SyncManager.register("PrioritizedReplayBuffer", PrioritizedReplayBuffer)
SyncManager.register("HindsightReplayBuffer", HindsightReplayBuffer)
manager = multiprocessing.Manager()
if torch.cuda.is_available() and not args.force_cpu:
device = torch.device("cuda")
else:
device = torch.device("cpu")
warnings.warn("global network agent created on cpu")
if args.method == "Skipper":
rb_global = get_cpprb(
env, args.size_buffer, prioritized=args.prioritized_replay, hindsight=True, hindsight_strategy=args.hindsight_strategy, ctx=manager
)
network_policy_global = create_Skipper_network(args, env, args.dim_embed, env.action_space.n, device=device, share_memory=True)
else:
raise NotImplementedError()
queue_snapshots = manager.Queue()
queue_envs_train = manager.Queue(maxsize=12)
queue_batches_prefetched = multiprocessing.Queue(maxsize=1)
# Event object to share training status. if event is set True, all exolorers stop sampling transitions
event_terminate = Event()
# Shared memory objects to count number of samples and applied gradients
steps_interact, episodes_interact = Value("i", 0), Value("i", 0) # dtype and initial values
steps_processed = Value("i", 0)
signal_explore = Value("b", False)
path_tf_events = f"tb_records/{env.spec.id}/{args.size_world}x{args.size_world}/{args.method}/{args.comments}/{args.seed}"
writer_global = manager.SummaryWriter(path_tf_events)
writer_global.add_scalar("Zzz/zzz", 0, 0)
save_code_snapshot(path_tf_events)
return (
network_policy_global,
rb_global,
queue_snapshots,
queue_envs_train,
queue_batches_prefetched,
event_terminate,
steps_interact,
steps_processed,
episodes_interact,
signal_explore,
writer_global,
)
def prefetcher_batch(queue_batches_prefetched, rb_global, steps_processed, args, event_terminate):
if args.prioritized_replay:
schedule_beta_sample_priorities = LinearSchedule(args.steps_max, initial_p=0.4, final_p=1.0)
while True:
flag_q_full = queue_batches_prefetched.full()
if flag_q_full or rb_global.get_stored_size() < args.size_batch:
if event_terminate.is_set():
break
else:
time.sleep(0.00001)
else:
if args.prioritized_replay:
batch_preload_unprocessed = rb_global.sample(
args.size_batch,
beta=schedule_beta_sample_priorities.value(steps_processed.value),
)
else:
batch_preload_unprocessed = rb_global.sample(args.size_batch)
batch_preloaded = process_batch(batch_preload_unprocessed, prioritized=args.prioritized_replay, with_targ=True) # , device="cpu"
batch_preload = []
for item in batch_preloaded:
if isinstance(item, torch.Tensor):
batch_preload.append(item.share_memory_().cuda(non_blocking=True))
else:
batch_preload.append(item)
queue_batches_prefetched.put(batch_preload)
def generator_env(queue_envs_train, config_train, args):
if args.num_envs_train > 0:
envs_train = []
for idx_env in range(args.num_envs_train):
env = get_new_env(args, **config_train)
env.reset()
env.generate_oracle()
envs_train.append(env)
while True:
flag_q_train_full = queue_envs_train.full()
if flag_q_train_full:
time.sleep(0.00001)
else:
if args.num_envs_train > 0:
idx_env = np.random.randint(args.num_envs_train)
env_train = envs_train[idx_env]
env_train.reset()
env_train = copy.deepcopy(env_train)
queue_envs_train.put(env_train)
else:
env_train = get_new_env(args, **config_train)
env_train.reset()
queue_envs_train.put(env_train)
@torch.no_grad()
def explorer(
network_policy_global, rb_global, queue_envs_train, steps_interact, episodes_interact, event_terminate, signal_explore, args, config_train, writer
):
if args.num_envs_train > 0:
env = None
while env is None:
try:
env = queue_envs_train.get()
except:
time.sleep(0.00001)
else:
env = get_new_env(args, **config_train)
env.reset()
local_hrb = get_cpprb(
env,
env.unwrapped.max_steps,
prioritized=args.prioritized_replay,
hindsight=True,
hindsight_strategy=args.hindsight_strategy,
)
agent = get_agent(env, args, rb=local_hrb, network_policy=network_policy_global, inference_only=True, silent=True)
size_submit = 1
if "minigrid" in args.game.lower() or "distshift" in args.game.lower():
type_env = "minigrid"
else:
raise NotImplementedError()
flag_newenvs = "distshift" in args.game.lower()
print("[EXPLORER] env generation pipeline enabled")
steps_collected, episodes_collected = 0, 0
while not event_terminate.is_set():
return_episode, return_episode_discounted, steps_episode = 0, 0, 0
# return_cum, return_cum_clipped, steps_episode = 0, 0, 0
obs_curr, done, real_done, flag_reset = env.obs_curr, False, False, False
steps_interact_curr, episodes_interact_curr = steps_interact.value, episodes_interact.value
# use consistent steps_interact per episode
agent.steps_interact = steps_interact_curr
while not flag_reset:
if not signal_explore.value:
if writer is not None:
writer.flush()
while not signal_explore.value:
if event_terminate.is_set():
return
else:
time.sleep(0.00001)
# agent.network_policy.eval()
# for module in agent.network_policy.modules():
# module.eval()
epsilon = agent.schedule_epsilon.value(steps_interact.value)
with torch.autocast("cuda", enabled=False):
action = agent.decide(
obs_curr, epsilon=epsilon, eval=False, env=env, writer=writer, random_walk=args.random_walk, step_record=steps_interact.value
)
obs_next, reward, done, info = env.step(action) # take a computed action
steps_episode += 1
if type_env == "minigrid":
real_done = done and not info["overtime"]
else:
real_done = done
if event_terminate.is_set():
return
agent.step(
obs_curr=obs_curr, action=action, reward=reward, done=real_done, obs_next=obs_next, add_to_buffer=True, increment_steps=True
) # self.steps_interact - self.step_last_planned >= self.freq_plan
agent.steps_processed = agent.steps_interact
steps_collected += 1
return_episode += reward
return_episode_discounted += reward * agent.gamma**env.step_count
obs_curr = obs_next
flag_reset = real_done or (done and type_env == "minigrid")
if writer is not None:
str_info = (
f"[EXPLORER] seed: {args.seed}, steps_interact: {steps_interact_curr}, episode: {episodes_interact_curr}, "
f"epsilon: {epsilon: .2f}, return: {return_episode: g}, return_discount: {return_episode_discounted: g}, "
f"steps_episode: {steps_episode}"
)
# print(str_info)
writer.add_text("Text/info_train", str_info, steps_interact_curr)
len_trajectory = agent.hrb.episode_rb.get_stored_size()
num_planning_triggered = int(agent.num_planning_triggered)
num_planning_triggered_timeout = int(agent.num_planning_triggered_timeout)
num_waypoints_reached = int(agent.num_waypoints_reached)
if agent.waypoints_existing is not None:
num_waypoints_selected = int(agent.wp_graph_curr["selected"].sum())
else:
num_waypoints_selected = None
agent.on_episode_end(eval=False) # includes hrb.on_episode_end
episodes_collected += 1
if agent.hrb.get_stored_size() >= size_submit:
submitted = True
samples_local = agent.hrb.get_all_transitions()
agent.hrb.clear()
size_submitted = samples_local["rew"].shape[0]
if args.prioritized_replay:
batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done, batch_obs_targ, _, _ = process_batch(
samples_local,
prioritized=False,
with_targ=True,
device=agent.device,
obs2tensor=minigridobs2tensor,
clip_reward=agent.clip_reward,
aux=False,
)
with torch.autocast("cuda", enabled=False):
ret = agent.calculate_multihead_error(batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done, batch_obs_targ)
new_priorities = ret[0].detach().cpu().numpy()
rb_global.rb.add(**samples_local, priorities=new_priorities)
del ret
else:
rb_global.rb.add(**samples_local)
with episodes_interact.get_lock():
episodes_interact.value += episodes_collected
episodes_collected = 0
with steps_interact.get_lock():
steps_interact.value += steps_collected
steps_collected = 0
else:
submitted = False
debug = writer is not None and np.random.rand() < 0.05
if debug:
if submitted:
writer.add_scalar("Other/size_submitted", size_submitted, steps_interact_curr)
steps_interact_curr, episodes_interact_curr = steps_interact.value, episodes_interact.value
writer.add_scalar("Experience/len_trajectory", len_trajectory, steps_interact_curr)
writer.add_scalar("Experience/num_planning_triggered", num_planning_triggered, steps_interact_curr)
writer.add_scalar("Experience/num_planning_triggered_timeout", num_planning_triggered_timeout, steps_interact_curr)
writer.add_scalar("Experience/num_waypoints_reached", num_waypoints_reached, steps_interact_curr)
if num_waypoints_selected is not None:
writer.add_scalar("Experience/num_waypoints_selected", num_waypoints_selected, steps_interact_curr)
writer.add_scalar("Experience/return", return_episode, steps_interact_curr)
writer.add_scalar("Experience/return_discount", return_episode_discounted, steps_interact_curr)
writer.add_scalar("Experience/episodes", episodes_interact_curr, steps_interact_curr)
writer.add_scalar("Experience/dist2init", info["dist2init"], steps_interact_curr)
writer.add_scalar("Experience/dist2goal", info["dist2goal"], steps_interact_curr)
writer.add_scalar("Experience/dist2init_x", np.abs(info["agent_pos"][0] - info["agent_pos_init"][0]), steps_interact_curr)
writer.add_scalar("Experience/overtime", float(info["overtime"]), steps_interact_curr)
writer.add_scalar("Experience/dead", float(done and not float(return_episode) and not info["overtime"]), steps_interact_curr)
if event_terminate.is_set():
return
if flag_newenvs or args.num_envs_train > 0:
env_preloaded = True
if args.num_envs_train > 0:
del env
env = None
while env is None:
try:
env = queue_envs_train.get()
except:
time.sleep(0.00001)
env_preloaded = False
else:
del env
try:
env = queue_envs_train.get()
except:
env = get_new_env(args, **config_train)
env.reset()
env_preloaded = False
if debug:
writer.add_scalar("Other/env_preloaded", float(env_preloaded), steps_interact_curr)
def learner(
network_policy_global,
rb_global,
queue_snapshots,
steps_interact,
steps_processed,
episodes_interact,
event_terminate,
signal_explore,
args,
pid_main,
config_train,
queue_batches_prefetched,
writer,
):
process_main = psutil.Process(pid_main)
process_learner = psutil.Process(os.getpid())
env = get_new_env(args, **config_train)
agent = get_agent(env, args, rb=rb_global, network_policy=network_policy_global, network_target=None)
step_last_eval, time_last_disp = -args.freq_eval, time.time()
print("[LEARNER] loop enter")
agent.steps_interact = steps_interact.value
steps_processed_last_disp, episode_last_disp, time_last_disp = 0, 0, time.time()
while True:
flag_need_update = agent.need_update()
if flag_need_update: # NOTE(H): freeze immediately
with signal_explore.get_lock():
# agent.network_policy.train()
# for module in agent.network_policy.modules():
# module.train()
signal_explore.value = False
episodes_interact_curr = episodes_interact.value
agent.steps_interact = steps_interact.value
if agent.steps_processed - step_last_eval >= args.freq_eval:
weights = agent.network_policy.state_dict() # .copy()
for key in weights.keys():
weights[key] = weights[key].cpu() # share_memory_() # .clone() # .
snapshot_shared = {"weights": weights, "steps_processed": int(agent.steps_processed)}
queue_snapshots.put(snapshot_shared) # put it in every explorer except the evaluator
step_last_eval += args.freq_eval
if agent.steps_processed >= min(args.steps_stop, args.steps_max) or episodes_interact_curr >= args.episodes_max:
event_terminate.set()
break
if flag_need_update: # NOTE(H): focus resources on relieving the bottleneck
with signal_explore.get_lock():
# agent.network_policy.train()
# for module in agent.network_policy.modules():
# module.train()
signal_explore.value = False
if queue_batches_prefetched.empty():
batch_preload = None
else:
batch_preload = queue_batches_prefetched.get()
agent.update_step(batch_processed=batch_preload, writer=writer)
with steps_processed.get_lock():
steps_processed.value = agent.steps_processed
if writer is not None and np.random.rand() < 0.05:
writer.add_scalar("Other/batch_preloaded", float(batch_preload is not None), agent.steps_processed)
del batch_preload
else:
if signal_explore.value:
time.sleep(0.00001)
else:
with signal_explore.get_lock():
# agent.network_policy.eval()
# for module in agent.network_policy.modules():
# module.eval()
signal_explore.value = True
if episodes_interact_curr - episode_last_disp > 0:
time_from_last_disp = time.time() - time_last_disp
try:
mem = process_main.memory_info().rss / 1073741824
except:
mem = None
if time_from_last_disp > 0:
sps = (agent.steps_processed - steps_processed_last_disp) / time_from_last_disp
if sps > 0:
if mem is not None:
try:
mem_learner = 0
for process_child in process_main.children(recursive=True):
if process_child.pid == process_learner.pid:
mem_learner = process_child.memory_info().rss / 1073741824
mem += process_child.memory_info().rss / 1073741824
except:
mem = None
eta = str(datetime.timedelta(seconds=int((args.steps_stop - agent.steps_processed) / sps)))
if steps_processed_last_disp:
writer.add_scalar("Other/sps", sps, agent.steps_interact)
if mem is not None:
print(
"[%d] episode_explored: %d, steps_explored: %d, steps_processed: %d, size_rb: %d, eps: %.2f, mem: %.2f(%.2f)GB, sps: %.2f, eta: %s"
% (
args.seed,
episodes_interact_curr,
steps_interact.value,
agent.steps_processed,
rb_global.rb.get_stored_size(),
agent.schedule_epsilon.value(agent.steps_processed),
mem,
mem_learner,
sps,
eta,
)
)
if steps_processed_last_disp and mem is not None:
writer.add_scalar("Other/RAM", mem, agent.steps_processed)
steps_processed_last_disp, episode_last_disp, time_last_disp = agent.steps_processed, episodes_interact_curr, time.time()
writer.flush()
if not queue_snapshots.empty():
print("[LEARNER] waiting for evaluator to finish")
while not queue_snapshots.empty():
time.sleep(30)
print("[LEARNER] finished with empty queue_snapshots")
queue_batches_prefetched.close()
@torch.no_grad()
def evaluator(config_train, configs_eval, event_terminate, queue, queue_envs_train, args, writer):
num_episodes = 20
args = copy.copy(args)
env_train_generator = lambda: get_new_env(args, **config_train)
env = env_train_generator()
agent = get_agent(env, args, rb=None, inference_only=True, silent=True)
agent.network_policy.eval()
for module in agent.network_policy.modules():
module.eval()
print("[EVALUATOR] agent.device:")
print(agent.device)
from utils import evaluate_multihead_minigrid
while True:
if queue.empty():
if event_terminate.is_set():
break
else:
time.sleep(1)
else:
while not queue.empty():
if event_terminate.is_set():
print(f"[EVALUATOR] event_terminate is set but evaluator hasn't finished the jobs yet")
snapshot_shared = queue.get()
steps_processed = copy.copy(int(snapshot_shared["steps_processed"]))
agent.network_policy.load_state_dict(snapshot_shared["weights"])
del snapshot_shared # NOTE(H): delete immediately
print(f"[EVALUATOR] package received for step {steps_processed:d}")
agent.steps_interact = steps_processed
agent.steps_processed = steps_processed
if args.method == "Skipper":
evaluate_multihead_minigrid(
env,
agent,
writer,
size_batch=64,
num_episodes=5,
suffix="",
step_record=None,
env_generator=lambda: get_new_env(args, **config_train),
queue_envs=None,
)
(
returns_mean,
returns_std,
returns_discounted_mean,
returns_discounted_std,
) = evaluate_agent(env_train_generator, agent, num_episodes=num_episodes, type_env="minigrid", queue_envs=queue_envs_train)
print(
f"Eval/trainx{num_episodes} @ step {agent.steps_processed:d} - returns_mean: {returns_mean:.2f}, returns_std: {returns_std:.2f}, returns_discounted_mean: {returns_discounted_mean:.2f}, returns_discounted_std: {returns_discounted_std:.2f}"
)
writer.add_scalar("Eval/train", returns_mean, agent.steps_processed)
writer.add_scalar("Eval/train_discount", returns_discounted_mean, agent.steps_processed)
for config_eval in configs_eval:
env_generator = lambda: get_new_env(args, **config_eval)
(
returns_mean,
returns_std,
returns_discounted_mean,
returns_discounted_std,
) = evaluate_agent(env_generator, agent, num_episodes=num_episodes, type_env="minigrid")
diff = np.mean(config_eval["lava_density_range"])
print(
f"Eval/{diff:g} x{num_episodes} @ step {agent.steps_processed:d} - returns_mean: {returns_mean:.2f}, returns_std: {returns_std:.2f}, returns_discounted_mean: {returns_discounted_mean:.2f}, returns_discounted_std: {returns_discounted_std:.2f}"
)
writer.add_scalar(f"Eval/{diff:g}", returns_mean, agent.steps_processed)
writer.add_scalar(f"Eval/discount_{diff:g}", returns_discounted_mean, agent.steps_processed)
env_eval = env_generator()
env_eval.reset()
if agent.network_policy.cvae is not None:
visualize_generation_minigrid2(
agent.network_policy.cvae, env_eval.obs_curr, env_eval, writer, agent.steps_processed, suffix=f"_{diff:g}"
)
print("[EVALUATOR] finished with empty queue_snapshots")
def run_multiprocess(args, config_train, configs_eval):
pid_main = os.getpid()
(
network_policy_global,
rb_global,
queue_snapshots,
queue_envs_train,
queue_batches_prefetched,
event_terminate,
steps_interact,
steps_processed,
episodes_interact,
signal_explore,
writer,
) = prepare_experiment(args, config_train)
tasks = []
task_generator_env = Process(name="generator_env", target=generator_env, args=[queue_envs_train, config_train, args])
task_generator_env.start()
task = Process(
name="explorer_0",
target=explorer,
args=[
network_policy_global,
rb_global,
queue_envs_train,
steps_interact,
episodes_interact,
event_terminate,
signal_explore,
args,
config_train,
writer,
],
)
task.start()
tasks.append(task)
task = Process(
name="evaluator",
target=evaluator,
args=[config_train, configs_eval, event_terminate, queue_snapshots, queue_envs_train, args, writer],
)
task.start()
tasks.append(task)
task = Process(
name="learner",
target=learner,
args=[
network_policy_global,
rb_global,
queue_snapshots,
steps_interact,
steps_processed,
episodes_interact,
event_terminate,
signal_explore,
args,
pid_main,
config_train,
queue_batches_prefetched,
writer,
],
)
task.start()
tasks.append(task)
args_otherexplorers = copy.deepcopy(args)
for i in range(1, args.num_explorers):
task = Process(
name=f"explorer_{i:g}",
target=explorer,
args=[
network_policy_global,
rb_global,
queue_envs_train,
steps_interact,
episodes_interact,
event_terminate,
signal_explore,
args_otherexplorers,
config_train,
None,
],
)
task.start()
tasks.append(task)
task_prefetcher = Process(name="prefetcher", target=prefetcher_batch, args=[queue_batches_prefetched, rb_global, steps_processed, args, event_terminate])
task_prefetcher.start()
finished = np.zeros(len(tasks), dtype=bool)
while not finished.all():
for idx_task in range(len(tasks)):
task = tasks[idx_task]
if not task.is_alive():
if task.exitcode == 0:
finished[idx_task] = True
print(f"[utils_mp] {task.name} RIP'ed")
else:
raise RuntimeError(f"[utils_mp] {task.name} exited with code {task.exitcode}")
time.sleep(60)
del (
network_policy_global,
rb_global,
queue_snapshots,
queue_envs_train,
queue_batches_prefetched,
event_terminate,
steps_interact,
episodes_interact,
signal_explore,
writer,
)
if torch.cuda.is_available():
torch.cuda.empty_cache()