-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_leap_pretrain_vae.py
303 lines (266 loc) · 11.6 KB
/
run_leap_pretrain_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import time, datetime, numpy as np, os, pickle
from gym.envs.registration import register as gym_register
gym_register(id="RandDistShift-v2", entry_point="RandDistShift:RandDistShift2", reward_threshold=0.95)
from baselines import create_RW_agent
from tensorboardX import SummaryWriter
from runtime import generate_exptag, get_set_seed, get_new_env, config_parser, save_code_snapshot
import torch
from utils import process_batch, visualize_generation_minigrid2
from models import CVAE_MiniGrid_Separate2
from models import Encoder_MiniGrid_Separate, Decoder_MiniGrid_Separate
from utils import get_cpprb_env_dict, minigridobs2tensor
from HER import HindsightReplayBuffer
# import line_profiler
# profile = line_profiler.LineProfiler()
parser = config_parser(mp=False)
args = parser.parse_args()
config_train = {
"size": args.size_world,
"gamma": args.gamma,
"lava_density_range": [0.4, 0.4],
"uniform_init": bool(args.uniform_init),
"stochasticity": args.stochasticity,
}
configs_eval = [
{
"size": args.size_world,
"gamma": args.gamma,
"lava_density_range": [0.2, 0.3],
"uniform_init": False,
"stochasticity": args.stochasticity,
},
{
"size": args.size_world,
"gamma": args.gamma,
"lava_density_range": [0.3, 0.4],
"uniform_init": False,
"stochasticity": args.stochasticity,
},
{
"size": args.size_world,
"gamma": args.gamma,
"lava_density_range": [0.4, 0.5],
"uniform_init": False,
"stochasticity": args.stochasticity,
},
{
"size": args.size_world,
"gamma": args.gamma,
"lava_density_range": [0.5, 0.6],
"uniform_init": False,
"stochasticity": args.stochasticity,
},
]
if args.num_envs_train > 0:
envs_train = []
for idx_env in range(args.num_envs_train):
env = get_new_env(args, **config_train)
env.reset()
env.generate_oracle()
envs_train.append(env)
def generator_env_train():
idx_env = np.random.randint(args.num_envs_train)
return envs_train[idx_env]
else:
def generator_env_train():
env_train = get_new_env(args, **config_train)
return env_train
args.method = "leap"
env = get_new_env(args, **config_train)
args = generate_exptag(args, additional="")
args.seed = get_set_seed(args.seed, env)
print(args)
agent = create_RW_agent(args, env)
################################################################
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_categoricals, num_categories = 6, 2
depth, width = 2, 256
atoms = 4
beta = 0.00025
debug = True
prioritized_cvae = True
freq_visualize_generation = 10000
eps_adam = 1.5e-4 # 1e-8 #
size_batch_cvae = args.size_batch # 512 #
onehot_state = False
activation = torch.nn.ReLU
additional_goals = 4
interval_beta = 5000
unique_goals = False
local_comments = f"beta_interval{interval_beta:g}"
if onehot_state:
local_comments += "_onehot"
else:
local_comments += "_compact"
local_comments += "_unlimited_CVAE_buffer"
if prioritized_cvae:
local_comments += "_prior"
else:
local_comments += "_noprior"
if eps_adam != 1.5e-4:
local_comments += f"_eps{eps_adam}"
if size_batch_cvae != args.size_batch:
local_comments += f"_bs_cvae{size_batch_cvae:d}"
if unique_goals:
local_comments += "_unique_goals"
while len(local_comments) and local_comments[0] == "_":
local_comments = local_comments[1:]
while len(local_comments) and local_comments[-1] == "_":
local_comments = local_comments[:-1]
env_dict = get_cpprb_env_dict(env)
hrb = HindsightReplayBuffer(
additional_goals * args.size_buffer,
env_dict,
max_episode_len=env.unwrapped.max_steps,
reward_func=None,
prioritized=prioritized_cvae,
strategy=args.hindsight_strategy,
additional_goals=additional_goals,
num_goals_per_transition=1,
unique_goals=unique_goals,
)
layout_extractor = Encoder_MiniGrid_Separate()
decoder = Decoder_MiniGrid_Separate()
sample_layout, sample_mask_agent = layout_extractor(minigridobs2tensor(env.reset()))
cvae = CVAE_MiniGrid_Separate2(
layout_extractor,
decoder,
minigridobs2tensor(env.reset()),
num_categoricals=num_categoricals,
num_categories=num_categories,
beta=beta,
activation=activation,
interval_beta=interval_beta,
)
cvae.to(DEVICE)
params_cvae = cvae.parameters()
optimizer_cvae = torch.optim.Adam(params_cvae, lr=args.lr, eps=eps_adam)
################################################################
milestones_evaluation = []
step_milestone, pointer_milestone = 0, 0
while step_milestone <= args.steps_stop:
milestones_evaluation.append(step_milestone)
step_milestone += args.freq_eval
if args.uniform_init:
path_tf_events = f"tb_records/{env.spec.id}/{args.size_world}x{args.size_world}/leap/vae_discrete_pretrain/{args.comments}/{args.seed}"
else:
path_tf_events = f"tb_records/{env.spec.id}/{args.size_world}x{args.size_world}/leap/vae_discrete_pretrain_non_uniform/{args.comments}/{args.seed}"
writer = SummaryWriter(path_tf_events)
save_code_snapshot(path_tf_events)
episode_elapsed, step_last_eval = 0, -freq_visualize_generation
time_start = time.time()
return_cum, return_cum_discount, steps_episode, time_episode_start, str_info = 0.0, 0.0, 0, time.time(), ""
while True:
if args.randomized:
env = generator_env_train()
obs_curr, done = env.reset(), False
obs_init = obs_curr
if not (agent.steps_interact <= args.steps_max and episode_elapsed <= args.episodes_max and agent.steps_interact <= args.steps_stop):
break
while not done and agent.steps_interact <= args.steps_max:
action = agent.decide(obs_curr, env=env, writer=writer, random_walk=args.random_walk)
obs_next, reward, done, info = env.step(action)
real_done = done and not info["overtime"]
################################################
if agent.steps_interact - step_last_eval >= freq_visualize_generation and not real_done:
idx_config = np.random.choice(range(len(configs_eval)))
config_eval = configs_eval[idx_config]
env_debug = get_new_env(args, **config_eval)
obs_cond = env_debug.reset()
visualize_generation_minigrid2(cvae, obs_cond, env, writer, step_record=agent.steps_interact)
step_last_eval += freq_visualize_generation
sample = {"obs": obs_curr, "act": action, "rew": reward, "next_obs": obs_next, "done": real_done}
hrb.add(**sample)
# and agent.steps_interact >= agent.time_learning_starts
if hrb.get_stored_size() > size_batch_cvae and agent.steps_interact % 4 == 0:
batch = hrb.sample(size_batch_cvae)
batch_processed = process_batch(batch, prioritized=prioritized_cvae, with_targ=True, obs2tensor=minigridobs2tensor, device=DEVICE, aux=False)
cvae.train()
(
loss_overall,
loss_recon,
loss_entropy,
loss_conditional_prior,
loss_align,
dist_L1_mean,
dist_L1_nontrivial,
dist_L1_trivial,
uniformity,
entropy_prior,
ratio_perfect_recon,
ratio_aligned,
) = cvae.compute_loss(batch_processed, debug=debug and agent.steps_interact % 100 == 0)
if prioritized_cvae:
weights_rb, idxes_rb = batch_processed[-2], batch["indexes"]
loss_overall_weighted = (loss_overall * weights_rb.detach().squeeze()).mean()
else:
loss_overall_weighted = loss_overall.mean()
optimizer_cvae.zero_grad(set_to_none=True)
loss_overall_weighted.backward()
torch.nn.utils.clip_grad_value_(params_cvae, 1.0)
optimizer_cvae.step()
with torch.no_grad():
if prioritized_cvae:
loss_entropy_weighted = (loss_entropy * weights_rb.detach().squeeze()).mean()
loss_recon_weighted = (loss_recon * weights_rb.detach().squeeze()).mean()
else:
loss_entropy_weighted = loss_entropy.mean()
loss_recon_weighted = loss_recon.mean()
if prioritized_cvae:
hrb.update_priorities(idxes_rb, loss_overall.detach().cpu().numpy().squeeze())
writer.add_scalar(f"Loss/recon", loss_recon_weighted.item(), agent.steps_interact)
writer.add_scalar(f"Loss/entropy", loss_entropy_weighted.item(), agent.steps_interact)
writer.add_scalar(f"Loss/overall", loss_overall_weighted.item(), agent.steps_interact)
if debug and agent.steps_interact % 100 == 0:
writer.add_scalar(f"Dist/L1", dist_L1_mean.item(), agent.steps_interact)
writer.add_scalar(f"Dist/L1_nontrivial", dist_L1_nontrivial.item(), agent.steps_interact)
writer.add_scalar(f"Dist/L1_trivial", dist_L1_trivial.item(), agent.steps_interact)
writer.add_scalar(f"Dist/ratio_imperfect_recon", 1 - ratio_perfect_recon.item(), agent.steps_interact)
writer.add_scalar(f"Dist/ratio_unaligned", 1 - ratio_aligned.item(), agent.steps_interact)
####################################
steps_episode += 1
agent.step(obs_curr, action, reward, obs_next, done and not info["overtime"], writer=writer)
return_cum += reward
return_cum_discount += reward * args.gamma**env.step_count
obs_curr = obs_next
if done:
agent.on_episode_end()
hrb.on_episode_end()
time_episode_end = time.time()
writer.add_scalar("Experience/return", return_cum, agent.steps_interact)
writer.add_scalar("Experience/return_discount", return_cum_discount, agent.steps_interact)
writer.add_scalar("Experience/dist2init", info["dist2init"], agent.steps_interact)
writer.add_scalar("Experience/dist2goal", info["dist2goal"], agent.steps_interact)
writer.add_scalar("Experience/dist2init_x", np.abs(info["agent_pos"][0] - info["agent_pos_init"][0]), agent.steps_interact)
writer.add_scalar("Experience/overtime", float(info["overtime"]), agent.steps_interact)
writer.add_scalar("Experience/episodes", episode_elapsed, agent.steps_interact)
str_info += (
f"seed: {args.seed}, steps_interact: {agent.steps_interact}, episode: {episode_elapsed}, "
f"return: {return_cum: g}, return_discount: {return_cum_discount: g}, "
f"steps_episode: {steps_episode}"
)
duration_episode = time_episode_end - time_episode_start
if duration_episode:
sps_episode = steps_episode / duration_episode
writer.add_scalar("Other/sps", sps_episode, agent.steps_interact)
eta = str(datetime.timedelta(seconds=int((args.steps_stop - agent.steps_interact) / sps_episode)))
str_info += ", sps_episode: %.2f, eta: %s" % (sps_episode, eta)
print(str_info)
writer.add_text("Text/info_train", str_info, agent.steps_interact)
return_cum, return_cum_discount, steps_episode, time_episode_start, str_info = (0, 0, 0, time.time(), "")
episode_elapsed += 1
time_end = time.time()
time_duration = time_end - time_start
print("total time elapsed: %s" % str(datetime.timedelta(seconds=time_duration)))
torch.save(
{
"steps_interact": agent.steps_interact,
"model_state_dict": cvae.state_dict(),
"num_categoricals": num_categoricals,
"num_categories": num_categories,
},
os.path.join(path_tf_events, "cvae_leap.pt"),
)
if args.num_envs_train > 0:
with open(os.path.join(path_tf_events, "envs.pkl"), "wb") as file:
pickle.dump(envs_train, file)