-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathchord_sequence_generation.py
196 lines (166 loc) · 8.06 KB
/
chord_sequence_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
# -*- coding: utf8 -*-
import json
import os
import argparse
import scipy.io as sio
import numpy as np
from hmmlearn.hmm import MultinomialHMM
from sklearn.utils import check_random_state
# import matplotlib.pylab as plt
def post_processing_parts(matrix, ratio):
# Cast in int and repeat four time
A = np.repeat(matrix, ratio)
# Add bar index information which might be useful
bar_counter = np.mod(np.arange(len(A)), np.zeros(len(A))+ratio)
B = A * ratio + bar_counter
return B.astype(int)
def build_proba(var, cond):
# Count occurences
dim = (int(np.max(var))+1, int(np.max(cond))+1)
proba = np.zeros((dim))
# Normalize
for (v, c) in zip(var, cond):
proba[int(v), int(c)] += 1
# Normalize along var axis
return np.transpose(proba / proba.sum(axis=0))
class MultinomialHMM_prod(MultinomialHMM):
def __init__(self, n_components=1,
startprob_prior=1.0, transmat_prior=1.0,
algorithm="viterbi", random_state=None,
n_iter=10, tol=1e-2, verbose=False,
params="ste", init_params="ste"):
MultinomialHMM.__init__(self, n_components=n_components,
startprob_prior=startprob_prior, transmat_prior=transmat_prior,
algorithm=algorithm, random_state=random_state,
n_iter=n_iter, tol=tol, verbose=verbose,
params=params, init_params=init_params)
return
def _generate_sample_from_state_PROD(self, state, cond_matrix, cond, random_state=None):
cum_prod = np.cumsum(self.emissionprob_[state, :] * cond_matrix[cond, :])
cdf = cum_prod / np.max(cum_prod)
random_state = check_random_state(random_state)
return [(cdf > random_state.rand()).argmax()]
def sampling_prod_hmm(self, cond_matrix, cond_variable, random_state=None):
n_samples = len(cond_variable)
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
startprob_cdf = np.cumsum(self.startprob_)
transmat_cdf = np.cumsum(self.transmat_, axis=1)
currstate = (startprob_cdf > random_state.rand()).argmax()
curr_cond = cond_variable[0]
state_sequence = [currstate]
X = [self._generate_sample_from_state_PROD(
currstate, cond_matrix, curr_cond, random_state=random_state)]
for t in range(n_samples - 1):
currstate = (transmat_cdf[currstate] > random_state.rand()) \
.argmax()
curr_cond = cond_variable[t+1]
state_sequence.append(currstate)
X.append(self._generate_sample_from_state_PROD(
currstate, cond_matrix, curr_cond, random_state=random_state))
return np.atleast_2d(X), np.array(state_sequence, dtype=int)
def main(params):
DEBUG = params['DEBUG']
dataset = params['dataset']
nh_part = params['nh_part']
nh_chords = params['nh_chords']
num_gen = params['num_gen']
##################################################################
# DATA PROCESSING
# Songs indices
song_indices = [43,85,133,183,225,265,309,349,413,471,519,560,590,628,670,712,764,792,836,872,918,966,1018,1049,1091,1142,1174,1222,1266,1278,1304,1340,1372,1416,1456,1484,1536,1576,1632,1683,1707,1752,1805,1857,1891,1911]
# Chords mapping
chord_names = ['C;Em', 'A#;F', 'Dm;Em', 'Dm;G', 'Dm;C', 'Am;Em', 'F;C', 'F;G', 'Dm;F', 'C;C', 'C;E', 'Am;G', 'F;Em', 'F;F', 'G;G', 'Am;Am', 'Dm;Dm', 'C;A#', 'Em;F', 'C;G', 'G#;A#', 'F;Am', 'G#;Fm', 'Am;Gm', 'F;E', 'Dm;Am', 'Em;Em', 'G#;G#', 'Em;Am', 'C;Am', 'F;Dm', 'G#;G', 'F;A#', 'Am;G#', 'C;D', 'G;Am', 'Am;C', 'Am;A#', 'A#;G', 'Am;F', 'A#;Am', 'E;Am', 'Dm;E', 'A;G', 'Am;Dm', 'Em;Dm', 'C;F#m', 'Am;D', 'G#;Em', 'C;Dm', 'C;F', 'G;C', 'A#;A#', 'Am;Caug', 'Fm;G', 'A;A']
# Import .mat file
dataset_root = os.path.join('data', dataset)
mat_path = os.path.join(dataset_root, 'data.mat')
data_mat = sio.loadmat(mat_path)
chords_per_part = 2
chords_per_bar = 4
num_chords = 56
num_parts = 4
sub_sampling_ratio_parts = chords_per_bar/chords_per_part
# Get parts
parts_data_ = (np.dot(np.transpose(data_mat["feats"][-num_parts:]), np.asarray(range(num_parts))).astype(int)).reshape(-1, 1)
# Group by bar
parts_data = parts_data_[::sub_sampling_ratio_parts]
# Parts with position in bar. Used condition chords generation
parts_bar_data = post_processing_parts(parts_data, sub_sampling_ratio_parts)
# Get chords transitions
chords_data = (np.dot(np.transpose(data_mat["feats"][:-num_parts]), np.asarray(range(num_chords))).astype(int)).reshape(-1, 1)
#################################
# Group by song
parts_length = []
chords_length = []
start_ind = 0
for end_ind in song_indices:
chords_length.append(end_ind - start_ind + 1)
start_ind = end_ind + 1
parts_length = [e/2 for e in chords_length]
##################################################################
##################################################################
# PARTS
# Compute HMM for part modeling
hmm_part = MultinomialHMM(n_components=nh_part, n_iter=20)
hmm_part.fit(parts_data, parts_length)
# def plot_mat(matrix, name):
# fig = plt.figure()
# ax = fig.add_subplot(1,1,1)
# ax.set_aspect('equal')
# plt.imshow(matrix, interpolation='nearest', cmap=plt.cm.ocean)
# plt.colorbar()
# plt.savefig(name, format='pdf')
# plot_mat(hmm_part.transmat_, 'part_transmat.pdf')
# plot_mat(np.reshape(hmm_part.startprob_, [-1, 1]), 'part_startprob.pdf')
# plot_mat(hmm_part.emissionprob_, 'part_emissionprob.pdf')
##################################################################
##################################################################
# CHORDS
hmm_chords = MultinomialHMM_prod(n_components=nh_chords, n_iter=20)
hmm_chords.fit(chords_data, chords_length)
# plot_mat(hmm_chords.transmat_, 'chords_transmat.pdf')
# plot_mat(np.reshape(hmm_chords.startprob_, [-1, 1]), 'chords_startprob.pdf')
# plot_mat(hmm_chords.emissionprob_, 'chords_emissionprob.pdf')
##################################################################
#################################
# GENERATION
# Sample sequence
for n in range(num_gen):
gen_part_sequence_, _ = hmm_part.sample(params["gen_seq_length"])
gen_part_sequence = post_processing_parts(gen_part_sequence_, sub_sampling_ratio_parts)
# Compute conditioning on parts
p_chords_given_partBar = build_proba(chords_data, parts_bar_data)
gen_chord_sequence, _ = hmm_chords.sampling_prod_hmm(p_chords_given_partBar, gen_part_sequence)
######## T E S T ################
# Independent HMM ?
# gen_chord_sequence, _ = hmm_chords.sampling(n_samples=44)
##################################
if params["DEBUG"]:
with open("results_chords/" + str(n), 'wb') as f:
for count, (part, chord) in enumerate(zip(gen_part_sequence, gen_chord_sequence)):
if count % 2 == 0:
f.write(str(part/2) + " ; " + chord_names[chord[0]] + "\n")
else:
f.write(" ; " + chord_names[chord[0]] + "\n")
if count % 8 == 7:
f.write("\n")
gen_part_sequence = [e/2 for e in gen_part_sequence]
return gen_part_sequence, gen_chord_sequence, num_chords, num_parts
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Data
parser.add_argument('-d', '--dataset', dest='dataset', default='music', help='dataset: flickr8k/flickr30k')
# Parts' HMM
parser.add_argument('--nh_part', dest='nh_part', type=int, default=20, help='number of hidden states for the part\'s HMM')
parser.add_argument('--nh_chords', dest='nh_chords', type=int, default=40, help='number of hidden states for the part\'s HMM')
# Generation
parser.add_argument('--gen_seq_length', type=int, default=8, help='length of the generated sequences')
parser.add_argument('--num_gen', dest='num_gen', type=int, default=10, help='number sequences generated (i.e. sampling n times from the hmm)')
parser.add_argument('--DEBUG', dest='DEBUG', type=bool, default=False, help='True = debug mode on')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
print 'parsed parameters:'
print json.dumps(params, indent=2)
main(params)