-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcalc_clean_fid_stats.py
76 lines (59 loc) · 2.33 KB
/
calc_clean_fid_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import itertools
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torchvision
from cleanfid import fid
from tqdm import tqdm
from envs import Trainer
from network_parser import parse
class DummyEnv:
def __init__(self, *args, **kwargs) -> None:
Trainer.__init__(self, *args, **kwargs)
def get_dataset(self, *args, **kwargs):
return Trainer.get_dataset(self, *args, **kwargs)
def load_model(self, *args, **kwargs):
return Trainer.load_model(self, *args, **kwargs)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', action='store')
parser.add_argument('-d', '--gpu-id', type=int, default=0)
parser.add_argument('-s', '--seed', type=int, default=0)
parser.add_argument('-o', '--output-dir', type=str, default='output/test')
parser.add_argument('-n', '--num-images', type=int, default=None)
parser.add_argument('--use-trainset', action='store_true')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
params = parse(args.config)
config = params['network']
print(config)
device = torch.device(args.gpu_id if torch.cuda.is_available() else 'cpu')
print(f'device: {device}')
env = DummyEnv(
{
'model': nn.Identity(),
'encoder': nn.Identity(),
'decoder': nn.Identity()
}, config)
image_dir = os.path.join(args.output_dir, 'img')
os.makedirs(image_dir, exist_ok=args.debug)
trainset, testset = env.get_dataset(config['dataset'], config['data_path'])
dataset = trainset if args.use_trainset else testset
num_images = args.num_images or len(dataset)
dataset = itertools.islice(dataset, num_images)
for i, (x, y) in tqdm(enumerate(dataset),
desc='saving images',
total=num_images):
torchvision.utils.save_image(x, os.path.join(image_dir, f'{i}.png'))
name = config['dataset'].lower()
if 'image_size' in config:
name += '-' + str(config['image_size'])
if 'center_crop' in config:
name += '-crop' + str(config['center_crop'])
fid.make_custom_stats(name, image_dir, mode="clean", device=device)