forked from abrasive/shairport
-
-
Notifications
You must be signed in to change notification settings - Fork 580
/
Copy pathalac.c
1010 lines (815 loc) · 30.8 KB
/
alac.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* ALAC (Apple Lossless Audio Codec) decoder
* Copyright (c) 2005 David Hammerton
* All rights reserved.
*
* This is the actual decoder.
*
* http://crazney.net/programs/itunes/alac.html
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
static const int host_bigendian = 0;
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include "stdint_win.h"
#else
#include <stdint.h>
#endif
#include "alac.h"
#define _Swap32(v) \
do { \
v = (((v)&0x000000FF) << 0x18) | (((v)&0x0000FF00) << 0x08) | (((v)&0x00FF0000) >> 0x08) | \
(((v)&0xFF000000) >> 0x18); \
} while (0)
#define _Swap16(v) \
do { \
v = (((v)&0x00FF) << 0x08) | (((v)&0xFF00) >> 0x08); \
} while (0)
struct {
signed int x : 24;
} se_struct_24;
#define SignExtend24(val) (se_struct_24.x = val)
void alac_free(alac_file *alac) {
if (alac->predicterror_buffer_a)
free(alac->predicterror_buffer_a);
if (alac->predicterror_buffer_b)
free(alac->predicterror_buffer_b);
if (alac->outputsamples_buffer_a)
free(alac->outputsamples_buffer_a);
if (alac->outputsamples_buffer_b)
free(alac->outputsamples_buffer_b);
if (alac->uncompressed_bytes_buffer_a)
free(alac->uncompressed_bytes_buffer_a);
if (alac->uncompressed_bytes_buffer_b)
free(alac->uncompressed_bytes_buffer_b);
free(alac);
}
void alac_allocate_buffers(alac_file *alac) {
alac->predicterror_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
alac->predicterror_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
alac->outputsamples_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
alac->outputsamples_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
alac->uncompressed_bytes_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
alac->uncompressed_bytes_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
}
void alac_set_info(alac_file *alac, char *inputbuffer) {
char *ptr = inputbuffer;
ptr += 4; /* size */
ptr += 4; /* frma */
ptr += 4; /* alac */
ptr += 4; /* size */
ptr += 4; /* alac */
ptr += 4; /* 0 ? */
alac->setinfo_max_samples_per_frame = *(uint32_t *)ptr; /* buffer size / 2 ? */
if (!host_bigendian)
_Swap32(alac->setinfo_max_samples_per_frame);
ptr += 4;
alac->setinfo_7a = *(uint8_t *)ptr;
ptr += 1;
alac->setinfo_sample_size = *(uint8_t *)ptr;
ptr += 1;
alac->setinfo_rice_historymult = *(uint8_t *)ptr;
ptr += 1;
alac->setinfo_rice_initialhistory = *(uint8_t *)ptr;
ptr += 1;
alac->setinfo_rice_kmodifier = *(uint8_t *)ptr;
ptr += 1;
alac->setinfo_7f = *(uint8_t *)ptr;
ptr += 1;
alac->setinfo_80 = *(uint16_t *)ptr;
if (!host_bigendian)
_Swap16(alac->setinfo_80);
ptr += 2;
alac->setinfo_82 = *(uint32_t *)ptr;
if (!host_bigendian)
_Swap32(alac->setinfo_82);
ptr += 4;
alac->setinfo_86 = *(uint32_t *)ptr;
if (!host_bigendian)
_Swap32(alac->setinfo_86);
ptr += 4;
alac->setinfo_8a_rate = *(uint32_t *)ptr;
if (!host_bigendian)
_Swap32(alac->setinfo_8a_rate);
alac_allocate_buffers(alac);
}
/* stream reading */
/* supports reading 1 to 16 bits, in big endian format */
static uint32_t readbits_16(alac_file *alac, int bits) {
uint32_t result;
int new_accumulator;
result = (alac->input_buffer[0] << 16) | (alac->input_buffer[1] << 8) | (alac->input_buffer[2]);
/* shift left by the number of bits we've already read,
* so that the top 'n' bits of the 24 bits we read will
* be the return bits */
result = result << alac->input_buffer_bitaccumulator;
result = result & 0x00ffffff;
/* and then only want the top 'n' bits from that, where
* n is 'bits' */
result = result >> (24 - bits);
new_accumulator = (alac->input_buffer_bitaccumulator + bits);
/* increase the buffer pointer if we've read over n bytes. */
alac->input_buffer += (new_accumulator >> 3);
/* and the remainder goes back into the bit accumulator */
alac->input_buffer_bitaccumulator = (new_accumulator & 7);
return result;
}
/* supports reading 1 to 32 bits, in big endian format */
static uint32_t readbits(alac_file *alac, int bits) {
int32_t result = 0;
if (bits > 16) {
bits -= 16;
result = readbits_16(alac, 16) << bits;
}
result |= readbits_16(alac, bits);
return result;
}
/* reads a single bit */
static int readbit(alac_file *alac) {
int result;
int new_accumulator;
result = alac->input_buffer[0];
result = result << alac->input_buffer_bitaccumulator;
result = result >> 7 & 1;
new_accumulator = (alac->input_buffer_bitaccumulator + 1);
alac->input_buffer += (new_accumulator / 8);
alac->input_buffer_bitaccumulator = (new_accumulator % 8);
return result;
}
static void unreadbits(alac_file *alac, int bits) {
int new_accumulator = (alac->input_buffer_bitaccumulator - bits);
alac->input_buffer += (new_accumulator >> 3);
alac->input_buffer_bitaccumulator = (new_accumulator & 7);
if (alac->input_buffer_bitaccumulator < 0)
alac->input_buffer_bitaccumulator *= -1;
}
/* various implementations of count_leading_zero:
* the first one is the original one, the simplest and most
* obvious for what it's doing. never use this.
* then there are the asm ones. fill in as necessary
* and finally an unrolled and optimised c version
* to fall back to
*/
#if 0
/* hideously inefficient. could use a bitmask search,
* alternatively bsr on x86,
*/
static int count_leading_zeros(int32_t input)
{
int i = 0;
while (!(0x80000000 & input) && i < 32)
{
i++;
input = input << 1;
}
return i;
}
#elif defined(__GNUC__)
/* for some reason the unrolled version (below) is
* actually faster than this. yay intel!
*/
static int count_leading_zeros(int input) { return __builtin_clz(input); }
#elif defined(_MSC_VER) && defined(_M_IX86)
static int count_leading_zeros(int input) {
int output = 0;
if (!input)
return 32;
__asm
{
mov eax, input;
mov edx, 0x1f;
bsr ecx, eax;
sub edx, ecx;
mov output, edx;
}
return output;
}
#else
#warning using generic count leading zeroes. You may wish to write one for your CPU / compiler
static int count_leading_zeros(int input) {
int output = 0;
int curbyte = 0;
curbyte = input >> 24;
if (curbyte)
goto found;
output += 8;
curbyte = input >> 16;
if (curbyte & 0xff)
goto found;
output += 8;
curbyte = input >> 8;
if (curbyte & 0xff)
goto found;
output += 8;
curbyte = input;
if (curbyte & 0xff)
goto found;
output += 8;
return output;
found:
if (!(curbyte & 0xf0)) {
output += 4;
} else
curbyte >>= 4;
if (curbyte & 0x8)
return output;
if (curbyte & 0x4)
return output + 1;
if (curbyte & 0x2)
return output + 2;
if (curbyte & 0x1)
return output + 3;
/* shouldn't get here: */
return output + 4;
}
#endif
#define RICE_THRESHOLD 8 // maximum number of bits for a rice prefix.
static int32_t entropy_decode_value(alac_file *alac, int readSampleSize, int k,
int rice_kmodifier_mask) {
int32_t x = 0; // decoded value
// read x, number of 1s before 0 represent the rice value.
while (x <= RICE_THRESHOLD && readbit(alac)) {
x++;
}
if (x > RICE_THRESHOLD) {
// read the number from the bit stream (raw value)
int32_t value;
value = readbits(alac, readSampleSize);
// mask value
value &= (((uint32_t)0xffffffff) >> (32 - readSampleSize));
x = value;
} else {
if (k != 1) {
int extraBits = readbits(alac, k);
// x = x * (2^k - 1)
x *= (((1 << k) - 1) & rice_kmodifier_mask);
if (extraBits > 1)
x += extraBits - 1;
else
unreadbits(alac, 1);
}
}
return x;
}
static void entropy_rice_decode(alac_file *alac, int32_t *outputBuffer, int outputSize,
int readSampleSize, int rice_initialhistory, int rice_kmodifier,
int rice_historymult, int rice_kmodifier_mask) {
int outputCount;
int history = rice_initialhistory;
int signModifier = 0;
for (outputCount = 0; outputCount < outputSize; outputCount++) {
int32_t decodedValue;
int32_t finalValue;
int32_t k;
k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);
if (k < 0)
k += rice_kmodifier;
else
k = rice_kmodifier;
// note: don't use rice_kmodifier_mask here (set mask to 0xFFFFFFFF)
decodedValue = entropy_decode_value(alac, readSampleSize, k, 0xFFFFFFFF);
decodedValue += signModifier;
finalValue = (decodedValue + 1) / 2; // inc by 1 and shift out sign bit
if (decodedValue & 1) // the sign is stored in the low bit
finalValue *= -1;
outputBuffer[outputCount] = finalValue;
signModifier = 0;
// update history
history += (decodedValue * rice_historymult) - ((history * rice_historymult) >> 9);
if (decodedValue > 0xFFFF)
history = 0xFFFF;
// special case, for compressed blocks of 0
if ((history < 128) && (outputCount + 1 < outputSize)) {
int32_t blockSize;
signModifier = 1;
k = count_leading_zeros(history) + ((history + 16) / 64) - 24;
// note: blockSize is always 16bit
blockSize = entropy_decode_value(alac, 16, k, rice_kmodifier_mask);
// got blockSize 0s
if (blockSize > 0) {
memset(&outputBuffer[outputCount + 1], 0, blockSize * sizeof(*outputBuffer));
outputCount += blockSize;
}
if (blockSize > 0xFFFF)
signModifier = 0;
history = 0;
}
}
}
#define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))
#define SIGN_ONLY(v) ((v < 0) ? (-1) : ((v > 0) ? (1) : (0)))
static void predictor_decompress_fir_adapt(int32_t *error_buffer, int32_t *buffer_out,
int output_size, int readsamplesize,
int16_t *predictor_coef_table, int predictor_coef_num,
int predictor_quantitization) {
int i;
/* first sample always copies */
*buffer_out = *error_buffer;
if (!predictor_coef_num) {
if (output_size <= 1)
return;
memcpy(buffer_out + 1, error_buffer + 1, (output_size - 1) * 4);
return;
}
if (predictor_coef_num == 0x1f) /* 11111 - max value of predictor_coef_num */
{ /* second-best case scenario for fir decompression,
* error describes a small difference from the previous sample only
*/
if (output_size <= 1)
return;
for (i = 0; i < output_size - 1; i++) {
int32_t prev_value;
int32_t error_value;
prev_value = buffer_out[i];
error_value = error_buffer[i + 1];
buffer_out[i + 1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
}
return;
}
/* read warm-up samples */
if (predictor_coef_num > 0) {
int i;
for (i = 0; i < predictor_coef_num; i++) {
int32_t val;
val = buffer_out[i] + error_buffer[i + 1];
val = SIGN_EXTENDED32(val, readsamplesize);
buffer_out[i + 1] = val;
}
}
#if 0
/* 4 and 8 are very common cases (the only ones i've seen). these
* should be unrolled and optimised
*/
if (predictor_coef_num == 4)
{
/* FIXME: optimised general case */
return;
}
if (predictor_coef_table == 8)
{
/* FIXME: optimised general case */
return;
}
#endif
/* general case */
if (predictor_coef_num > 0) {
for (i = predictor_coef_num + 1; i < output_size; i++) {
int j;
int sum = 0;
int outval;
int error_val = error_buffer[i];
for (j = 0; j < predictor_coef_num; j++) {
sum += (buffer_out[predictor_coef_num - j] - buffer_out[0]) * predictor_coef_table[j];
}
outval = (1 << (predictor_quantitization - 1)) + sum;
outval = outval >> predictor_quantitization;
outval = outval + buffer_out[0] + error_val;
outval = SIGN_EXTENDED32(outval, readsamplesize);
buffer_out[predictor_coef_num + 1] = outval;
if (error_val > 0) {
int predictor_num = predictor_coef_num - 1;
while (predictor_num >= 0 && error_val > 0) {
int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
int sign = SIGN_ONLY(val);
predictor_coef_table[predictor_num] -= sign;
val *= sign; /* absolute value */
error_val -= ((val >> predictor_quantitization) * (predictor_coef_num - predictor_num));
predictor_num--;
}
} else if (error_val < 0) {
int predictor_num = predictor_coef_num - 1;
while (predictor_num >= 0 && error_val < 0) {
int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
int sign = -SIGN_ONLY(val);
predictor_coef_table[predictor_num] -= sign;
val *= sign; /* neg value */
error_val -= ((val >> predictor_quantitization) * (predictor_coef_num - predictor_num));
predictor_num--;
}
}
buffer_out++;
}
}
}
static void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b, int16_t *buffer_out,
int numchannels, int numsamples, uint8_t interlacing_shift,
uint8_t interlacing_leftweight) {
int i;
if (numsamples <= 0)
return;
/* weighted interlacing */
if (interlacing_leftweight) {
for (i = 0; i < numsamples; i++) {
int32_t difference, midright;
int16_t left;
int16_t right;
midright = buffer_a[i];
difference = buffer_b[i];
right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
left = right + difference;
/* output is always little endian */
if (host_bigendian) {
_Swap16(left);
_Swap16(right);
}
buffer_out[i * numchannels] = left;
buffer_out[i * numchannels + 1] = right;
}
return;
}
/* otherwise basic interlacing took place */
for (i = 0; i < numsamples; i++) {
int16_t left, right;
left = buffer_a[i];
right = buffer_b[i];
/* output is always little endian */
if (host_bigendian) {
_Swap16(left);
_Swap16(right);
}
buffer_out[i * numchannels] = left;
buffer_out[i * numchannels + 1] = right;
}
}
static void deinterlace_24(int32_t *buffer_a, int32_t *buffer_b, int uncompressed_bytes,
int32_t *uncompressed_bytes_buffer_a,
int32_t *uncompressed_bytes_buffer_b, void *buffer_out, int numchannels,
int numsamples, uint8_t interlacing_shift,
uint8_t interlacing_leftweight) {
int i;
if (numsamples <= 0)
return;
/* weighted interlacing */
if (interlacing_leftweight) {
for (i = 0; i < numsamples; i++) {
int32_t difference, midright;
int32_t left;
int32_t right;
midright = buffer_a[i];
difference = buffer_b[i];
right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
left = right + difference;
if (uncompressed_bytes) {
uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
left <<= (uncompressed_bytes * 8);
right <<= (uncompressed_bytes * 8);
left |= uncompressed_bytes_buffer_a[i] & mask;
right |= uncompressed_bytes_buffer_b[i] & mask;
}
((uint8_t *)buffer_out)[i * numchannels * 3] = (left)&0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 3] = (right)&0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF;
}
return;
}
/* otherwise basic interlacing took place */
for (i = 0; i < numsamples; i++) {
int32_t left, right;
left = buffer_a[i];
right = buffer_b[i];
if (uncompressed_bytes) {
uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
left <<= (uncompressed_bytes * 8);
right <<= (uncompressed_bytes * 8);
left |= uncompressed_bytes_buffer_a[i] & mask;
right |= uncompressed_bytes_buffer_b[i] & mask;
}
((uint8_t *)buffer_out)[i * numchannels * 3] = (left)&0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 3] = (right)&0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF;
((uint8_t *)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF;
}
}
void alac_decode_frame(alac_file *alac, unsigned char *inbuffer, void *outbuffer, int *outputsize) {
int outbuffer_allocation_size = *outputsize; // initial value
int channels;
int32_t outputsamples = alac->setinfo_max_samples_per_frame;
/* setup the stream */
alac->input_buffer = inbuffer;
alac->input_buffer_bitaccumulator = 0;
channels = readbits(alac, 3);
*outputsize = outputsamples * alac->bytespersample;
if (*outputsize > outbuffer_allocation_size) {
fprintf(stderr, "FIXME: Not enough space if the output buffer for audio frame - E1.\n");
*outputsize = 0;
return;
}
switch (channels) {
case 0: /* 1 channel */
{
int hassize;
int isnotcompressed;
int readsamplesize;
int uncompressed_bytes;
int ricemodifier;
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
readbits(alac, 4);
readbits(alac, 12); /* unknown, skip 12 bits */
hassize = readbits(alac, 1); /* the output sample size is stored soon */
uncompressed_bytes =
readbits(alac, 2); /* number of bytes in the (compressed) stream that are not compressed */
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
if (hassize) {
/* now read the number of samples,
* as a 32bit integer */
outputsamples = readbits(alac, 32);
*outputsize = outputsamples * alac->bytespersample;
if (*outputsize > outbuffer_allocation_size) {
fprintf(stderr, "FIXME: Not enough space if the output buffer for audio frame - E2.\n");
*outputsize = 0;
return;
}
}
readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8);
if (!isnotcompressed) { /* so it is compressed */
int16_t predictor_coef_table[32];
int predictor_coef_num;
int prediction_type;
int prediction_quantitization;
int i;
/* skip 16 bits, not sure what they are. seem to be used in
* two channel case */
readbits(alac, 8);
readbits(alac, 8);
prediction_type = readbits(alac, 4);
prediction_quantitization = readbits(alac, 4);
ricemodifier = readbits(alac, 3);
predictor_coef_num = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num; i++) {
predictor_coef_table[i] = (int16_t)readbits(alac, 16);
}
if (uncompressed_bytes) {
int i;
for (i = 0; i < outputsamples; i++) {
alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8);
}
}
entropy_rice_decode(alac, alac->predicterror_buffer_a, outputsamples, readsamplesize,
alac->setinfo_rice_initialhistory, alac->setinfo_rice_kmodifier,
ricemodifier * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
if (prediction_type == 0) { /* adaptive fir */
predictor_decompress_fir_adapt(alac->predicterror_buffer_a, alac->outputsamples_buffer_a,
outputsamples, readsamplesize, predictor_coef_table,
predictor_coef_num, prediction_quantitization);
} else {
fprintf(stderr, "FIXME: unhandled prediction type for compressed case: %i\n",
prediction_type);
/* i think the only other prediction type (or perhaps this is just a
* boolean?) runs adaptive fir twice.. like:
* predictor_decompress_fir_adapt(predictor_error, tempout, ...)
* predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
* little strange..
*/
}
} else { /* not compressed, easy case */
if (alac->setinfo_sample_size <= 16) {
int i;
for (i = 0; i < outputsamples; i++) {
int32_t audiobits = readbits(alac, alac->setinfo_sample_size);
audiobits = SIGN_EXTENDED32(audiobits, alac->setinfo_sample_size);
alac->outputsamples_buffer_a[i] = audiobits;
}
} else {
int i;
for (i = 0; i < outputsamples; i++) {
int32_t audiobits;
audiobits = readbits(alac, 16);
/* special case of sign extension..
* as we'll be ORing the low 16bits into this */
audiobits = audiobits << (alac->setinfo_sample_size - 16);
audiobits |= readbits(alac, alac->setinfo_sample_size - 16);
audiobits = SignExtend24(audiobits);
alac->outputsamples_buffer_a[i] = audiobits;
}
}
uncompressed_bytes = 0; // always 0 for uncompressed
}
switch (alac->setinfo_sample_size) {
case 16: {
int i;
for (i = 0; i < outputsamples; i++) {
int16_t sample = alac->outputsamples_buffer_a[i];
if (host_bigendian)
_Swap16(sample);
((int16_t *)outbuffer)[i * alac->numchannels] = sample;
}
break;
}
case 24: {
int i;
for (i = 0; i < outputsamples; i++) {
int32_t sample = alac->outputsamples_buffer_a[i];
if (uncompressed_bytes) {
uint32_t mask;
sample = sample << (uncompressed_bytes * 8);
mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
sample |= alac->uncompressed_bytes_buffer_a[i] & mask;
}
((uint8_t *)outbuffer)[i * alac->numchannels * 3] = (sample)&0xFF;
((uint8_t *)outbuffer)[i * alac->numchannels * 3 + 1] = (sample >> 8) & 0xFF;
((uint8_t *)outbuffer)[i * alac->numchannels * 3 + 2] = (sample >> 16) & 0xFF;
}
break;
}
case 20:
case 32:
fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
break;
default:
break;
}
break;
}
case 1: /* 2 channels */
{
int hassize;
int isnotcompressed;
int readsamplesize;
int uncompressed_bytes;
uint8_t interlacing_shift;
uint8_t interlacing_leftweight;
/* 2^result = something to do with output waiting.
* perhaps matters if we read > 1 frame in a pass?
*/
readbits(alac, 4);
readbits(alac, 12); /* unknown, skip 12 bits */
hassize = readbits(alac, 1); /* the output sample size is stored soon */
uncompressed_bytes = readbits(
alac, 2); /* the number of bytes in the (compressed) stream that are not compressed */
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
if (hassize) {
/* now read the number of samples,
* as a 32bit integer */
outputsamples = readbits(alac, 32);
*outputsize = outputsamples * alac->bytespersample;
if (*outputsize > outbuffer_allocation_size) {
fprintf(stderr, "FIXME: Not enough space if the output buffer for audio frame - E3.\n");
*outputsize = 0;
return;
}
}
readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8) + 1;
if (!isnotcompressed) { /* compressed */
int16_t predictor_coef_table_a[32];
int predictor_coef_num_a;
int prediction_type_a;
int prediction_quantitization_a;
int ricemodifier_a;
int16_t predictor_coef_table_b[32];
int predictor_coef_num_b;
int prediction_type_b;
int prediction_quantitization_b;
int ricemodifier_b;
int i;
interlacing_shift = readbits(alac, 8);
interlacing_leftweight = readbits(alac, 8);
/******** channel 1 ***********/
prediction_type_a = readbits(alac, 4);
prediction_quantitization_a = readbits(alac, 4);
ricemodifier_a = readbits(alac, 3);
predictor_coef_num_a = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num_a; i++) {
predictor_coef_table_a[i] = (int16_t)readbits(alac, 16);
}
/******** channel 2 *********/
prediction_type_b = readbits(alac, 4);
prediction_quantitization_b = readbits(alac, 4);
ricemodifier_b = readbits(alac, 3);
predictor_coef_num_b = readbits(alac, 5);
/* read the predictor table */
for (i = 0; i < predictor_coef_num_b; i++) {
predictor_coef_table_b[i] = (int16_t)readbits(alac, 16);
}
/*********************/
if (uncompressed_bytes) { /* see mono case */
int i;
for (i = 0; i < outputsamples; i++) {
alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8);
alac->uncompressed_bytes_buffer_b[i] = readbits(alac, uncompressed_bytes * 8);
}
}
/* channel 1 */
entropy_rice_decode(alac, alac->predicterror_buffer_a, outputsamples, readsamplesize,
alac->setinfo_rice_initialhistory, alac->setinfo_rice_kmodifier,
ricemodifier_a * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
if (prediction_type_a == 0) { /* adaptive fir */
predictor_decompress_fir_adapt(alac->predicterror_buffer_a, alac->outputsamples_buffer_a,
outputsamples, readsamplesize, predictor_coef_table_a,
predictor_coef_num_a, prediction_quantitization_a);
} else { /* see mono case */
fprintf(stderr, "FIXME: unhandled prediction type on channel 1: %i\n", prediction_type_a);
}
/* channel 2 */
entropy_rice_decode(alac, alac->predicterror_buffer_b, outputsamples, readsamplesize,
alac->setinfo_rice_initialhistory, alac->setinfo_rice_kmodifier,
ricemodifier_b * alac->setinfo_rice_historymult / 4,
(1 << alac->setinfo_rice_kmodifier) - 1);
if (prediction_type_b == 0) { /* adaptive fir */
predictor_decompress_fir_adapt(alac->predicterror_buffer_b, alac->outputsamples_buffer_b,
outputsamples, readsamplesize, predictor_coef_table_b,
predictor_coef_num_b, prediction_quantitization_b);
} else {
fprintf(stderr, "FIXME: unhandled prediction type on channel 2: %i\n", prediction_type_b);
}
} else { /* not compressed, easy case */
if (alac->setinfo_sample_size <= 16) {
int i;
for (i = 0; i < outputsamples; i++) {
int32_t audiobits_a, audiobits_b;
audiobits_a = readbits(alac, alac->setinfo_sample_size);
audiobits_b = readbits(alac, alac->setinfo_sample_size);
audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
alac->outputsamples_buffer_a[i] = audiobits_a;
alac->outputsamples_buffer_b[i] = audiobits_b;
}
} else {
int i;
for (i = 0; i < outputsamples; i++) {
int32_t audiobits_a, audiobits_b;
audiobits_a = readbits(alac, 16);
audiobits_a = audiobits_a << (alac->setinfo_sample_size - 16);
audiobits_a |= readbits(alac, alac->setinfo_sample_size - 16);
audiobits_a = SignExtend24(audiobits_a);
audiobits_b = readbits(alac, 16);
audiobits_b = audiobits_b << (alac->setinfo_sample_size - 16);
audiobits_b |= readbits(alac, alac->setinfo_sample_size - 16);
audiobits_b = SignExtend24(audiobits_b);
alac->outputsamples_buffer_a[i] = audiobits_a;
alac->outputsamples_buffer_b[i] = audiobits_b;
}
}
uncompressed_bytes = 0; // always 0 for uncompressed
interlacing_shift = 0;
interlacing_leftweight = 0;
}
switch (alac->setinfo_sample_size) {
case 16: {
deinterlace_16(alac->outputsamples_buffer_a, alac->outputsamples_buffer_b,
(int16_t *)outbuffer, alac->numchannels, outputsamples, interlacing_shift,
interlacing_leftweight);
break;
}
case 24: {
deinterlace_24(alac->outputsamples_buffer_a, alac->outputsamples_buffer_b, uncompressed_bytes,
alac->uncompressed_bytes_buffer_a, alac->uncompressed_bytes_buffer_b,
(int16_t *)outbuffer, alac->numchannels, outputsamples, interlacing_shift,
interlacing_leftweight);
break;
}
case 20:
case 32:
fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
break;
default:
break;
}
break;
}
}
}
alac_file *alac_create(int samplesize, int numchannels) {
alac_file *newfile = malloc(sizeof(alac_file));