-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
171 lines (146 loc) · 7.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import numpy as np
def MatrixFactorization(data, delimiter = None, useCols = 'all', dtype = None,
method = None, percTrain = 0.7, numFolds = None, log = True,
logIteration = False, seed = 100, learningRate = 0.005, lambdaReg = 0.05,
numFeatures = 10, iterations = 75):
# check type of input
if isinstance(data, np.ndarray):
if useCols != 'all':
data = data[:, useCols]
elif isinstance(data, list):
data = np.asarray(data)
if useCols != 'all':
data = data[:, useCols]
else:
if useCols == 'all':
data = np.genfromtxt(data, delimiter = delimiter, dtype = dtype)
else:
data = np.genfromtxt(data, delimiter = delimiter, usecols = useCols, dtype = dtype)
np.random.seed(seed)
# check type of method
if method == None:
rows = np.arange(len(data))
np.random.shuffle(rows)
trainIndex = rows[1:round(percTrain*len(data))]
testIndex = rows[round(percTrain*len(data)):]
train = data[trainIndex]
test = data[testIndex]
else:
# create folds
seqs = [x % numFolds for x in range(len(data))]
np.random.shuffle(seqs)
if method == None:
numFolds = 1
RMSEtrain = np.zeros(numFolds)
RMSEtest = np.zeros(numFolds)
MAEtrain = np.zeros(numFolds)
MAEtest = np.zeros(numFolds)
# for each fold
for fold in range(numFolds):
if method == 'cv':
# create the train and test set
trainIndex = np.array([x != fold for x in seqs])
testIndex = np.array([x == fold for x in seqs])
train = data[trainIndex]
test = data[testIndex]
# initiazlize matrices U and M
np.random.seed(seed + 50)
U = np.random.rand(np.max(train[:, 0]), numFeatures)
M = np.random.rand(numFeatures, np.max(train[:, 1]))
RMSElist = []
MAElist = []
if log == True:
if method == 'cv':
print("")
print(str(numFolds) + "-Fold Cross Validation: Fold " + str(fold + 1))
print("-------------------------------")
# for each iteration:
for iteration in range(iterations):
SSEtrain = 0
SAEtrain = 0
# for each record in the train set
for idx, rating in enumerate(train):
u = U[rating[0] - 1,:].copy()
# calculate the rating (prediction) the user would give to the movie
prediction = np.dot(u,M[:,rating[1] - 1])
# supress the rating between 1 and 5
if prediction < 1:
prediction = 1
elif prediction > 5:
prediction = 5
error = rating[2] - prediction
SSEtrain += error**2
SAEtrain += abs(error)
# update matrices U and M
U[rating[0] - 1, :] += learningRate*(2*error*M[:, rating[1] - 1] - lambdaReg*u)
M[: ,rating[1] - 1] += learningRate*(2*error*u - lambdaReg*M[:,rating[1] - 1])
RMSEiter = np.sqrt(SSEtrain / len(train))
MAEiter = SAEtrain / len(train)
if log == True:
print("")
print("Root Mean Squared Error (RMSE) for iteration " + str(iteration + 1) + " on train set: " + str(RMSEiter))
print("Mean Absolute Error (MAE) for iteration " + str(iteration + 1) + " on train set: " + str(MAEiter))
print("")
RMSElist.append(RMSEiter)
MAElist.append(MAEiter)
RMSEtrain[fold] = RMSElist[-1]
MAEtrain[fold] = MAElist[-1]
numUsers = max(train[:, 0])
numRatingsPerUserTest = np.bincount(test[:, 0])
indexPerUserTest = np.cumsum(numRatingsPerUserTest)
# make predictions on the test set
SSEtest = 0
SAEtest = 0
for userID in range(numUsers):
testSubset = test[indexPerUserTest[userID]:indexPerUserTest[userID + 1], :]
predictions = np.dot(U[userID, :], M[:, testSubset[:, 1] - 1])
SSEtest += np.sum((testSubset[:, 2] - predictions)**2)
SAEtest += np.sum(abs(testSubset[:,2] - predictions))
RMSEtest[fold] = np.sqrt(SSEtest/len(test))
MAEtest[fold] = SAEtest/len(test)
if log == True:
if method == 'cv':
print("Fold " + str(fold + 1) + ": Root Mean Squared Error (RMSE) on train set: " + str(RMSEtrain[fold]))
print("Fold " + str(fold + 1) + ": Root Mean Squared Error (RMSE) on test set: " + str(RMSEtest[fold]))
print("")
print("Fold " + str(fold + 1) + ": Mean Absolute Error (MAE) on train set: " + str(MAEtrain[fold]))
print("Fold " + str(fold + 1) + ": Mean Absolute Error (MAE) on test set: " + str(MAEtest[fold]))
print("")
else:
print("Root Mean Squared Error (RMSE) on train set: " + str(RMSEtrain[fold]))
print("Root Mean Squared Error (RMSE) on test set: " + str(RMSEtest[fold]))
print("")
print("Mean Absolute Error (MAE) on train set: " + str(MAEtrain[fold]))
print("Mean Absolute Error (MAE) on test set: " + str(MAEtest[fold]))
print("")
if log == True:
if method == 'cv':
print("Mean of Root Mean Squared Error (RMSE) on train sets (over " + str(numFolds) + "folds): " + str(np.mean(RMSEtrain)))
print("Mean of Root Mean Squared Error (RMSE) on test sets (over" + str(numFolds) + " folds): " + str(np.mean(RMSEtest)))
print("Mean of Mean Absolute Error (MAE) on train sets (over " + str(numFolds) + "folds): " + str(np.mean(MAEtrain)))
print("Mean of Mean Absolute Error (MAE) on test sets (over " + str(numFolds) + "folds): " + + str(np.mean(MAEtest)))
# matrix X contains the predicted rating a user (row) gave to a movie (column)
X = np.dot(U, M)
return(X, U, M, RMSEtest, MAEtest)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('data')
parser.add_argument('-delimiter', '-d', default = None)
parser.add_argument('-useCols', '-uc', default = None)
parser.add_argument('-dtype', '-dt', default = None)
parser.add_argument('-method', '-m', default = None)
parser.add_argument('-percTrain', '-pt', default = 0.7, type = float)
parser.add_argument('-numFolds', '-nf', default = None, type = int)
parser.add_argument('-log', '-l', default = 'True')
parser.add_argument('-logIteration', '-li', default = 'True')
parser.add_argument('-seed', '-s', default = 100, type = int)
parser.add_argument('-learningRate', '-lr', default = 0.005, type = float)
parser.add_argument('-lambdaReg', '-lreg', default = 0.05, type = float)
parser.add_argument('-numFeatures', '-fe', default = 10, type = int)
parser.add_argument('-iterations', '-i', default = 75, type = int)
args = parser.parse_args()
MatrixFactorization(args.data, args.delimiter, eval(args.useCols), args.dtype,
args.method, args.percTrain, args.numFolds, bool(args.log),
bool(args.logIteration), args.seed, args.learningRate, args.lambdaReg,
args.numFeatures, args.iterations)