Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The CPU is running normally, but the GPU running results are inconsistent #23201

Closed
FFchopon opened this issue Dec 26, 2024 · 0 comments
Closed
Labels
model:transformer issues related to a transformer model: BERT, GPT2, Hugging Face, Longformer, T5, etc.

Comments

@FFchopon
Copy link

FFchopon commented Dec 26, 2024

Describe the issue

Loading and optimizing the model using CUDA may result in inconsistent outputs after optimization. In contrast, performing the optimization on the CPU produces consistent results.

  • Actual Behavior:
AssertionError: 
Not equal to tolerance rtol=0.001, atol=0.001

Mismatched elements: 2 / 138 (1.45%)
Max absolute difference: 32
Max relative difference: inf
 x: array([[32, 14,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0],...
 y: array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0],...
  • Expected Behavior:
    The optimized model should produce identical results for all outputs when compared to the original model, within the specified tolerance.

To reproduce

  1. Download the model

  2. Run the following script:

import onnx
import onnxruntime as ort
from onnxruntime.transformers import optimizer
import numpy as np

model_path = "9256.onnx"
optimized_model_path = f"./opt.onnx"
input_data = {
    "v8_0": np.array([[[[0.5576], [0.4236]]]], dtype=np.float16),
    "v7_0": np.array([[[[0.1953]]], [[[0.94]]], [[[0.807]]]], dtype=np.float16),
}

sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
original_session = ort.InferenceSession(model_path, sess_options, providers=["CUDAExecutionProvider"])
original_output_names = [output.name for output in original_session.get_outputs()]
original_result = original_session.run(original_output_names, input_data)
original_result2 = original_session.run(original_output_names, input_data)
for r1, r2 in zip(original_result, original_result2):
    np.testing.assert_allclose(r1, r2, rtol=1e-3, atol=1e-3)

optimized_model = optimizer.optimize_model(model_path, opt_level=99)
optimized_model.save_model_to_file(optimized_model_path)
optimized_session = ort.InferenceSession(optimized_model_path, providers=["CUDAExecutionProvider"])
optimized_output_names = [output.name for output in optimized_session.get_outputs()]
optimized_result = optimized_session.run(optimized_output_names, input_data)
for r1, r2 in zip(original_result, optimized_result):
    np.testing.assert_allclose(r1, r2, atol=1e-3, rtol=1e-3)

notice:

  1. providers=["CUDAExecutionProvider"] -> inconsistent outputs
  2. providers=["CPUExecutionProvider"] -> run well

Urgency

No response

Platform

Linux

OS Version

Ubuntu 20.04

ONNX Runtime Installation

Built from Source

ONNX Runtime Version or Commit ID

5c1b7cc

ONNX Runtime API

Python

Architecture

X64

Execution Provider

CUDA

Execution Provider Library Version

No response

@github-actions github-actions bot added the model:transformer issues related to a transformer model: BERT, GPT2, Hugging Face, Longformer, T5, etc. label Dec 26, 2024
@FFchopon FFchopon changed the title Different results between GPU and CPU The CPU is running normally, but the GPU running results are inconsistent Jan 5, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
model:transformer issues related to a transformer model: BERT, GPT2, Hugging Face, Longformer, T5, etc.
Projects
None yet
Development

No branches or pull requests

2 participants