Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Issue]: "Some reports are missing full content embeddings" when you use a DRIFT search #1561

Open
3 tasks done
MarkHmnv opened this issue Dec 27, 2024 · 9 comments
Open
3 tasks done
Labels
triage Default label assignment, indicates new issue needs reviewed by a maintainer

Comments

@MarkHmnv
Copy link

Do you need to file an issue?

  • I have searched the existing issues and this bug is not already filed.
  • My model is hosted on OpenAI or Azure. If not, please look at the "model providers" issue and don't file a new one here.
  • I believe this is a legitimate bug, not just a question. If this is a question, please use the Discussions area.

Describe the issue

Hi, I followed the guide from the official DRIFT search documentation , however when I try to run the search I get the following error:

Entity count: 2539
Relationship count: 1435
Text unit records: 103
Traceback (most recent call last):
  File "...\graphrag-example\drift_search.py", line 127, in <module>
    response = asyncio.run(drift_search.asearch('What happens after my NetSuite Service Tier license is activated?'))
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "...\Python\Python311\Lib\asyncio\runners.py", line 190, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "...\Python\Python311\Lib\asyncio\runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "...\Python\Python311\Lib\asyncio\base_events.py", line 654, in run_until_complete
    return future.result()
           ^^^^^^^^^^^^^^^
  File "...\graphrag-example\venv\Lib\site-packages\graphrag\query\structured_search\drift_search\search.py", line 200, in asearch
    primer_context, token_ct = self.context_builder.build_context(query)
                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "...\graphrag-example\venv\Lib\site-packages\graphrag\query\structured_search\drift_search\drift_context.py", line 196, in build_context
    report_df = self.convert_reports_to_df(self.reports)
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "...\graphrag-example\venv\Lib\site-packages\graphrag\query\structured_search\drift_search\drift_context.py", line 128, in convert_reports_to_df
    raise ValueError(
ValueError: Some reports are missing full content embeddings. 187 out of 187

Local and Global search works fine. And also if you run DRIFT search from CLI, e.g.

graphrag query --query "What happens after my NetSuite Service Tier license is activated?" --method drift

Everything works fine, too.

Steps to reproduce

  1. Index your documents
  2. Run the code according to the following guide

GraphRAG Config Used

### This config file contains required core defaults that must be set, along with a handful of common optional settings.
### For a full list of available settings, see https://microsoft.github.io/graphrag/config/yaml/

### LLM settings ###
## There are a number of settings to tune the threading and token limits for LLM calls - check the docs.

encoding_model: cl100k_base # this needs to be matched to your model!

llm:
  api_key: ${GRAPHRAG_API_KEY} # set this in the generated .env file
  type: azure_openai_chat # or azure_openai_chat
  model: ${GRAPHRAG_LLM_MODEL}
  model_supports_json: true # recommended if this is available for your model.
  api_base: ${GRAPHRAG_API_BASE}
  api_version: ${GRAPHRAG_API_VERSION}
  organization: ${GRAPHRAG_API_ORGANIZATION}
  deployment_name: ${GRAPHRAG_LLM_MODEL}
  tokens_per_minute: 2000000
  requests_per_minute: 20000

parallelization:
  stagger: 0.3
  # num_threads: 50

async_mode: threaded

embeddings:
  async_mode: threaded
  vector_store: 
    type: lancedb
    db_uri: 'output\lancedb'
    container_name: default
    overwrite: true
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: azure_openai_embedding
    model: ${GRAPHRAG_EMBEDDING_MODEL}
    api_base: ${GRAPHRAG_API_BASE}
    api_version: ${GRAPHRAG_API_VERSION}
    organization: ${GRAPHRAG_API_ORGANIZATION}
    deployment_name: ${GRAPHRAG_EMBEDDING_MODEL}
    tokens_per_minute: 350000
    requests_per_minute: 2100

### Input settings ###

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id]

### Storage settings ###
## If blob storage is specified in the following four sections,
## connection_string and container_name must be provided

cache:
  type: file # or blob
  base_dir: "cache"

reporting:
  type: file # or console, blob
  base_dir: "logs"

storage:
  type: file # or blob
  base_dir: "output"

## only turn this on if running `graphrag index` with custom settings
## we normally use `graphrag update` with the defaults
update_index_storage:
  # type: file # or blob
  # base_dir: "update_output"

### Workflow settings ###

skip_workflows: []

entity_extraction:
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  enabled: false
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  embeddings: false
  transient: false

### Query settings ###
## The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.
## See the config docs: https://microsoft.github.io/graphrag/config/yaml/#query

local_search:
  prompt: "prompts/local_search_system_prompt.txt"

global_search:
  map_prompt: "prompts/global_search_map_system_prompt.txt"
  reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"
  knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"

drift_search:
  prompt: "prompts/drift_search_system_prompt.txt"

Logs and screenshots

No response

Additional Information

  • GraphRAG Version: 1.0.1
  • Operating System: Windows 11
  • Python Version: 3.11
  • Related Issues:
@MarkHmnv MarkHmnv added the triage Default label assignment, indicates new issue needs reviewed by a maintainer label Dec 27, 2024
@entorick
Copy link

same by the way

@YepJin
Copy link

YepJin commented Dec 30, 2024

Same here... not sure what happens

@YepJin
Copy link

YepJin commented Dec 31, 2024

I think the issue comes from the read_indexer_reports function in the example notebook. The config is not identified here.

Image

So the full_content_embedding column is None value when returned.
Image

Can you help check this example Drift_search notebook? @natoverse thanks!

@thomasjlittle
Copy link

I was having the same issue and @YepJin's suggestion of adding in the config to the read_indexer_reports call worked for me. Thank you!

@xldistance
Copy link

xldistance commented Jan 4, 2025

You can refer to my code,The official notebook is missing description_embedding_store

from graphrag.query.context_builder.entity_extraction import EntityVectorStoreKey
from graphrag.query.indexer_adapters import (
    read_indexer_covariates,
    read_indexer_entities,
    read_indexer_communities,
    read_indexer_relationships,
    read_indexer_reports,
    read_indexer_text_units,
    read_indexer_report_embeddings
)
from graphrag.query.llm.oai.chat_openai import ChatOpenAI
from graphrag.query.llm.oai.embedding import OpenAIEmbedding
from graphrag.query.llm.oai.typing import OpenaiApiType
from graphrag.query.question_gen.local_gen import LocalQuestionGen
from graphrag.query.structured_search.local_search.mixed_context import LocalSearchMixedContext
from graphrag.query.structured_search.local_search.search import LocalSearch
from graphrag.query.structured_search.global_search.community_context import GlobalCommunityContext
from graphrag.query.structured_search.global_search.search import GlobalSearch
from graphrag.query.structured_search.drift_search.drift_context import (
    DRIFTSearchContextBuilder,
)
from graphrag.config.models.drift_search_config import DRIFTSearchConfig
from graphrag.query.structured_search.drift_search.search import DRIFTSearch
from graphrag.vector_stores.lancedb import LanceDBVectorStore
        INPUT_DIR = "E:\\graphrag_kb\\input\\artifacts"
        LANCEDB_URI = "E:\\graphrag_kb\\output\\lancedb"
        COMMUNITY_REPORT_TABLE = "create_final_community_reports"
        FINAL_COMMUNITY_TABLE = "create_final_communities"
        ENTITY_TABLE = "create_final_nodes"
        ENTITY_EMBEDDING_TABLE = "create_final_entities"
        RELATIONSHIP_TABLE = "create_final_relationships"
        COVARIATE_TABLE = "create_final_covariates"
        TEXT_UNIT_TABLE = "create_final_text_units"
        text_embedder = OpenAIEmbedding(
                # 本地嵌入模型
                api_key="ollama",
                api_base="http://localhost:11434/v1",
                model="bge-m3:Q4",
                deployment_name="bge-m3:Q4",
                api_type=OpenaiApiType.OpenAI,
                max_retries=20,
        )
        entity_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_TABLE}.parquet")
        entity_embedding_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_EMBEDDING_TABLE}.parquet")
        entities = read_indexer_entities(entity_df, entity_embedding_df, COMMUNITY_LEVEL)

        description_embedding_store = LanceDBVectorStore(collection_name="default-entity-description")
        description_embedding_store.connect(db_uri=LANCEDB_URI)

        relationship_df = pd.read_parquet(f"{INPUT_DIR}/{RELATIONSHIP_TABLE}.parquet")
        relationships = read_indexer_relationships(relationship_df)
        text_unit_df = pd.read_parquet(f"{INPUT_DIR}/{TEXT_UNIT_TABLE}.parquet")
        text_units = read_indexer_text_units(text_unit_df)
        drift_params = DRIFTSearchConfig(
                temperature = 0.5,
                max_tokens = 12_000,
                primer_folds = 1,       # 搜索引导的折叠次数
                drift_k_followups = 3,      # 全局检索次数
                n_depth = 3,            # 混合搜索深度
                n = 1,              # 混合搜索次数
        )
        drift_context_builder = DRIFTSearchContextBuilder(
                chat_llm=llm,
                text_embedder=text_embedder,
                entities=entities,
                relationships=relationships,
                reports=reports,
                entity_text_embeddings=description_embedding_store,
                text_units=text_units,
                config = drift_params

                )
        drift_serch_engine = DRIFTSearch(
                llm=llm, context_builder=drift_context_builder, token_encoder=token_encoder
                )

@xldistance
Copy link

Draft_search's answer calls it this way,

        result = await drift_serch_engine.asearch(prompt)
        formatted_response = result.response
        formatted_response:str = formatted_response["nodes"][0]["answer"]

@Bennoo
Copy link

Bennoo commented Jan 7, 2025

Hello I have the same issue and I don't understand how to solve..
I tried :

from graphrag.config import load_config

path = Path(f"/mypathtoroot")
config = load_config.load_config(path)

and then:

reports = read_indexer_reports(
    report_df,
    entity_df,
    COMMUNITY_LEVEL,
    content_embedding_col="full_content_embeddings",
    config=config,
)

But I still have the same issue

ValueError: Some reports are missing full content embeddings.

I should miss something 🧐

@jaydip-ltimindtree
Copy link

jaydip-ltimindtree commented Jan 7, 2025

@Bennoo : TRy this waym it works

   drift_context_builder = DRIFTSearchContextBuilder(
                chat_llm=llm,
                text_embedder=text_embedder,
                entities=entities,
                relationships=relationships,
                **reports=read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL,content_embedding_col='embedding',config=config),**
                entity_text_embeddings=description_embedding_store,
                text_units=text_units,
                config = drift_params

                )

@Bennoo
Copy link

Bennoo commented Jan 7, 2025

It works! Thank you @jaydip-ltimindtree

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
triage Default label assignment, indicates new issue needs reviewed by a maintainer
Projects
None yet
Development

No branches or pull requests

7 participants