-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsdr_main.py
executable file
·81 lines (67 loc) · 3.21 KB
/
sdr_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""Top level file, parse flags and call trining loop."""
import os
from utils.pytorch_lightning_utils.pytorch_lightning_utils import load_params_from_checkpoint
import torch
from pytorch_lightning.profiler.profilers import SimpleProfiler
from utils.pytorch_lightning_utils.callbacks import RunValidationOnStart
from utils import switch_functions
import pytorch_lightning
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from utils.argparse_init import default_arg_parser, init_parse_argparse_default_params
import logging
logging.basicConfig(level=logging.INFO)
from pytorch_lightning.loggers import TensorBoardLogger
def main():
"""Initialize all the parsers, before training init."""
parser = default_arg_parser()
parser = Trainer.add_argparse_args(parser) # Bug in PL
parser = default_arg_parser(description="docBert", parents=[parser])
eager_flags = init_parse_argparse_default_params(parser)
model_class_pointer = switch_functions.model_class_pointer(eager_flags["task_name"], eager_flags["architecture"])
parser = model_class_pointer.add_model_specific_args(parser, eager_flags["task_name"], eager_flags["dataset_name"])
hyperparams = parser.parse_args()
main_train(model_class_pointer, hyperparams,parser)
def main_train(model_class_pointer, hparams,parser):
"""Initialize the model, call training loop."""
pytorch_lightning.utilities.seed.seed_everything(seed=hparams.seed)
if(hparams.resume_from_checkpoint not in [None,'']):
hparams = load_params_from_checkpoint(hparams, parser)
model = model_class_pointer(hparams)
logger = TensorBoardLogger(save_dir=model.hparams.hparams_dir,name='',default_hp_metric=False)
logger.log_hyperparams(model.hparams, metrics={model.hparams.metric_to_track: 0})
print(f"\nLog directory:\n{model.hparams.hparams_dir}\n")
trainer = pytorch_lightning.Trainer(
num_sanity_val_steps=2,
gradient_clip_val=hparams.max_grad_norm,
callbacks=[RunValidationOnStart()],
checkpoint_callback=ModelCheckpoint(
save_top_k=3,
save_last=True,
mode="min" if "acc" not in hparams.metric_to_track else "max",
monitor=hparams.metric_to_track,
filepath=os.path.join(model.hparams.hparams_dir, "{epoch}"),
verbose=True,
),
logger=logger,
max_epochs=hparams.max_epochs,
gpus=hparams.gpus,
distributed_backend="dp",
limit_val_batches=hparams.limit_val_batches,
limit_train_batches=hparams.limit_train_batches,
limit_test_batches=hparams.limit_test_batches,
check_val_every_n_epoch=hparams.check_val_every_n_epoch,
profiler=SimpleProfiler(),
accumulate_grad_batches=hparams.accumulate_grad_batches,
reload_dataloaders_every_epoch=True,
# load
resume_from_checkpoint=hparams.resume_from_checkpoint,
)
if(not hparams.test_only):
trainer.fit(model)
else:
if(hparams.resume_from_checkpoint is not None):
model = model.load_from_checkpoint(hparams.resume_from_checkpoint,hparams=hparams, map_location=torch.device(f"cpu"))
trainer.test(model)
if __name__ == "__main__":
main()