Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cleanup ops/transformer/inference tests #6925

Merged
merged 2 commits into from
Jan 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 14 additions & 28 deletions tests/unit/ops/transformer/inference/inference_test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@

# DeepSpeed Team

from typing import Tuple

import torch
from deepspeed.accelerator import get_accelerator

Expand All @@ -23,38 +25,22 @@ def get_tolerances():
DTYPES = None


def get_dtypes():
def get_dtypes(include_float=True):
global DTYPES
if DTYPES is None:
DTYPES = get_accelerator().supported_dtypes()
DTYPES = [torch.float16, torch.float32] if include_float else [torch.float16]
try:
if get_accelerator().is_bf16_supported():
DTYPES.append(torch.bfloat16)
except (AssertionError, AttributeError):
pass
return DTYPES


def allclose(x, y):
def allclose(x, y, tolerances: Tuple[int, int] = None):
assert x.dtype == y.dtype
rtol, atol = get_tolerances()[x.dtype]
if tolerances is None:
rtol, atol = get_tolerances()[x.dtype]
else:
rtol, atol = tolerances
return torch.allclose(x, y, rtol=rtol, atol=atol)


def assert_almost_equal(x, y, decimal=2, err_msg=''):
import numpy.testing as npt
if isinstance(x, torch.Tensor):
if x.dtype == torch.bfloat16:
x = x.float()
x = x.cpu().detach().numpy()
if isinstance(y, torch.Tensor):
if y.dtype == torch.bfloat16:
y = y.float()
y = y.cpu().detach().numpy()
npt.assert_array_almost_equal(x, y, err_msg=err_msg, decimal=decimal)


def max_diff(a, b):
a = a.to(torch.float32).flatten()
b = b.to(torch.float32).flatten()
diff = torch.abs(a - b)
max_diff_indices = torch.argsort(diff)[-1]
print("Max difference indices:", max_diff_indices)
print("Max difference values:", diff[max_diff_indices])
print(f"{a[max_diff_indices]} vs {b[max_diff_indices]}")
return max_diff_indices
4 changes: 2 additions & 2 deletions tests/unit/ops/transformer/inference/test_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import torch
import deepspeed
from deepspeed.accelerator import get_accelerator
from .inference_test_utils import assert_almost_equal
from .inference_test_utils import allclose


# reference timplementation
Expand Down Expand Up @@ -88,4 +88,4 @@ def test_attention(BATCH, H, N_CTX, D_HEAD, causal, use_flash, dtype=torch.float
use_triton_flash=False,
use_ds_attention=False)
tri_out = tri_out.reshape((BATCH, N_CTX, H, D_HEAD)).permute(0, 2, 1, 3)
assert_almost_equal(ref_out, tri_out)
assert (allclose(ref_out, tri_out))
4 changes: 2 additions & 2 deletions tests/unit/ops/transformer/inference/test_layer_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import InferenceBuilder
from deepspeed.ops.transformer.inference.op_binding.layer_norm import LayerNormOp
from .inference_test_utils import allclose, get_dtypes, assert_almost_equal
from .inference_test_utils import allclose, get_dtypes
try:
import triton # noqa: F401 # type: ignore
from deepspeed.ops.transformer.inference.triton import (
Expand Down Expand Up @@ -188,4 +188,4 @@ def test_triton_layer_norm(M, N, dtype, residual, input_bias, eps=1e-5, device='
y_ref = torch.nn.functional.layer_norm(x + res + (x_bias if input_bias else 0), w_shape, weight, bias,
eps).to(dtype)
# compare
assert_almost_equal(y_tri, y_ref)
assert (allclose(y_tri, y_ref))