Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cannot retrain model #44

Open
hoanghapham opened this issue Nov 18, 2024 · 0 comments
Open

Cannot retrain model #44

hoanghapham opened this issue Nov 18, 2024 · 0 comments

Comments

@hoanghapham
Copy link

Hi, I'm retraining this model, but somehow the backward step cannot update the encoders' parameters.

Here's the code for the loss function:

import torch
from torch import Tensor
from torch import nn
import torch.nn.functional as F

def contrastive_loss(E_a: Tensor, E_t: Tensor, temperature: float = 0.5, device="cpu") -> Tensor:
    sum_term = 0
    batch_size = len(E_a)
    N = range(batch_size)

    for i in N:
        pos = torch.exp(F.cosine_similarity(E_a[i], E_t[i], dim=-1) / temperature)
        a_t_neg = 0
        t_a_neg = 0

        for j in N:
            a_t_neg = a_t_neg + torch.exp(F.cosine_similarity(E_a[i], E_t[j], dim=-1) / temperature)
            t_a_neg = t_a_neg + torch.exp(F.cosine_similarity(E_t[i], E_a[j], dim=-1) / temperature)

        a_t = torch.log(pos / a_t_neg)
        t_a = torch.log(pos / t_a_neg)
        sum_term = sum_term - (a_t + t_a)
    
    loss = 1 / (2*batch_size) * sum_term
    loss.to(device)
    return loss

class ContrastiveLoss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input: Tensor, target: Tensor, temperature: float) -> Tensor:
        return contrastive_loss(input, target, temperature)

Training loop:

audio_encoder = AudioEncoder(
    audioenc_name="HTSAT",
    d_in=768,
    d_out=1024,
    sample_rate=16000,
    window_size=1024,
    hop_size=320,
    mel_bins=64,
    fmin=50,
    fmax=8000,
    classes_num=527
)

audio_encoder.requires_grad_(True)

text_encoder = TextEncoder(
    text_model="gpt2",
    d_out=1024,
    transformer_embed_dim=768
)
text_encoder.requires_grad_(True)

print("=================")

audio_optimizer = torch.optim.Adam(audio_encoder.parameters(), lr=0.001)
text_optimizer = torch.optim.Adam(text_encoder.parameters(), lr=0.001)

loss_function = ContrastiveLoss()
# loss_function = nn.CrossEntropyLoss()

use_device = "cpu"
epochs = 1
batch_size = 5
limit = 5

audio_encoder.to(device=use_device)
text_encoder.to(device=use_device)

epoch_avg_losses = []

text_encoder.train()
audio_encoder.train()
data_loader = DataLoader(dataset, batch_size=5)

for epoch in range(epoches):

    current_losses = []
    indices = tqdm(range(0, limit, batch_size), desc=f"Epoch: {epoch}")

    for audio_tensor, text_dict_raw in data_loader:
        # subsets = dataset[i: i+batch_size]
        text_input = {
            "input_ids": text_dict_raw["input_ids"].reshape(batch_size, -1), 
            "attention_mask": text_dict_raw["attention_mask"].reshape(batch_size, -1)}

        audio_optimizer.zero_grad()
        text_optimizer.zero_grad()

        audio_embeded, _ = audio_encoder(audio_tensor.reshape(batch_size, -1))
        text_embedded = text_encoder(text_input)

        loss_val = loss_function(audio_embeded, text_embedded)
        current_losses.append(loss_val.item())
        
        loss_val.backward(retain_graph=True)
        audio_optimizer.step()
        text_optimizer.step()        
        indices.set_postfix({"loss_val": loss_val.item()})
                         
    epoch_avg_losses.append(sum(current_losses) / len(current_losses))

I suspect that I did something wrong in my loss function so I tested this with the default CrossEntropyLoss, but the two encoder's parameters were not updated either. Can someone help?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant