-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_QandA_2.py
57 lines (42 loc) · 1.8 KB
/
test_QandA_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from transformers import AutoTokenizer
import torch
from transformers import AutoModelForSequenceClassification
from datasets import load_dataset
def classifier(question, answer):
tokenizer = AutoTokenizer.from_pretrained("mhr2004/BERT_QandA")
inputs = tokenizer(question, answer, return_tensors="pt")
model = AutoModelForSequenceClassification.from_pretrained("mhr2004/BERT_QandA")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
return model.config.id2label[predicted_class_id]
def dataset_loader():
'''
This functions loads the Circa dataset
and splits it randomly in three parts of
train, dev, test with 60, 20, 20 percentage
returns a datasetdict
'''
dataset = load_dataset("circa", split = 'train')
#filter the unknown data
dataset = dataset.filter(lambda example:
(example['goldstandard2']==0 or
example['goldstandard2']== 1 or
example['goldstandard2']== 2 or
example['goldstandard2']== 3))
train_testvalid = dataset.train_test_split(test_size=0.4, seed=42)
test_valid = train_testvalid['test'].train_test_split(test_size=0.5, seed=42)
train_testvalid['test'] = test_valid['test']
train_testvalid['valid'] = test_valid['train']
return train_testvalid
dataset = dataset_loader()
id2label = {0: "Yes", 1: "No", 2: "In the middle, neither yes nor no", 3: "Yes, subject to some conditions)"}
all = 0
correct = 0
for line in dataset['test']:
if classifier(line['question-X'], line['answer-Y']) == id2label[line['goldstandard2']]:
correct += 1
all += 1
else:
all +=1
print('accuracy equals to: ' + str(correct / all))