-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparse_csv.py
66 lines (55 loc) · 1.92 KB
/
parse_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
def parse_csv(fname):
lines = []
with open(fname, 'r') as fd:
for line in fd.readlines():
if not line.startswith('#'):
lines.append(line.strip().split(','))
names = [field.split('.') for field in lines[0]]
data = np.array([[float(f) for f in line] for line in lines[1:]])
namemap = {}
maxdims = {}
for i, name in enumerate(names):
if name[0] not in namemap:
namemap[name[0]] = []
namemap[name[0]].append(i)
if len(name) > 1:
maxdims[name[0]] = name[1:]
for name in maxdims.keys():
dims = []
for dim in maxdims[name]:
dims.append(int(dim))
maxdims[name] = tuple(reversed(dims))
# data in linear order per Stan, e.g. mat is col maj
data_ = {}
for name, idx in namemap.items():
new_shape = (-1, ) + maxdims.get(name, ())
data_[name] = data[:, idx].reshape(new_shape)
return data_
def parse_csv2(dir, fname):
lines = []
with open(dir+fname, 'r') as fd:
for line in fd.readlines():
if not line.startswith('#'):
lines.append(line.strip().split(','))
names = [field.split('.') for field in lines[0]]
data = np.array([[float(f) for f in line] for line in lines[1:]])
namemap = {}
maxdims = {}
for i, name in enumerate(names):
if name[0] not in namemap:
namemap[name[0]] = []
namemap[name[0]].append(i)
if len(name) > 1:
maxdims[name[0]] = name[1:]
for name in maxdims.keys():
dims = []
for dim in maxdims[name]:
dims.append(int(dim))
maxdims[name] = tuple(reversed(dims))
# data in linear order per Stan, e.g. mat is col maj
data_ = {}
for name, idx in namemap.items():
new_shape = (-1, ) + maxdims.get(name, ())
data_[name] = data[:, idx].reshape(new_shape)
return data_